
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences

EECS150 J. Wawrzynek
Spring 2010 3/31/09

Midterm Exam - Solutions

This is a closed-book, closed-note exam. No calculators or any other electronic devices, please.

Read all the questions before you begin. Each question is marked with its number of points
(one point per expected minute of time). Although you might not need it, you have until 9pm.

You can tear off the spare pages at the end of the booklet and/or use the backs of the pages
to work out your answers. Neatly copy your answer to the places allocated for them.

Neatness counts. We will deduct points if we need to work hard to understand your an-
swer. Simplicity also counts. In the design problems, correct simpler designs with fewer
components will be awarded a higher score than more complex designs with more components.

Put your name and SID on each page.

problem maximum score

1 8pts

2 6pts

3 10pts

4 15pts

5 12pts

6 10pts

7 24pts

8 16pts

9 19pts

Total 120pts

1

1. Multiplexor Implementation [8pts].

Consider the design of a 4-to-1 multiplexor circuit with four data inputs, d0, d1, d2, and d3,
two control inputs, s0 and s1, and a single output, y.

Using only simple logic gates (ANDs, ORs, NANDs, NORs, inverters), but no transmission
gates, sketch the circuit diagram for a multiplexor circuit optimized for minimum delay from
the data inputs, d0–d3, to the output, y. You may use gates with any number of inputs, but
remember that the delay through a logic gate grows with the square of the number of inputs.

Let us suppose for comparison that the delay through an x-input gate is x2, based on the problem
stating that the delay grows with the square of the number of inputs. A common functionally-
correct answer was an implementation that uses two rounds of selection to pass the data: one
with s0 followed by one with s1. This results in the d signals passing through at least 4 2-input
gates. delay = 4 ∗ 22 = 16. Answers that built a 4:1 Mux from three 2:1 muxes were equivalent
to this case.
Another functionally-correct implementation was to decode selects and pass in the data at the
same gate, using a three-input AND gate. delay = 1∗32 +1∗42 = 25 for 3-input AND, 4-input
OR; or delay = 1 ∗ 32 + 2 ∗ 22 = 17 for 3-input AND, 2-input OR, 2-input OR. The most
optimal design for minimum delay from d0 − d3 to y is shown below.

s0s1

d0

d1

d2

d3

Y

Notice that the select signal is decoded entirely before the data inputs are introduced. This
reduces the number of gate delays for the data inputs. delay = 3 ∗ 22 = 12.
This is a very important concept. If one of the d signals was part of the critical path then
you would want them to go through less logic in the mux to reduce delay. A real example of
this would be if your processor control was fast and created mux select signals early, but your
datapath was slow and made the data available later: it would then be good if there was less
delay through the mux for the data signals.

2

2. Combinational Logic Circuits [6pts].

Using whatever means possible, prove or disprove that the two combinational logic circuit
shown below have equivalent function. Explain your approach and show your work.

c
a

c

c
a
b

Circuit #1

Circuit #2

b

One solution was to simply show equivalence through the use of two truth tables. By enumerating
every possibility, we exhaustively prove that the circuits are equivalent.

a b c bc āc abc āc + abc

0 0 0 1 0 0 0

0 0 1 1 1 0 1

0 1 0 1 0 0 0

0 1 1 0 1 0 1

1 0 0 1 0 1 1

1 0 1 1 0 1 1

1 1 0 1 0 1 1

1 1 1 0 0 0 0

a b c a⊕ c ab̄ (a⊕ c) + ab̄

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 0 0

0 1 1 1 0 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 0 0 0

3

Another solution was to prove equivalence algebraically. Circuit #1 can be expressed as:

y1 = abc + āc

= a(b̄ + c̄) + āc

= ab̄ + ac̄ + āc

And, Circuit #2 can be expressed as:

y2 = (a⊕ c) + ab̄

= āc + ac̄ + ab̄

= ab̄ + ac̄ + āc

Therefore, the circuits are equivalent.

