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Abstract

A primary impediment to wide-spread exploitation of
reconfigurable computing is the lack of a unifying com-
putational model which allows application portability and
longevity without sacrificing a substantial fraction of the
raw capabilities. We introduce SCORE (Stream Computa-
tion Organized for Reconfigurable Execution), a stream-
based compute model which virtualizes reconfigurable
computing resources (compute, storage, and communica-
tion) by dividing a computation up into fixed-size “pages”
and time-multiplexing the virtual pages on available phys-
ical hardware. Consequently, SCORE applications can
scale up or down automatically to exploit a wide range
of hardware sizes. We hypothesize that the SCORE model
will ease development and deployment of reconfigurable
applications and expand the range of applications which
can benefit from reconfigurable execution. Further, we be-
lieve that a well engineered SCORE implementation can be
efficient, wasting little of the capabilities of the raw hard-
ware. In this paper, we introduce the key components of the
SCORE system.

1 Introduction

A large body of evidence exists documenting the raw
advantages of reconfigurable hardware such as FPGAs
over conventional microprocessor-based systems on se-
lected applications. Yet reconfigurable computing remains
in limited use, popular primarily in application-specific do-
mains (e.g. [23] [32] [38]) or as a replacement for ASICs
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for rapid prototyping and fast time-to-market. This lim-
ited popularity is not due to any lack of raw hardware ca-
pability, as million-gate devices are readily available [37]
[2], and we have seen recent advances in high clock rates
[30] [28], rapid reconfiguration [29] [16] [14], and high-
bandwidth memory access [24] [19] [25]. Rather, we be-
lieve that the limited applicability of reconfigurable tech-
nology derives largely from the lack of any unifying com-
pute model to abstract away the fixed resource limits of
devices which, otherwise, restrict software expressibility
as well as longevity across device generations.

Existing targets are non-portable. Software for recon-
figurable hardware is typically tied to a particular device
(or set of devices), with limited source compatibility and
no binary compatibility even across a vendor-specific fam-
ily of devices. Redeploying a program to bigger, next-
generation devices, or alternatively to a smaller, cheaper
or lower-power device typically requires substantial hu-
man effort. At best, it requires a potentially expensive pass
through mapping tools. At worst, it requires a significant
rewrite to fully exploit new device features and sizes. In
contrast, a program written for microprocessor systems can
automatically run and benefit from additional resources on
any ISA-compatible device, without recompilation.

Existing targets expose fixed resource limitations. The
exposure of fixed resource limitations in existing pro-
gramming models tends to impair their expressiveness and
broad applicability. In such programming models, an ap-
plication’s choice of algorithm and spatial structure is re-
stricted by the size of available hardware. Furthermore, a
computation’s structure and size must be fixed at compile
time, with no allowance for dynamic resource allocation.
Hence algorithms with data-dependent structures or poten-
tially unbounded resource usage cannot be easily mapped



to reconfigurable hardware.1

Virtualize resources The SCORE compute model intro-
duced in this paper addresses the issue of fixed resource
limits by virtualizing the computational, communication,
and memory resources of reconfigurable hardware. FPGA
configurations are partitioned into fixed-size, communicat-
ing pages which, in analogy to virtual memory, are “paged-
in” or loaded into hardware on demand. Streaming com-
munication between pages which are not simultaneously
in hardware may be transparently buffered through mem-
ory. This scheme allows a partitioned program to run on
arbitrarily-many physical pages and to automatically ex-
ploit more available physical pages without recompilation.
With proper hardware design, this scheme permits binary
compatibility and scalability across an architectural family
of page-compatible devices.

Convenient and Efficient Model For software to ben-
efit from additional physical resources (pages), the pro-
gramming model should expose (page-level) parallelism
and permit spatial scaling. SCORE’s programming model
is a natural abstraction of the communication which oc-
curs between spatial, hardware blocks. That is, the data
flow communication graph captures the blocks of com-
putation (operators) and the communication (streams) be-
tween them. Once captured, we can exploit a wealth of
well-known techniques for efficiently mapping these com-
putational graphs to arbitrary-sized hardware. Further-
more, run-time composition of graphs is supported, en-
abling data-driven program structure, dynamic resource al-
location, and the integration of separately compiled or de-
veloped library components.

Section 2 of this paper discusses other systems and
compute models which have influenced the formulation
of SCORE. Section 3 presents the key components of the
SCORE model. Section 4 discusses the hardware require-
ments for a SCORE implementation and why they are rea-
sonable in today’s technology. Section 5 gives a brief in-
troduction to programming constructs for SCORE. Sec-
tion 6 show an execution sample, and Section 7 describes
the basic architecture for our current implementation of the
SCORE run-time system. Section 8 shows results from a
JPEG encoder in SCORE as an example of our early expe-
rience implementing a SCORE system.

1Data-dependent computational structures can be constructed via spe-
cialization and recompilation, as in [38], but this requires a complete pass
through mapping tools.

2 Related Work

The technique of time-multiplexing a large spatial de-
sign onto a small reconfigurable system was demonstrated
by Villasenoret al. [31]. By hand-partitioning a partic-
ular design (motion-wavelet video coder) into a graph of
FPGA-sized “pages” and manually reconfiguring each de-
vice with those pages, they were able to run the design on
one third as many devices (i.e. physical pages) as were
originally required with only 10% performance overhead.
The key to this approach’s efficiency was to amortize the
cost of reconfiguration by having each page process a siz-
able stream of data (buffered through memory) before re-
configuring. SCORE aims to automate the partitioning and
efficient dynamic reconfiguration performed manually by
Villasenor.

The ease and success of such automation depends on
appropriate models for program description and dynamic
reconfiguration. In this regard, SCORE builds on prior art
developing ISA, data flow, distributed, and streaming com-
putation models. In the remainder of this section, we dis-
cuss the relation of SCORE to these prior models.

ISA Models
The first attempts to define a “compute model” for recon-
figurable computing devices were focussed on augmenting
a traditional processor ISA withreconfigurable instruc-
tions. PRISC [27] (and later Chimæra [15]) allowed the
definition of single-cycle, Programmable Function Unit
(PFU) operations using a TLB-like management and re-
placement scheme tovirtualize the space of PFU instruc-
tions, exploiting local, dynamic reuse of PFU instructions.
The size of the PFUOP, itself, however, was fixed by the
architecture and PFUOPs are constrained by the sequential
ISA to execute sequentially. Hence, the model does not di-
rectly, allow the architecture to scale and exploit additional
parallel hardware.

DISC [36] and GARP [16] expand the PRISC model
to allow variable-size and multiple-cycle array configu-
rations. These architectures can pack multiple configu-
rations (instructions) into the available array and, in the
case of GARP, support an implementation dependent num-
ber of cached array configurations. However, like PRISC,
each array configuration must be smaller than the available,
physical logic, and reconfigurable instructions can only be
composed sequentially in the ISA. Consequently, these ar-
chitectures also prevent one from scaling array size and
automatically exploiting the additional parallel hardware.

OneChip [19] expands the ISA extension model fur-
ther by allowing scoreboarded operations from memory
to memory in the ISA. While still based on a sequential
ISA computing model, this potentially facilitates the use of
multiple, parallel RFUs. As long as each RFUOP operates
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on independent memory banks, the RFU operations will
not interlock and may proceed in parallel. This technique,
however, exposes the memory buffers between pipelined
and chainable operations. It forces the user or compiler to
pick blocking factors and to schedule blocked operations
in parallel in the processor’s instruction dispatch window.
In fact, this approach prevents direct pipeline assembly of
chained operations. Furthermore, the ISA forces the com-
piler to schedule the invocation of RFU operations, limit-
ing the opportunity to schedule components of the recon-
figurable computation in a data-driven manner.

Dynamic Reconfiguration
Ling and Amano [22] describe the Multi-Processor WAS-
MII, a scalable FPGA-based architecture which partitions
and time-multiplexes large applications as FPGA-sized
pages, much like SCORE. The primary limitation to WAS-
MII’s performance is that page communication is buffered
through a small,fixed set of device registers (the “token
router”). With such a small communication buffer, a page
can operate for only a short time before depleting available
inputs or output space and, if the page is time-multiplexed,
triggering reconfiguration. Hence when running a design
which is larger than available hardware, execution time
may be dominated by reconfiguration time. Brebner [5]
[6] proposes a similar demand-paged, reconfigurable sys-
tem based on arbitrary-sizedswappable logic units(SLUs)
which communicate through periphery registers2 and are
subject to the same inefficiency as WASMII when time-
multiplexed. SCORE avoids this inefficiency by allowing
large (unbounded) communication buffers, enabling longer
page execution between reconfigurations.

CMU’s PipeRench [14] defines a reconfigurable fab-
ric paged into horizontalstripeswhich communicate ver-
tically as a pipeline. The execution model fully virtual-
izes stripes and enables hardware scaling to any number
of physical stripes. Although stripes communicate through
input-output registers as in WASMII, PipeRench’s stripe-
sequential, pipelined reconfiguration scheme hides the ex-
cessive reconfiguration overhead seen in WASMII. This
sequential reconfiguration scheme is well suited to sim-
ple, feed-forward pipelines. However, this scheme does
not support computation graphs with feedback loops, and
it may waste available parallelism when squeezing wide
graphs into a linear sequence of stripes. In particular, when
virtualizing a computation with more parallelism than is
available in a single architected stripe, non-communicating
stripes which simultaneously fit into hardware must still

2In Brebner’s “parallel harness” model, SLUs are arranged in a mesh
and communicate with nearest neighbors via periphery registers. In the
data-parallel “sea of accelerators” model, SLUs do not communicate with
each other and so would not incur the same virtualization overhead dis-
cussed above.

load in sequence, incurring added latency and an area cost
for buffering stripe I/O. SCORE makes no such restric-
tions on execution order, allowing parallel reconfiguration
of physical pages.

Data Flow
The original Dennis formulation of data flow [11] [10]
described a processor ISA which represented data flow
graphs directly, each instruction being an operator. The
execution model included only a single result register per
instruction, allowing an instruction to execute only once at
a time before its successors must execute. While this re-
striction on instruction ordering is reasonable for a micro-
processor where large instruction store and fast instruction
issue are available, it is not reasonable for a reconfigurable
device where reconfiguring on each instruction issue is too
costly. Iannucci’shybrid data flow[18] and Berkeley’s
TAM [9] define operators by straight-line blocks of instruc-
tions, relaxing the frequency of inter-instruction synchro-
nization to only the entry and exit points of blocks. Nev-
ertheless, these models inherit the same problem of fixed
communication buffers as Dennis data flow and thus face
the same inefficiency as WASMII in a time-multiplexed re-
configurable implementation.

Streaming formulations of data flow remove the lim-
itation of fixed input-output buffers, allowing arbitrarily
many tokens to queue up along an arc of a data flow graph.
This generalization allows a time-multiplexed implemen-
tation to fire an operator many times in succession before
reconfiguring, amortizing the cost of reconfiguration over a
large data set. Lee’s synchronous data flow (SDF) [21] [3]
incorporates streaming for the restricted case of static flow
rates. Although this model of computation is not Turing-
complete (it lacks data-dependent control flow), it guaran-
tees that conforming graphs can be statically scheduled to
run with bounded stream buffers.

Buck’s integer-controlled data flow (IDF) [7] incorpo-
rates data-dependent control flow by adding to SDF a
set of canonical dynamic-rate operators (e.g. switch, se-
lect). SCORE permits a dynamic-rate model, allowing
data-dependent control flow inside any operator. As such,
SCORE programs are essentially equivalent to IDF in ex-
pressiveness, since a SCORE operator is equivalent to an
IDF graph containing dynamic operators.

SCORE shares a gross similarity to heterogeneous sys-
tems which use streaming data flow to tie together ar-
bitrary processors (conventional, special-purpose, and/or
reconfigurable) including MIT’s Cheops [4], MagicEight
[35] [34], and Berkeley’s Pleiades [26] [1]. The pro-
gramming model of these systems is more restricted than
SCORE, typically based on a pre-defined set of streaming
operations. Furthermore, SCORE provides a stronger ab-
stract model allowing pages (processors) to be swapped as
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needed and hiding implementation limitations like buffer
sizes.

Streaming APIs
Virginia Tech [20] defines a streaming API for processor-
controlled networks of reconfigurable devices (e.g.
SLAAC [8]). While standardizing the form in which ap-
plications may be written, this API does not, in and of it-
self, virtualize the size or fabric of compute resources and
hence does not allow the definition of portable and scalable
designs. Rather, it serves only as a hardware interface layer
to manually reconfigure devices on the network.

Maya Gokhale [13] defines a C-based streaming pro-
gramming model. Like SCORE, Streams-C exploits that
fact that reconfigurable hardware is efficiently organized
as a collection of spatial pipelines and that streams pro-
vide a natural abstraction for the hardware linkage between
two separate design components. Nevertheless, Streams-
C only serves as a convenient way to compactly describe
spatial designs. No virtualization is performed, and the
burden of handling placement and fixed buffer size restric-
tions is placed entirely on the programmer. In these re-
gards, SCORE attempts to provide a much higher level
programming model, providing semantics which are de-
coupled from hardware artifacts, like buffer sizes and phys-
ical hardware size, and automatically filling in these lower
level details at compile and run time.

CSP
In many ways the SCORE computational model is simi-
lar to Hoare’s Communicating Sequential Processes (CSP)
[17]. Each SCORE operator can be viewed as a sin-
gle process. These operators communicate with each
other via designated stream connections somewhat like
CSP’s named ports. Unlike CSP ports, SCORE streams
are buffered and offer an unbounded stream abstraction.
Significantly, SCORE operators, unlike CSP processes,
are not allowed to be non-deterministic. Composition of
SCORE operators always yields deterministic, observable
results. In fairness, most of CSP’s non-determinism is to
facilitate modeling of unpredictable, dynamic effects in
real systems, and most of SCORE could be modeled on
top of CSP. SCORE also allows dynamic construction of
computational graphs, which was not in the original CSP
formulation, but could of course be added.

3 SCORE Computational Models

A compute model defines the computational seman-
tics that a developer expects the physical machine to pro-
vide. The compute model itself is abstract but captures the

essence of how computation proceeds, defining the mean-
ing of any computation. The compute model is given a
more concrete embodiment in one or moreprogramming
models. The programming model provides a high-level
view of application composition and execution, adding a
number of practical conveniences for the programmer. Ul-
timately, both models are grounded in anexecution model
which defines the way the computation is actually de-
scribed to the physical hardware and the meaning associ-
ated with any such description.

The execution model, programming model, and abstract
computational model are all consistent views of computa-
tion. What differs among them is the level of detail which
they expose or abstract (See Figure 1 and 2). The exe-
cution model abstracts the number of key resources (e.g.
ALUs, pages) to allow scaling across different hardware
platforms. The programming model abstracts architectural
characteristics found in the execution model (e.g. ISA de-
tails, limited resource sizes exposed at architectural level).
The compute model abstracts away the concrete syntax and
primitives provided by a particular programming language
or system.

3.1 Compute Model

A SCORE computation is a graph of computation nodes
(operators) and memory blocks linked together by streams.
Streams provide node-to-node communication and are
simply single-source, single-sink FIFO queues with un-
bounded length. Graph nodes (operators) are of two forms:
(1) Finite-State Machine (FSM) nodes which interact with
the rest of the graphonly through their stream links; and
(2) Turing complete (TM) nodes which support resource
allocation in addition to stream operations.

SCORE FSMs have the property that the present state
identifies a set of inputs to be read from the input streams.
Once a full set of inputs is present, the FSM consumes the
inputs from the appropriate set of input FIFOs and may
conditionally emit outputs or close input or output streams.
As with any standard FSM, SCORE FSMs transition to a
new state based on their inputs and present state. Each
SCORE FSM has a distinguisheddonestate into which it
may enter to signal its completion and to remove itself from
the running computation.

A SCORE TM node is similar to a SCORE FSM node
but adds the ability to allocate memory and to create new
graph nodes (FSM or TM operators) and edges (streams)
in the SCORE compute graph.

Memory is allocated in finite-sized blocks calledseg-
ments. Each segment may be owned by a single operator
at a time. A SCORE TM may allocate new segments and
pass them on to an FSM or TM node that it creates. Upon
termination, when a TM or FSM node enters thedonestate,
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Compute Model Programming Model Execution Model

Abstract model capturing
essential semantics of
computation

Particular set of programming con-
structs providing a convenient way
to express computations in the com-
pute model

Low-level (executable) description
of the computation and the seman-
tics which the hardware is expected
to provide when interpreting this de-
scription

The programming model is ab-
stracted from certain details that
arise in the execution model, like ar-
chitectural page size or number of
registers.

The execution model is abstracted
from certain hardware size details
like number of resources.

sequential execution C+Unix MIPS-ISA
+ single global memory + Unix-ABI

C+WinAPI x86-ISA
+ WinABI

SCORE C++ + TDF MIPS-ISA
+ ScoreRT + linux + linux-ABI

+ SCORE 256 4-LUT CPs
+ SCORE<1MB segments

CSP Occam Transputer ISA
TTDF Id TL0-sparc

+ AM
+ Solaris

SPMD C* Sparc-ISA
+ CM5-runtime

+ Solaris
vector vectorized C T0-ISA

SunOS-ABI
SDF Ptolemy graphs TMS320C40

Figure 1: Levels of Abstraction for Computational Model

Computational Compute Programming Execution
Element Model Model Model Hardware
Compute SCORE FSM Operator Page Physical Compute Page (CP)

Communication Stream Stream Stream
• physical network
• CMB
• main memory

Data Storage Segment Segment Segment
• CMB
• main memory

Figure 2: SCORE Computational Elements at Various Levels of Abstraction
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it returns ownership of any received segments back to the
operator that created it. If an operator attempts to access
a memory segment that it does not presently own, that ac-
cess is blocked (i.e. the operator stalls) until the operator
regains ownership of the memory segment.

The operational semantics of the SCORE compute
model are fully deterministic. This follows from the de-
terminism of individual operators, the timing indepen-
dent communication discipline, and the fact that opera-
tors cannot side-effect each other’s state. In particular,
(1) operators communicate with each other only through
streams, whose token flow semantics guarantee a timing-
independent order of execution; (2) memory segments
have a single, unique owner at any time and thus do not
suffer from multiple-accessor, read/write-ordering hazards.
Thus, the observable results of a SCORE computation are
completely independent of the timing of any operator or
the delay along any stream.

Appendix B defines the compute model more precisely.

3.2 Programming Model

A programming model gives the programmer a frame-
work for describing a computation in a manner indepen-
dent of device limits, along with guidelines for efficient
execution on any hardware implementation. It can be more
abstract than the execution model because the compiler
will take care of translating the higher level description
provided by the programmer into the details needed for ex-
ecution. The key abstractions of the SCORE programming
model areoperators, streams, andmemory segments.

3.2.1 Basic Components
Operators
An operator represents a particular algorithmic transfor-
mation of input data to produce output data. Operators are
the computational building blocks for a computation (e.g.
multiplier, FIR filter, FFT). Operators may be behavioral
primitives or hierarchical graph compositions of other op-
erators. Figure 3 shows an example video processing op-
erator composed as a pipeline of transformations, includ-
ing amotion estimationoperator, an imagetransformation
operator, a dataquantizationoperator, and acodingopera-
tor. The size of an operator in hardware is implementation
dependent and is in no way limited in the programming
model. Operators may need to be partitioned to fit onto an
architectural compute page. Partitioning is an integral part
of the automated in the compilation process.

Streams
Inter-operator communication uses a streaming data flow
discipline. When the programmer needs to connect oper-

ators together, he links the producer to the consumer op-
erator using astreamlink. The link both serves to define
where data is logically routed and acts as an unbounded-
length queue for data tokens. Operators signal both when
they are producing data and when they need to consume
data. This signalling translates into data presence signals
on the stream links which synchronize all communication
between operators.

Memory Segments
A memory segment is a contiguous block of memory and
serves as the basic unit for memory management. Memory
segments may be any size, up to an architecturally defined
maximum. A memory segment may be used in a SCORE
computation by giving it a specific operating mode (e.g.
sequential read, random-access read-write, FIFO) with ap-
propriate stream interface, then linking it into a data flow
graph like any other operator (see Figure 5).

3.2.2 Dynamic Features

On top of these basic components, SCORE supports a
number of important dynamic features.
• Dynamic rate operators
• Dynamic graph composition and instantiation
• Dynamic handling of uncommon events

Dynamic rate operators
An operator may consume and produce tokens at data-
dependent rates. This expressive power allows SCORE
to describe efficient operators for tasks such as data com-
pression, decompression, and searching or filtering. Sec-
tion 5.2 shows a possible set of linguistic constructs for
supporting dynamic rate consumption and production. To
exploit dynamic rates, scheduling decisions should be
made at run time, when the dynamic rates and actual data
availability are known.

Dynamic composition and instantiation
SCORE allows run-time instantiation of operators and data
flow graphs. That is, the computational graph may be
created, extended, or modified during execution. Extend-
ing the graph means creating new graph nodes and edges
which may be defined in a data-dependent manner. An op-
erating node may terminate during execution, and existing
stream links may be shut down by their attached operators.

This mechanism has several benefits over describing a
computation strictly by a static graph at compile-time. It
gives the programmer an opportunity to postpone or avoid
allocating resources for parts of the computation which
are not used immediately or whose resource requirements
cannot be bound until run time. It also enables the cre-
ation of data-dependent computational structures, for in-
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Figure 3: Video Processing Operator

stance, to exploit dynamically-unrolled parallelism. Fi-
nally, it creates a framework in which aggressive imple-
mentations may dynamically specialize operators around
instantiation parameters. That is, an operator may havepa-
rametersbound atinstantiation time—i.e. when the opera-
tor is composed into a data flow graph. This mechanism al-
lows operators to be initialized with unchanging or slowly
changing scalar data or to be specialized around parameter
values. Examples in Section 5.2 show one set of linguistic
constructs to support composition and instantiation.

Exception handling

Exception handling falls naturally out of the data flow dis-
cipline of SCORE. When an unusual condition occurs, the
operator may raise an exception. At this point, the operator
stops rather than producing output data. Dependent, down-
stream operators may have to stall waiting for this operator
to resume and produce an output, but the data flow disci-
plines guarantees that they wait properly for the operator
to handle the exception and produce a result. When the ex-
ception is handled, the raising operator resumes operation,
producing data, and allowing the downstream operators to
resume in turn.

3.3 Execution Model

The key idea of a computer architecture is that it defines
the computational description that a machine will run and
the semantics for running it (e.g. the x86 ISA is a popular
architectural definition for processors). Someone building
a conforming device is then free to implement any detailed
computer organization that reads and executes this compu-
tational description (e.g. i80286, i80386, i80486, Pentium,
and K6 are all different implementations that run the same
x86 computational description). Following this technique,
the execution model for SCORE defines the run-time com-
putational description for an architecture family and the se-
mantics for executing this description.

The SCORE execution model defines all computation in
terms of three key components:
• A compute page(CP) is a fixed-size block of reconfig-

urable logic which is the basic unit of virtualization and
scheduling.

• A memory segmentis a contiguous block of memory
which is the basic unit for data page management.

• A Stream linkis a logical connection between the out-
put of one page (CP, segment, processor, or I/O) and the
input of another page. Stream implementations will be
physically bounded, but the execution model provides
a logically unbounded stream abstraction.

A computational description in this execution model is in-
dependent of the size of the reconfigurable array, admitting
architectural implementations with anywhere from one to a
large number of compute pages and memories. The model
provides the semantics of an unlimited number of indepen-
dently operating physical compute pages and memory seg-
ments. Compute pages and segments operate on stream
data tagged with input presence and produce output data
to streams in a similar manner. The use of data presence
tags provides an operational semantics that is independent
of the timing of any particular SCORE-compatible com-
puting platform.

Fixed Compute-Page Sizes
Compute pages are the basic unit of virtualization, schedul-
ing, reconfiguration, and relocation. In analogy with a vir-
tual memory page, a compute page is the minimum unit of
hardware which is mapped onto physical hardware and is
managed as an atomic entity. Each compute page repre-
sents a fixed-size piece of reconfigurable hardware (e.g.64
4-LUTs). Compute pages differ from the operators of the
compute model in that pages have architecturally imposed
resource limitations such as size and maximum number of
streams.

The decomposition of a computation into compute
pages takes the stand that it is not feasible nor desirable to
manage every primitive computational building block (e.g.
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Figure 4: Example of Page Decomposition: (a) original operator as seen in programming model, (b) mapped to logic
elements (LEs) in target architecture, (c) partitioning into 64-LE pages to match execution model page size, (d) final graph
used by execution model

4-LUT) as an independent entity—just as it is generally not
desirable to manage every bit of memory as an independent
block. Rather, by grouping together a larger block of re-
sources, management and overhead can be amortized over
the larger number of computational blocks. This group-
ing also allows hard problems, like placement and rout-
ing, to be performed offline within each page. Note that
it is necessary that the page size be fixed across an ar-
chitecture family so that all family member can run from
the same run-time (binary) description. Otherwise, page
(re-)packing, placement, and routing would need to be per-
formed online. The fixed page discipline requires that com-
pilers partition (or pack) more abstract computational op-
erators into these fixed size pages. Figure 4 shows an ex-
ample decomposition of an operator graph into pages.

Compute pages may contain internal state which must
be saved and restored when the page is swapped onto or
off of a physical compute page. Swapping may be nec-
essary in a time-multiplexed implementation and is key to
supporting the semantics of an unbounded number of com-
pute pages.

Memory Segments and Configurable Memory Blocks
A memory segment is a contiguous block of memory
which is managed as a single, atomic memory block for
the purposes of swapping and relocation. A memory seg-
ment may be used in one of several modes (e.g.sequential
read, random-access read-write, FIFO). When configured

VCP0

Segment0

Segment1

VCP1

VCP2

Figure 5: Data Flow Computation Graph with both Com-
pute Pages and Segments
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into a particular mode, a segment has logical stream ports
to connect it to the graph of pages (e.g.streams for random
access: address input, data input, data output, control in-
put). Figure 5 shows an example graph connecting pages
and segments.

To use a memory segment, the run-time system will map
it into a configurable memory block(CMB). The CMB is
a physical memory block inside the reconfigurable array
(See, for example, Figure 11) with active stream links and
interconnect to connect the memory segment into the ac-
tive computation. In addition to holding user-specified seg-
ments, CMBs are also used to hold segments containing
CP configurations, segments containing CP state, and seg-
ments associated with stream buffers. A single CMB may
hold any number of each of these types of segments as long
as their aggregate memory requirement does not exceed the
CMB’s capacity (see Figure 6 for a sample memory lay-
out in a CMB). In our current vision, only a single such
segment may actually be active in each CMB at any point
in time, but there is nothing in the SCORE definition that
prevents an implementation from being designed to handle
multiple, active segments in the same CMB.

Physically Finite, Logically Unbounded Streams
Streams form the data flow links between pages. A page
(CP or segment) indicates when it is producing a valid data
output with an out-of-banddata presentbit. The valid data
value with its associated presence bit is termed atoken.
The token is transported to the destination input of the con-
suming operator. The stream delivers all data items gen-
erated by the producer, in order, to the consumer, storing
each until the consumer indicates it has consumed it from
the head of its input queue (See Figure 7). The data pres-
ence tag in a token serves a similar role to astall signal in
a conventional virtual memory or cache architecture; that
is, it lets the processing unit know if data is available and it
can continue processing or if the processing unit must wait
for data to arrive.

When a stream is empty, the downstream operator will
stall waiting for more input data. This discipline hides
the detailed timing of operations from the programming
model, guaranteeing correct behavior while allowing vari-
ations between implementations of the computing archi-
tecture.

Even at the run-time level, streams provide the abstrac-
tion of unbounded capacity links between producers and
consumers.3 In practice, however, the streams are finite,
with an implementation-dependent buffer capacity. To im-
plement the semantics of unbounded, FIFO stream links,
an implementation will usebackpressure(See Figure 7)

3See Appendix A for a discussion of why unbounded buffers are nec-
essary.

to stall production of data items, and the run-time system
will allocate additional buffer space in FIFO segments as
needed (See Figure 8 for an example of stream buffer ex-
pansion).

Physically, a virtual stream may be realized in one of
two ways:
• When both the producer and the consumer of a vir-

tual stream are loaded on the physical hardware, the
stream link can be implemented as a spatial connec-
tion through the inter-page routing network between
the two pages.4 (See Figure 9.)

• When one of the ends of the stream is not resident, the
stream data can be sinked (or sourced) from a stream
buffer segment active in some CMB on the component.
(See Figure 10.)

This allows efficient, pipelined chaining of connected op-
erators when space permits, as well as deep, intermediate
data buffering when a computation must be sequentialized.

Hardware Virtualization
Compute pages, segments, and streams are the fundamen-
tal units for allocation, virtualization, and management of
the hardware resources. At run time, an operating sys-
tem manager schedules virtual pages and streams onto the
available physical resources, including page assignment
and migration and inter-page routing.

If there are enough physical resources, every page of a
computation graph may be simultaneously loaded on the
reconfigurable hardware, enabling maximum-speed,fully-
spatialcomputation. Figure 9 shows this case for the video
processing operator of Figure 3. If hardware resources
are limited, a computation graph will be time-multiplexed
onto the hardware. Streams between virtual pages that are
not simultaneously loaded will be transparently buffered
through on-chip memory. Figure 10 shows this case for
the video processing operator. Each component operator
is loaded into hardware in sequence, taking its input from
one memory buffer and producing its output to another.

3.4 Model Implications

3.4.1 Advice for Programmers

One goal of the compute model is, at a high-level, to focus
the developer on the style of computation which is effi-
cient for the hardware and execution model. To better uti-
lize scalable reconfigurable hardware, SCORE developers
should:

• Describe computations as spatial pipelines with mul-
tiple, independent computational paths.A hardware

4An implementation could choose to implement this link as a statically
configured path as in FPGAs, a time-switched path, or even a dynamically
routed path.
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implementation will attempt to concurrently execute
as many of the specified, parallel paths as possible.

• Avoid or minimize feedback cycles.Cyclic dependen-
cies introduce delays which cannot be pipelined away
and hence increase the total run time or lead to page-
thrashing in small hardware implementations.

• Expose large data streams to SCORE operators.
Large data sets help amortize the overhead of load-
ing computation into reconfigurable hardware, espe-
cially into small, time-multiplexed hardware imple-
mentations.

3.4.2 Generality

While we have described the SCORE hardware model here
in terms of a single processor and homogeneous computa-
tional pages and memories, the model itself admits a num-
ber of extensions. SCORE can accomodate heterogeneous
and specialized computational pages, as seen in Pleiades
[26] and Cheops [4]. Using specialized pages most ef-
ficiently makes the scheduling problem more interesting,
since some operators may run on multiple kinds of special-
ized pages. Also, there is nothing which prohibits SCORE
from using multiple conventional processors for executing
sequential operators and/or the run-time scheduler. Con-
ventional techniques for multiprocessing and distributed
scheduling would be relevant in this case.
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4 Hardware Requirements

SCORE assumes a combination of a sequential proces-
sor and a reconfigurable device. The reconfigurable array
must be divided into a number of equivalent and indepen-
dent compute pages.5 Multiple, distributed memory blocks
are required to store intermediate data, page state, and page
configurations.

The interconnect among pages is critical to achieving
high performance and supporting run-time page place-
ment. It should support high bandwidth, low latency com-
munication among compute pages and memory, allow-
ing memory pages to be used concurrently. The inter-
connect must buffer and pipeline data as well as provide
back-pressure signals to stall upstream computation when
network buffer capacity is exceeded. Routing resources
should be sufficiently rich to facilitate rapid, online rout-
ing.

The compute pages themselves may use any reconfig-
urable fabric that supports rapid reconfiguration, with pro-
vision to save and restore array state quickly. The BRASS
HSRA subarray design [30] is a feasible, concrete imple-
mentation for a compute page. It provides microsecond
reconfiguration and high-speed, pipelined computation.

Each configurable memory block(CMB) is a self-
contained unit with its own stream-based memory port and
an address generator (see Figure 6). CMBs may be ac-
cessed independently and concurrently in a scalable sys-
tem. The memory fabric may use external RAM or on-
chip memory banks (e.g.BRASS Embedded DRAM [25]),
with additional logic to tie into the data flow synchroniza-
tion used by the interconnect network. The memory con-
trollers need to support a simple, paged segment model
including address relocation within a memory block and
segment bounds. Streaming data support obviates the need
for external addressing during reconfiguration and stream
buffering.

The sequential processor plays an important part in the
SCORE system. It runs the page scheduler needed to vir-
tualize computation on the array, and it executes SCORE
operators that would not run efficiently in reconfigurable
implementation. Consequently, the processor must be able
to control and communicate with the array efficiently. A
single-chip SCORE system (e.g. see Figure 11) integrat-
ing a processor, reconfigurable fabric, and memory blocks
could provide tight, efficient coupling of components.

Although a single-chip SCORE implementation offers
benefits for performance and design efficiency, the SCORE
model permits a wide range of implementations including
one using conventional, commercial components.

5In a degenerate case, there can be only one page, but this sacrifices
many of the strengths of the SCORE model.
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Figure 11: Hypothetical, single-chip SCORE system

5 Language Instantiations

As a computational model, any number of languages
which obey the SCORE semantics could be defined to de-
scribe SCORE computations. One could define subsets
of conventional HDLs (e.g. Verilog, VHDL) with styl-
ized Input/Output primitives to describe SCORE opera-
tors and operator composition. Similarly, one could de-
fine subsets of conventional programming languages (e.g.
C++, Java) to perform these tasks. To focus on the neces-
sary semantics, we have defined an intermediate register-
transfer level language (RTL) to describe SCORE oper-
ators and their composition for our initial development
work. We view our intermediate language, TDF, as a
device-independent, assembly language target on the way
to architecture-specific executable operators.

5.1 SCORE Language Requirements

As indicated by the semantics of the SCORE compute
model, SCORE operators are synchronous, single clock
entities, with their own state. Operators communicateonly
through designated I/O streams. Operation is gated by data
presence on the I/O streams. As such, each operator can be
viewed as a finite-state machine with associated data path
(i.e. FSMD [12]). In a multithreaded language, such as
Java or C++ with an appropriate thread package, a SCORE
operator would be an independent thread which commu-
nicates with the rest of the program only through single-
reader, single-writer I/O streams. Specifically, SCORE
does not have a global, shared-memory abstraction among
operators. An operator mayown a chunk of the address
space (a memory segment) during operation and return it
after it has completed, but no two operators may simulta-
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fir4(param signed[8] w0, param signed[8] w1
param signed[8] w2, param signed[8] w3,
// param’s bound at instantiation time
input unsigned[8] x,
output unsigned[20] y)

{
state only(x): // ‘‘fire’’ when x present
{

y=w0*x+w1*x@1+w2*x@2+w3*x@3;
// x@n notation picks out
// nth previous value for
// x on input stream.
// (this notation is
// patterned after Silage)
goto only; // loop in this state

}
}

Figure 12: TDF Specification of 4-TAP FIR (a static rate
operator)

neously own a piece of memory.

5.2 TDF

TDF is basically an RTL description with special syn-
tax for handling input and output data streams from the
operator. Common data path operators can be described
using a C-like syntax. For example, Figure 12 shows how
an FIR computation might be implemented in TDF. Op-
erators may have parameters whose values are bound at
operator instantiation time; parameters are identified with
the keywordparam . In the FIR example, the coefficient
weights are parameters; these are specified when the oper-
ator is created and the values persist as long as the operator
is used. The FIR defines a single input stream (x ) and pro-
duces a single output stream (y ). The behavior of the state
is gated on the arrival of the nextx input value, producing
a newy output for each such input.

To allow dynamic rate operators, the basic form of a
behavioral TDF operator is that of a finite-state machine.
Each state specifies the inputs which must be present be-
fore it can fire. Once the inputs arrive, the operator con-
sumes the inputs and the FSM may choose to change states
based on the data consumed from the inputs. A simple
merge operator is shown in Figure 13, demonstrating how
the state machine can also be used to allow data dependent
consumption of input values. Output value production can
be conditioned as shown in Figure 14. Together, these al-
low the user to specify arbitrary, deterministic, dynamic-
rate operators.

Of course, the FSM gives the user the semantic power to
describe heavily sequential and complex, control-oriented

N.B. This version has been simplified for il-
lustration; It does not properly handle the
end-of-stream condition.

signed[w] merge(param unsigned[6] w,
// can use parameters to define
// data width

input signed[w] a,
input signed[w] b)

{
signed[w] tmpA;
signed[w] tmpB;
// states used here to show dynamic
// data consumption
state start(a,b):

{
tmpA=a; tmpB=b;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA; }
else { merge=tmpB;

goto replaceB; }
// note: assignment to function name
// signifies output on operator
// ‘‘return’’ output stream

}
state replaceA(a):

{
tmpA=a;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA; }
else { merge=tmpB;goto replaceB; }

}
state replaceB(b):

{
tmpB=b;
if (tmpA<tmpB) { merge=tmpA;

goto replaceA; }
else { merge=tmpB; goto replaceB; }

}
}

Figure 13: TDF Specification ofmerge Operator (a dy-
namic input rate operator)
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// uniq behaves like the unix command
// of the same name; it filters an
// input stream, removing any adjacent,
// duplicate entries before passing them
// on to the output stream.
signed[w] uniq(param unsigned[6] w,

input signed[w] x)
{

signed[w] lastx;
state start(x):

{ lastx=x; uniq=x; goto loop;}
state loop(x):

{
if (x=!lastx)

{ lastx=x; uniq=x; }
goto loop;

}
}

Figure 14: TDF Specification ofuniq Operator (a dy-
namic output rate operator)

merge3uniq(param unsigned[6] n,
input signed[n] a,
input signed[n] b,
input signed[n] c,
output signed[n] o)

{
signed [n] t;
t=merge(n,merge(n,a,b),c);
o=uniq(n,t);

}

Figure 15: TDF Compositional Operator

operators. Nonetheless, the programmer should avoid se-
quentialization and complex control when possible, as op-
erator with many states are less likely to use spatial com-
puting resources efficiently.

Larger operators can be composed from smaller opera-
tors in a straight-forward manner as shown in Figure 15.

5.3 C++ Integration and Composition

With a suitable stream implementation and interface
code, SCORE operators can be instantiated by and used
with a conventional, multithreaded programming lan-
guage. Figure 16 shows an example C++ program which
uses themerge anduniq operators defined here. Note
that SCORE operator instantiation and composition can be
performed from the C++ code. Once created, the SCORE
operators behave as independently running threads, oper-
ating in parallel with the main C++ execution thread. In
general, a SCORE operator will run until its input streams
are closed or its output streams are freed.

Once primitive behavioral (or leaf) operators are defined
(e.g. in TDF or some other suitable form) and compiled
into their page-level implementation, large programs can
be composed entirely in a programming language as shown
here. If one thinks of TDF as a portable assembly lan-
guage for critical computational building blocks, then this
language binding allows a high-level language to compose
these building blocks in much the same way that assem-
bly language kernels have been composed using high-level
languages in order to efficiently program early DSPs and
supercomputers. The instantiation parameters for TDF op-
erators allow the definition of generic operators which can
be highly customized to the needs of the application.

6 Execution Example

The following example demonstrates execution of the
design in Figure 16. It shows array compute page reconfig-
uration, execution of scheduled behavioral code, and some
fundamental control signals.

To ground this explanation to a particular hardware con-
figuration and its constraints, we make the following as-
sumptions about the reconfigurable array parameters and
the TDF design in the user application:

• The design consists of three behavioral operators.
Full implementation of each operator requires only
one compute page.

• The reconfigurable array contains one compute page
(CP) and three configurable memory blocks (CMBs).
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#include "Score.h"
#include "merge.h"
#include "uniq.h"
int main()
{

char data0[] = { 3, 5, 7, 7, 9 };
char data1[] = { 2, 2, 6, 8, 10 };
char data2[] = { 4, 7, 7, 10, 11 };
// declare streams
SIGNED_SCORE_STREAM i0,i1,i2,t1,t2,o;
// create 8-bit wide input streams
i0=NEW_SIGNED_SCORE_STREAM(8);
i1=NEW_SIGNED_SCORE_STREAM(8);
i2=NEW_SIGNED_SCORE_STREAM(8);
// instantiate operators
// note: instantiation passes parameters
// and streams to the SCORE operators
t1=merge(8,i0,i1);
t2=merge(8,t1,i2);
o=uniq(8,t2);
// alternately, we could use:
// new merge3uniq (8,i0,i1,i2,o);
// write data into streams
// (for demonstration purposes;
// real streams would be much longer
// and probably not come from main)
for (int i = 0; i < 5; i++) {

STREAM_WRITE(i0, data0[i]);
STREAM_WRITE(i1, data1[i]);
STREAM_WRITE(i2, data2[i]);

}

STREAM_CLOSE(i0); // close input
STREAM_CLOSE(i1); // streams
STREAM_CLOSE(i2);
// output results
// (for demonstration purposes only)
for (int cnt=0; !STREAM_EOS(o); cnt++) {

cout << "result["<< cnt << "]=" <<
STREAM_READ(o) << endl;

}
STREAM_FREE(o);
return(0);

}

merge

merge uniq

i0

i1

i2

t2
t1

o

Figure 16: C++ Instantiation and Usage Example

• Each CMB is partitioned into four segments S0
through S3.

Segments S0 and S1 buffer computation data. In this
example, each has a capacity of 15 tokens.

Segments S2 and S3 store state (FIFO buffers, state
machines, and internal registers) and configura-
tion for a compute page.

CMB state is maintained by its controller, details of
which are not shown in this example.

• Each CP has two input and two output FIFO buffers.
To make this example clear, the size of the buffers has
been set to zero.

• Scheduling and array reconfiguration are performed at
the beginning of each timeslice. Refer to the timeline
shown in Figure 17 for the execution event sequence.

Table 1 shows the physical view of the array at each
point on the timeline in Figure 17. To make diagrams eas-
ier to read, single letter identifiers were assigned as follows
to each of the operators in the design: A —merge with
inputs i0 and i1 , B — merge with inputs t1 and i2 ,
C — uniq . The contents of segments S0 and S1 are iden-
tified by stream variable name from the program listing in
Figure 16 and the first several tokens buffered. The hori-
zontal “empty-full” bar indicates qualitatively the number
of tokens present in a segment at a point in time, assuming
full segment capacity of 15 tokens.

7 SCORE Run-Time Environment

In this section we describe a few of the pragmatics asso-
ciated with our current run-time architecture and tools for
TDF language processing and code generation. These de-
tails are not part of the basic SCORE definition, but may
help you understand SCORE better by providing a partic-
ular, concrete grounding. In particular, this section fills in
some of the details between the design shown in Figure 16
and the execution example demonstrated in Table 1.

7.1 Building Applications

Both the SCORE run-time system and user applications
are implemented as Linux processes as shown in Figure 19.
The compilation and linking process for the user applica-
tion is shown in Figure 18. The TDF compiler processes
the two TDF sources and their correspondingfuser6 files

6fuser files describe parameters of an operator instance. For ex-
ample, for the operatoruniq(param unsigned[6] w, input
signed[w] x) , the file uniq.fuser containsuniq(8,) instructing
tdfc to produce code for an instance ofuniq operator which operates
on an eight-bit data path.
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Table 1: Step-by-Step Execution Example
Time Physical Array View Description

I

Active Seg:
Mode:
S0

S1

S2
S3

S2
SeqSrc

0% 100%

0% 100%
Logic/FSMs

Configuration:
Mode:

?
Reconfig

In 0 FIFO

In 1 FIFO

Out 0 FIFO

Out 1 FIFO

CP0 CMB0

i3: 4, 7, 7, ...

i0: 3, 5, 7, ...

A conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S0
SeqSrc

0% 100%

0% 100%

CMB1

i1: 2, 2, 6, ...

B conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S0
SeqSrc

0% 100%

0% 100%

CMB2

C conf/st

Initially assume that the contents of streamsi0 ,
i1 , andi2 have been loaded by the main proces-
sor into segments CMB0 S0, CMB0 S1, CMB1
S0. In addition, the configuration and initial state
of pages (operators) A, B, and C has been loaded
into segments CMB0 S2, CMB1 S2, and CMB2
S2 respectively.
Reconfiguration. Page A (merge ) is scheduled
to run for the first timeslice. First, CP0 is con-
figured with the contents of CMB0 S2. Then, the
streams are setup between CMBs and the CP0 as
shown on the next diagram.

II

Active Seg:
Mode:
S0

S1

S2
S3

S0
SeqSrc

0% 100%

0% 100%
Logic/FSMs

Configuration:
Mode:

A
Run

In 0 FIFO

In 1 FIFO

Out 0 FIFO

Out 1 FIFO

CP0 CMB0

i3: 4, 7, 7, ...

i0: 7, 9

A conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S0
SeqSrc

0% 100%

0% 100%

CMB1

i1: 8, 10

B conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSink

0% 100%

0% 100%

CMB2

t1: 2, 2, 3, ...
C conf/st

Array Status. CP0 is running behavioral code of
operator A (merge ). CMB controller has set up
appropriate active segment and operation mode for
each CMB. On this diagram, CMB0 and CMB1
act as SeqSrc (sequential source) and CMB2 —
SeqSink (sequential sink) relative to the connected
streams. At this time, approximately half of tokens
have been consumed from both sources CMB0 S0
and CMB1 S0 and sunk into CMB2 S1.

III

Active Seg:
Mode:
S0

S1

S2
S3

S0
SeqSrc

0% 100%

0% 100%
Logic/FSMs

Configuration:
Mode:

A
Stall

In 0 FIFO

In 1 FIFO

Out 0 FIFO

Out 1 FIFO

CP0 CMB0

i3: 4, 7, 7, ...

i0:

A conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S0
SeqSrc

0% 100%

0% 100%

CMB1

i1:

B conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSink

0% 100%

0% 100%

CMB2

t1: 2, 2, 3, ...
C conf/st

EMPTY
EMPTY

End of the first timeslice.
Array Status. All tokens from both sources
CMB0 S0 and CMB1 S1 have been consumed by
CP0 and sunk into CMB2 S1.
If a source node of a stream is not producing
any tokens (e.g. empty segment CMB0 S0), a
sink node could stall due to unavailability of in-
put tokens (e.g. CP0 is stalled, since operator
A requires tokens on at least one input to fire).
On the diagram such streams are identified with
EMPTY. Scheduler uses the information about
EMPTYstreams to optimize schedule for the next
timeslice.

Active Seg:
Mode:
S0

S1

S2
S3

S2
SeqSink

0% 100%

0% 100%
Logic/FSMs

Configuration:
Mode:

A
Reconfig

In 0 FIFO

In 1 FIFO

Out 0 FIFO

Out 1 FIFO

CP0 CMB0

i3: 4, 7, 7, ...

i0:

A conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S2
SeqSrc

0% 100%

0% 100%

CMB1

i1:

B conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSink

0% 100%

0% 100%

CMB2

t1: 2, 2, 3, ...
C conf/st

1

2

Reconfiguration. CP0 reconfiguration consists of
two logically sequential steps, that could be paral-
lelized if the array implementation permits.

1. Save current configuration and state of CP0
in CMB0 S2, which is allocated for A.

2. Load the configuration and state for page B
into CP0 from CMB1 S2.

After CP0 has been configured, the streams are
created between compute nodes as shown on the
next diagram. CP0 is ready to run.

continued on next page
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continued from previous page
Time Physical Array View Command Description

IV

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSrc

0% 100%

0% 100%
Logic/FSMs

Configuration:
Mode:

B
Run

In 0 FIFO

In 1 FIFO

Out 0 FIFO

Out 1 FIFO

CP0 CMB0

i2: 7, 7, 10, ..

i0:

A conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSink

0% 100%

0% 100%

CMB1

t2: 2, 2, 3, ...

i1:

B conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSrc

0% 100%

0% 100%

CMB2

t1: 7, 7, 10, ..
C conf/st

Array Status. CP0 is running behavioral code
of operator B (merge ). Approximately half of
tokens in CMB0 S1 and CMB2 S1 have been con-
sumed by CP0 and sunk into CMB1 S1.

V

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSrc

0% 100%

0% 100%
Logic/FSMs

Configuration:
Mode:

B
Stall

In 0 FIFO

In 1 FIFO

Out 0 FIFO

Out 1 FIFO

CP0 CMB0

i2:

i0:

A conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSink

0% 100%

0% 100%

CMB1

t2: 2, 2, 3, ...

i1:

B conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSrc

0% 100%

0% 100%

CMB2

t1:
C conf/st

EMPTY
EMPTY

FULL
End of the second timeslice.
Array Status. All tokens from both sources
CMB0 S1 and CMB2 S1 have been consumed by
CP0 and sunk into CMB1 S1.
If a sink node of a stream is not consuming tokens
(e.g. 100% full CMB1 S1), a source node could
stall on a stream write. On the diagram such
streams are identified withFULL. Scheduler uses
the information aboutFULL streams to optimize
schedule for the next timeslice.

Active Seg:
Mode:
S0

S1

S2
S3

S1
SeqSrc

0% 100%

0% 100%
Logic/FSMs

Configuration:
Mode:

B
Reconfig

In 0 FIFO

In 1 FIFO

Out 0 FIFO

Out 1 FIFO

CP0 CMB0

i2:

i0:

A conf/st

Active Seg:
Mode:
S0

S1

S2
S3

S2
SeqSink

0% 100%

0% 100%

CMB1

t2: 2, 2, 3, ...

i1:

B conf/st
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Reconfiguration. Two main steps of reconfigura-
tion are similar to those at time III. CP0 is loaded
with configuration and state of page C (uniq ).

VI
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Array Status. CP0 is running behavioral code of
operator C (uniq ). Approximately half of tokens
in CMB1 S1 have been consumed by CP0 and
sunk into CMB2 S0.

continued on next page
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continued from previous page
Time Physical Array View Command Description
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t1:

O: 2, 3, 4, ...

C conf/st

EMPTY

End of the third timeslice.
Array Status. All tokens from CMB1 S1 have
been consumed by CP0 and sunk into CMB2 S0.

Active Seg:
Mode:
S0

S1
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S1
SeqSrc
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Logic/FSMs

Configuration:
Mode:

C
Reconfig
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Mode:
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Reconfiguration. The current configuration and
state of CP0 are saved in CMB2 S2.
Note: For the application that was demonstrated
here, saving configuration and state of CP0 was
not necessary. A, B, and C were only scheduled
once, and therefore after each one runs on the CP0
for a timeslice, its state is no longer needed. Sav-
ing of configuration and state was shown for com-
pleteness only. Should any of the pages be sched-
uled to run in several non-consecutive timeslices,
their state must be saved every time they are pre-
empted and restored when scheduled. This is anal-
ogous to context switching in traditional operating
systems.
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to produce master files (merge.cc and uniq.cc) and also
parameterized instance files (merge8.cc and uniq8.cc).
The next step is to compile all C++ sources including the
driver code in main.C and thetdfc -generated sources.
The build process terminates when all driver code is linked
with the master files to produce user application executable
(a.out ), and instance objects are linked with the run-time
system libraries to produce dynamically linked shared ob-
ject libraries (merge8.so and uniq8.so) containing the in-
stance code. The purpose of this process should become
clear in the next section as we describe the SCORE run-
time environment in more detail.

7.2 Run-time Environment

The run-time system consists of the scheduler and the
simulator processes that execute under Linux as shown in
Figure 19. In a real system, the OS kernel will contain
the scheduler, and a reconfigurable hardware array will re-
place the simulator. These components are connected by
a pair of streams that permit bidirectional communication
and transmit scheduler commands and resource state to and
from the array. The scheduler consists of instantiation and
scheduling engines.

Instantiation engine. Being an independent process, the
scheduler has no knowledge of user applications’ compute
graphs. The run-time system together with shared object
files built with a user application provide a way to commu-
nicate the structure of compute graphs from a user applica-
tion to the scheduler:

1. Upon invocation, a user application places a series
of requests to the scheduler to instantiate its compute
graph nodes. This is accomplished by the code in the
master files, produced bytdfc and linked with the
user executable. The code contains a sequence of op-
erations to connect to the scheduler through an IPC
channel and request to instantiate an operator. For ex-
ample, in Figure 19 the code in the invokedmerge()
routine requests instantiation of themerge operator
with inputst1 andi2 .

2. With the request, the scheduler receives a pointer to
the shared object file which contains the behavioral
code and the attributes of a parameterized instance of
an operator. The run-time system dynamically links
with that shared object file (here, merge8.so), and the
scheduler instantiates an operator and places it on a
waiting list to be scheduled. Note that the shared ob-
ject is necessary here in order to get the user’s applica-
tion code loaded into the address space of the sched-
uler which, of course, was built without any knowl-
edge of the user code which it might be asked to run.

The array simulator executes the behavioral code for
each resident compute node.

Scheduling engine. The scheduling engine is invoked
every timeslice and is responsible for resource allocation
and utilization, placement, and routing on the array. It
acts as a resource manager capable of enforcing a variety
of policies from fair sharing of the compute resources be-
tween multiple user applications to favoring a particular
application to meet its real-time constraints.

Array simulator. The simulator provides a cycle ac-
curate simulation by executing compute node behavioral
code, found in corresponding dynamically linked shared
object files (e.g. merge8.so). As noted earlier, it com-
municates with the scheduler through a pair of streams.
Implemented using shared memory, streams also provide
direct communication between a user application and the
array simulator. In the example in Figure 16 these streams
arei0 , i1 , i2 , ando.

8 Example: JPEG

As described in the previous section, we have imple-
mented a complete SCORE run-time system and simula-
tor on top of Linux and are beginning to develop several
applications to guide our further understanding of critical
design issues for these systems. As an early exercise and
demonstration vehicle, we have implemented a complete
JPEG (Joint Photographic Experts Group) image compres-
sion algorithm [33] in TDF and C++ and performed basic
scaling experiments where we vary the number of compu-
tational pages in the system.

8.1 Application

The JPEG compressor mathematically decomposes the
input data into high and low frequency components. The
image is first segmented into 8×8 pixel blocks, and then
the decomposition is performed on every individual block
via the DCT (Discrete Cosine Transform), a unitary trans-
form that takes the pixel block as an input and returns an-
other 8×8 block of coefficients, most of which are close
to zero. The coefficients are then scalar quantized and
scanned into a one-dimensional stream via azigzagscan.
Quantized coefficients are subsequently compacted with
zero-length encoding, after which runs and lengths are
Huffman encoded. (See Figure 20.)

Our TDF implementation uses 13 512-LUT pages in
order to realize a fully spatial JPEG compressor which
is capable of processing one image sample per cycle.
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Figure 19: SCORE Run-Time Structure and Interaction to User Application
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merge.o
uniq.o

a.out

merge.tdf
uniq.tdf

tdfc

merge.cc
uniq.cc

merge_8.cc
uniq_8.cc

merge.fuser
uniq.fusermain.C

c++

merge_8.o
uniq_8.o

main.o

ld ld -shared

merge_8.so
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master instance

Note: Each operator is described in a separate TDF
source file. Tools used aretdfc (TDF compiler),
c++ (standard c++ compiler), andld (standard linker
with capability of building stand-alone executables
and shared dynamically linked libraries).

Figure 18: Build Process for User Application from
Fig. 16.

Simulator Parameters Value Assumed
Reconfiguration Time 5,000 cycles
Schedule Time Slice 250,000 cycles
Compute Page (CP) size 512 LUTs
Configurable Memory Block CMB size 2Mbits
External Memory Bandwidth 2GB/s

Table 2: System Parameters for Experiment
.

For smaller hardware, the SCORE scheduler automati-
cally manages, at run time, the reconfiguration necessary
to share the physical CPs among the 13 virtual CPs.

8.2 System Assumptions

For these experiments, we assume a single-chip system
as described in Section 4, with external memory as needed
for the application. Table 2 summarizes the parameters
we assume for the system, based on our experience with
the HSRA [30] and embedded DRAM memory [25]. For
these experiments page decomposition is performed man-
ually. The scheduler is list based and operates in a time-
sliced fashion like a conventional operating-system sched-
uler; the scheduler takes care of all decisions on where
to place CPs and CMBs and manages all reconfiguration
and data transfer, including the data movement on and off
the component as necessitated by the finite, on-chip mem-
ory capacity. We assume scheduling time is overlapped
with computation and takes 50,000 cycles. We do not, cur-
rently, model any limitations on routability among pages.
The simulator accounts for all time required to reconfigure
pages, store state, and transfer data between memories in
the chip.

8.3 Results

To study the scalability, performance, and efficiency of
SCORE, we ran our JPEG implementation on a series of
simulated, architecture-compatible SCORE systems with
varying numbers of physical compute pages. Figure 21
plots the total run time (makespan) of each system versus
the number of physical pages in that system. In this par-
ticular experiment, we do not scale memory, so the results
shown reflect (1) a fixed memory of 26 CMBs, and (2) un-
limited memory. For comparison, we show a native x86-
MMX implementation using Intel’s referenceijpeg library.

The curves demonstrate that SCORE can automatically
run the JPEG application on less hardware with grace-
ful performance degradation. Thus SCORE can automat-
ically realize an area-time performance tradeoff. Further,
the curves show that this application can be automati-
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Figure 21: JPEG CP vs. Makespan

cally virtualized onto half the compute pages of the fully-
spatial implementation without incurring a substantial per-
formance penalty. This kind of result is common when the
load on compute operators vary widely; the lightly-loaded
operators can time-share a compute page without increas-
ing overall runtime.

The experiment exhibits some anomalies of our present
scheduler. The CP-makespan curves are not strictly mono-
tonic due to heuristics in the list-based page selection ap-
proach. Also, the scheduler is not optimized to minimize
memory usage while buffering streams. In fact, it is not
possible to scale down the number of CMBs together with
physical CPs in very small hardware because there would
not be enough CMBs to virtualize the streams of presently-
loaded pages. Hence, this experiment assumes a fixed
memory availability of 26 CMBs (twice the number of CPs
in the application). To factor out the effect of unoptimized
stream buffering, we also performed the experiment with
unlimited memory. The results exhibit a speedup of up
to twofold over the limited memory case, suggesting that
there is room for improvement in scheduling and memory
management.

This experiment represents a single set of SCORE sys-
tem parameters. As ongoing work, we are exploring many
system parameters to gain insight into the regions of oper-
ation where SCORE scheduling is most robust and to de-
termine the parameters that provide the most efficient and

balanced system design. Such parameters include compute
page size, page I/O bandwidth, memory block size, and
reconfiguration times.

9 Summary

Reconfigurable computation, defined simply as compu-
tation performed on a collection of FPGA or FPGA-like
hardware, has shown remarkable promise on point appli-
cations, but has not achieved wide-spread acceptance and
usage. One must make a large commitment to a particular
FPGA-based system to develop an application. However,
as we can now readily predict, the industry produces newer,
larger, and faster hardware at a steady pace. Unfortunately,
without a unifying computational model which transcends
the particular FPGA implementation on which the applica-
tion is first developed, one is stuck redoing significant work
to port the application to newer hardware. This is particu-
larly onerous when the established, alternative technology,
the microprocessor, offers users steady performance im-
provements with little or no time investment to adapt to
new hardware.

Overcoming this liability requires a computational
model which abstracts computational resources, allowing
application performance to scale automatically, adapting
to new hardware as it becomes available. The computa-
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tional model must expose and exploit the strengths of re-
configurable hardware and help users understand how to
optimize applications for reconfigurable execution. Fur-
ther, the computational model must allow problems to deal
efficiently with dynamic and unbounded resource require-
ments and dynamic program characteristics. Finally, the
model must support the efficient composition of solutions
from abstract building blocks.

In this paper, we have introduced a particular com-
putational model which attempts to address these needs.
SCORE uses a paging model to virtualize all hardware re-
sources including computation, storage, and communica-
tion. It allows dynamic instantiation of dynamically sized
computational operators and supports dynamic rate appli-
cations. A page partitioner and compiler along with a
run-time scheduler takes care of automatically mapping
the unbounded and dynamically unfolding computational
graph onto the fixed resources of a particular hardware
platform. We have outlined the hardware requirements
for such a model as well as the kind of programming lan-
guages needed to describe and integrate SCORE computa-
tions. We have implemented a complete SCORE run-time
system and simulator. Initial experiments suggest that we
can achieve the desired scalability on sample applications.
With this initial success, we are now attempting to broaden
the range of applications, automate more of the SCORE
tool flow, and systematically explore the design space for
SCORE compatible architectures.
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A Unbounded Stream Buffers

All levels of the SCORE computational model provide
the abstraction of unbounded stream buffers. Picking any
finite buffer size for streams would introduce an artifact
into the model which is very difficult to reason about.
In particular, programs would be prone to deadlock any
time the number of tokens which the application needed to
queue up on a stream between a pair of operators was data
dependent.

The canonical instance of this deadlock hazard is exem-
plified with a pair of nodes,switch and select.switch
takes in two inputs, a boolean control stream, and a data
stream. It sends its output along one of two output streams
according to the value of the control input.select takes
in three inputs, a control stream and two input streams.
However, it does not read all three tokens on each cycle.
Rather, it first reads the control token. Based on the value
of the control token, it then reads from one of the two input
streams and passes that along to its single output stream.

These two nodes can now be hooked up directly to
each other with the two outputs of theswitch node con-
nected to the two inputs of theselect node as shown
in Figure 22. We provide separate control streams for
the switch and select nodes. Now, if there is ever
a stream prefix of theswitch -control stream which con-
tainsn more TRUEs thanFALSEs (or vice versa) than the
select -control stream, the stream between theTRUE side
of the switch and select nodes will have to holdn
tokens. If the streams were limited to some fixed-size
bufferm andm < n, then this subgraph would deadlock.
Without loss of generality, consider the case in which the
switch node receivedn TRUEs followed by oneFALSE,
while theselect node initially receives oneFALSE con-
trol signal followed byn TRUEs. TheTRUE-side stream
would fill up with m tokens. Theswitch node would

not be able to perform any more operations because it can-
not write data onto theTRUE-side stream. Theselect
node, however, must process a token from theFALSE side
in order to continue, but there are no tokens on theFALSE

side to consume. Theselect node cannot make forward
process until it is given a token on theFALSE side. The
switch node cannot make any progress until the down-
stream operator (theswitch ) consumes a token on the
TRUE side. These two operators are now deadlocked on a
cyclic dependence. Note that ifm > n (orm unbounded),
this deadlock would not occur and processing would be
able to proceed.

Since, in general, these control streams can be com-
pletely independent, it is not possible to say that they will
have any particular property between them. If these control
streams were coming from outside of the system, we would
certainly not have any control or knowledge of their rela-
tionship. Even if they were generated inside the system,
the general question of whether or not a given computation
produces a particular token value after a finite number of
operations is equivalent to the halting problem.

Therefore, in order to provide reasonable semantics to
the programmer, we accept the unbounded buffer size ab-
straction and include support in the execution model to ex-
pand finite buffers as necessary to meet this abstraction (up
to the limit of the amount of memory we have available in
the system).

B SCORE Compute Model

Section 3.1 described the compute model informally.
This section defines it more precisely.

B.1 SCORE

SCORE computation is a graph,G:

G = {V,E}
E = {e1, e2, ...}
ei is a SFIFO

V = Vf ∪ Vt ∪ Vi ∪ Vo
vi ∈ Vf is aSFSM

vi ∈ Vt is aSTM

vi ∈ Vi is aSIN

vi ∈ Vo is aSOUT

Notes:

• G will typically be initialized with at least one node
vs ∈ Vt to start the computation.
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• G may start with many nodes inV

B.2 SFIFO

SFIFO is a two-ended, unbounded FIFO which may be
created, closed, and freed.

e = {psrc, psink, Q,EOS, FREE}
EOS = Boolean

FREE = Boolean

psrc is a PORT

psink is a PORT

Q is a QUEUE

Operations:
v ∈ V ≡ vertex from which the operation is invoked.

Op Requirement Action
write(e,t) e.psrc ∈ outs(v)

t ∈ Tdata
Q→ eos() Q→add(t)

close(e) e.psrc ∈ outs(v)
Q→ eos() Q→add(TEOS)

t=present(e) e.psink ∈ ins(v)
FREE=false t=Q→ empty()

t=read(e) e.psink ∈ ins(v) t=Q→rm();
FREE=false if (t ≡ TEOS)
EOS=false EOS=true

t=eos(e) e.psink ∈ ins(v)
FREE=false t=EOS

free(e) e.psink ∈ ins(v)
FREE=false FREE=true

Notes:

• when anSFIFO is both freed and closed, it is removed
from the SCORE graph. (e.Q → eos() ≡ e.FREE≡
true⇒ E = E − {e})

B.3 QUEUE

QUEUE is a an unbounded queue.

Q.data = ordered list ofT = {q0, q1, q2...qn−1}
= {} when first created

T = Tdata ∪ {TEOS}
Tdata = finite alphabet

Q→ empty() ≡ value= (| Q.data |≡ 0)
Q→ add(t) ≡ Q.data = {q0, q1, q2...qn−1, qn = t}

Q→ rm() ≡


Q→ empty() value= q0;

Q.data = {q1, q2,
...qn−1}

Q→ empty() ERROR

Q→ eos() ≡ value= (qn−1 ≡ TEOS)

B.4 SFSM

SFSM is an FSM with stream (SFIFO) I/O operations.

vf = {sc, sd, d, Sc, Sd, Sres, Pin, Pout, B}
Sc = {s1, s2, ...sn}
Sd = also finite

Sd = Sres × Slocal
sc ∈ Sc

sd ∈ Sd

d ∈ Sc

B = {b1, b2, ...bn}
bi = {Ii, Ai, Fci, Fdi}
Ii ⊂ Pin

Ai = {ai,0, ai,1, ...ai,mi}
ai,j ∈ {fi,j , wi,j , ci,j}
csd = current data state∈ Sd
wi,j = if (gi,j(csd)) write(pout ∈ Pout, vi,j(csd))
ci,j = if (gi,j(csd)) close(pout ∈ Pout)
fi,j = if (gi,j(csd)) free(p ∈ Pin)

vi,j(csd) = F : Sd → Tdata

gi,j(csd) = F : Sd → Boolean

Fci = F : Sd → Sc

Fdi = F : Sd → Sd

Id = {}
Ad = {}
Fcd = F : Sd → {d}
Fdd = csd (Identity)
d = {Id, Ad, Fcd, Fdd}

Operation:
1. Read: in statesi, if all inputs in Ii are present, read

inputs into present state;7 otherwise, do nothing (stay
in state, perform no actions or transitions).

2. Action: perform all guarded writes, closes, and frees
in Ai whose guards are true.

3. Transition: update state according toFci andFdi.
Notes:
• SFIFOoperations present and read are only available to

the read mechanism; they are not available for arbitrary
use within theSFSM.
• d is the done state; anSFSM is done when it entersd.

7N.B.values of present state,csd, actually change to reflect input val-
ues.
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• A well formed SFSM will close all output streams and
free all input streams before making final transition to
d.

• A properly specifiedSFSM will specify both the EOF
and data transitions; on EOF of an input, it should tran-
sition only to a state that does not read that input and
which cannot reach any state which can read said input.

• In a properly formedSFSMafter performing a close ac-
tion on an output, the machine will transition to a state
which cannot reach any state which performs a write or
close to said output.
• SeparatingSc andSd is artificial, but introduced for

clarity.
• One might want to think of every statesc ∈ Sc being

the multi-state sequenceRead, Action, Transition .
• Strictly speaking, a memory segment (in a particular

mode of operation) is anSFSM; From a formal stand-
point, it is not necessary to define them as separate en-
tities.
• During execution of anSFSM csd can only be seen or

modified by theSFSM. After entering the done state,
sres ∈ Sres is available to other operators (see below).
Notably, for segments, the contents of the memory seg-
ment,Mi, is the resultingsres.

• close(p) corresponds to e→close() wheree is the edge
of which p is the source port; free and write have a
similar correspondence.

• When anSFSM enters the done state it may be re-
moved from the SCORE compute graph and any mem-
ory segments it owns are reverted to the creating vertex
(V = V − {vf},Mi.O = vc wherevc allocatedvf ).

B.5 PORT

A port is simply a designation of an input or output from
a computational node. It is where the stream edge and the
vertex actually come together.

B.6 SIN

SIN is an input stream from outside of the SCORE com-
putational graph.

vi = {Dsrc, psink}

Data arriving fromDsrc are placed as tokens into theSFSM

attached atpsink. The policy for the conversion is out-
side of the computational model, this simply represents
the edge of the compute model (any algorithmic handling
needed at the boundary can be represented with an SFSM).

B.7 SOUT

SOUT is an output stream from outside of the SCORE
computational graph.

vo = {psrc, Dsink}

Data arriving from the stream attached atpsink is exposed
to the outside atDsink. Provisions will have to be made
to signal consumption off of the associatedSFIFO. Again,
the policy for the conversion is outside of the computa-
tional model, this simply represents the edge of the com-
pute model.

B.8 SMEM

An SMEM is a single-owner, finite-sized, random-access
memory segment.

m = {D,O,A}
sz = finite integer

D = (Tdata)sz

O ∈ V ∪ {∅}
A ∈ V

Operations:
v ∈ V ≡ vertex from which the operation is invoked.

Op Requirement Action
alloc(t) – return new M

with sz = t
with O = v

free(m) v ≡ A while(m.O 6= v) {};
m.O = ∅

write(a,t,m) m ∈ v.M while(m.O 6= v) {};
t ∈ Tdata m.D[a] = t
0 ≤ a≤ sz − 1

t=read(a,m) m ∈ v.M while(m.O 6= v) {};
0 ≤ a≤ sz − 1 t=m.D[a]

Notes:

• This describes a model which only has one kind of
lock (exclusive ownership). It would be relatively
straight forward to define a model which allowed mul-
tiple readers.

B.9 STM

An STM is a Turing complete vertex with:
1. stream operations
2. ability to create SCORE graph nodes and edges and

add them to the SCORE computational graphG
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3. ability to lock a region of memory and block waiting
on access to a region of memory

Mostly this can be defined as a superset of theSFSMwhere
we add:
• memory allocation to allow unbounded memory in the

vertex
• additional actions for new items 2 and 3 above.

vt = {sc, sd, d, Sc, Sd,M, Pin, Pout, B}
Sc = {s1, s2, ...sn}
Sd = also finite

M = {M1,M2, ...Mm}
sc ∈ Sc

sd ∈ Sd

d ∈ Sd

B = {b1, b2, ...bn}
bi = {Imi, Isi, Ai, Fci, Fdi}

Imi ⊂ M

Isi ⊂ Pin

Ai = {ai,0, ai,1, ...ai,ki}
ai,j ∈ {fi,j , wi,j , ci,j , ami,j , fmi,j , wmi,j ,

nei,j , ngi,j}
csd = current data state∈ Sd
wi,j = if (gi,j(csd)) write(pout ∈ Pout, vi,j(csd))
ci,j = if (gi,j(csd)) close(pout ∈ Pout)
fi,j = if (gi,j(csd)) free(p ∈ Pin)

ami,j = if (gi,j(csd)) alloc(vi,j(csd))
fmi,j = if (gi,j(csd)) free(Mk ∈M)
wmi,j = if (gi,j(csd))

write(vi,j1(csd), vi,j2(csd),Mk ∈M)
nei,j = if (gi,j(csd)) alloc sfifo()
ngi,j = if (gi,j(csd))

alloc vertex(V P, vi,j1(csd),
vi,j2(csd), ...vi,jn(csd), Esi,j ,Msi,j)

V P is a vertex prototype

(SFSMor STM definition)

Esi,j = {esi,j1
, esi,j2

, ..., esi,jki,j} | esi,j l ∈ E

Msi,j = {msi,j1
,msi,j2

, ...,msi,joi,j
} | msi,j l

∈M

vi,j l(csd) = F : Sd → Tdata

vi,j(csd) = F : Sd → Tdata

gi,j(csd) = F : Sd → Boolean

Fci = F : Sd → Sc

Fdi = F : Sd → Sd

Id = {}
Ad = {}
Fcd = F : Sd → {d}
Fdd = csd (Identity)
d = {Id, Ad, Fcd, Fdd}

Operation:
1. Read: in statesi, if all inputs in Isi are present and

all memoriesImi are owned by this vertex, read inputs
into present state;8 otherwise, do nothing (stay in state,
perform no actions or transitions).

2. Action: if all Mi’s written by writes or freed be mem-
ory frees inAi are owned by this vertex, perform all
guarded writes, frees, closes, allocates, news inAi
whose guards are true; otherwise, do nothing (stay in
this substate, perform no actions or transitions).

3. Transition: update state according toFci andFdi.
Actions:

SMEM andSFIFO operations are as previously defined.
close(p) corresponds to e→close() wheree is the edge of
which p is the source port; free and write have a similar
correspondence.

Op Requirement Action
alloc sfifo() – returns an empty SFIFO,

ne, with source
and sink unbound;

E = E ∪ {ne}
alloc vertex Es ⊂ E while (∃mi ∈Ms | mi.O 6= v){};

(t1,t2,..., Ms ⊂M nv= newV P
Es,Ms) V P defined ∀mi∈Ms

(mi.O = nv)
args matchV P setEs sources and sinks
ti ∈ Tdata to ports innv

set initial state innv
based onti’s

V = V ∪ {nv}
Notes:
• SFIFOoperations present and read are only available to

the read mechanism; they are not available for arbitrary
use within theSTM. Similarly theSMEM operation read
is only available to the read mechanism.

• d is the done state; an STM is done when it entersd.
• A well formed SFSM will close all output streams and

free all inputs before making final transition tod.
• A properly specifiedSFSM will specify both the EOF

and data transitions; on EOF of an input, it should tran-
sition only to a state that does not read that input and
which cannot reach any state which can read said input.

• In a properly formedSFSMafter performing a close ac-
tion on an output, the machine will transition to a state

8N.B.values of present state,csd, actually change to reflect input val-
ues.
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which cannot reach any state which performs a write or
close to said output.

• SeparatingSc andSd is artificial, but introduced for
clarity.
• One might want to think of every statesc ∈ Sc being

the multi-state sequenceRead, Action, Transition .
• When anSTM enters the done state it is removed from

the SCORE compute graph and any memory segments
it owns are reverted to the creating vertex (V = V −
{vt},Mi.O = vc wherevc allocatedvf ).
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