4

3. FPGA Mapping [10pts].

Using only 3-input lookup tables (LUTs), partition the circuit shown below into as few LUTs as
possible. Do not attempt to simplify the gate-level circuit before mapping it to LUTs. Indicate
your answer by filling in the table. Fill in one row for each LUT, assigning node names from
the circuit to LUT inputs and outputs. Mark unused LUT inputs with “X” (for unused).

a b c d

e

f

k

n

p

o

l

m

g

h

i

j

LUT # input 1 input 2 input 3 output

1 b c d k

2 a b X g

3 g c d l

4 a c d m

5 k l m p

Another acceptable solution was to show explain how any 4 input function can be represented
with a 4LUT. Then, show how you would create a 4LUT form three 3LUTs. To get full credit
for this solution, it was necessary to show exactly how you would connect the wires to the
3LUTs.

5

4. Register Transfers [15pts].

Consider the datapath shown below. A controller (not shown), is used to control operation of
the datapath. It sets the value of all the control signals (circled in the datapath diagram).

The block labeled “Register File” stores four data registers, R0–R3, has two asychronous read
ports, and two synchronous write ports. The four port addresses are IAa, IAb, OAa, and OAb.
Writing to the register file is controlled by the WEa and WEb signals. The data registers at the
output of the adders, RA and RB, have synchronous reset inputs, rstA and rstB, respectively.

RA

RB

+

+

rstA

rstB

R0

R1

R2

R3

OAa

Ia

Ib

Oa

Ob
OAbIAb

IAa

WEa

WEb

Register File

(a) (11pts) Assume that the register file is initialized with registers R0–R3 holding the
values a, b, c, and d, respectively. Registers RA and RB begin uninitialized.
Your task is to generate the control signal sequence which will result in a in R0, a+b
in R1, a + b + c in R2, and a + b + c + d in R3, and do so in the minimum number
of clock cycles. Indicate your answer by filling in the table with the control signal
values that the controller would generate on each clock cycle (for use on the next
positive clock edge).

6

The following show a valid timing sequence:

cycle # IAa IAb OAa OAb WEa WEb rstA rstB

1 x x x x 0 0 1 1

2 x x R0 R2 0 0 0 0

3 R1 x R1 R3 1 0 0 0

4 R2 R3 R2 R1 1 1 0 0

And the actions given in each cycle are given below:

cycle # Comment

1 RA < −0, RB < −0

2 RA < −A, RB < −C

3 R1 < −A + B, RA < −A + B, RB < −C + D

4 R2 < −A + B + C, R3 < −A + B + C + D, RA < −A + B + C, RB < −A + B + C + D

4 cycles minimum. Other similar optimal solutions are of course possible. Don’t
cares (x) are possible for OAa, OAb when the output registers are being reset and
WEa,WEb are low because there will be no effect on state. IAa and IAb can be x
when the corresponding WEa or WEb is low for the same reason. Full score did not
require don’t cares, just that circuit function was correct, but answers where incorrect
don’t cares messed up correct calculation were penalized. For example, if rstA is low
but OAa is x, then RA will get garbage (an unknown value).

The output registers start uninitialized, so we need to reset them to a known value
before using them to accumulate useful numbers. This reset takes a cycle because at
the first positive edge when the reset is high the register will be reset. (If you were to
assume the registers had asynchronous reset and still be able to use the first cycle for
useful work, then you would have to state that the rstA,rstB would have to be pulsed
sometime during the first cycle but go low before the clock edge; otherwise RA and
RB may not actually store the first data values).
This problem is an example of a parallel prefix calculation (sum in this case) with two
parallel functional units (adders in this case). The key to optimizing for minimum
number of cycles is to recognize that parts of sums can be calculated in parallel and
intermediate results can be shared.
One mistake students made was to assert WE a cycle late. Remember that if cycle
i starts with clock edge i and ends with edge i+1, then during cycle i, WE must be
high, IA have write address, and dataIn have write data, to perform a synchronous
write on edge i+1. Also note that the new data will be used during cycle i+1.

7

(b) (4pts) Now assume that the Register File has a read access delay of 2ns, a write
setup time of 1ns, and a write delay of 1ns, i.e., the written data appears in the
proper register 1ns after the clock edge. There is no register file bypassing.

The adders have a combinational logic delay of 4ns, and the output registers have
a setup time, 1ns and clock-to-q delay of 1ns, and a hold time of 1ns. Ignore wire
delay and clock skew.

What is maximum clock frequency for this circuit?

This question asks for the Tmin constraint, in terms of frequency.

Tmin >= tc−q + tlogic,max + tsetup

The critical path is the longest delay path from a state element eynchronous output
to a state element synchronous input. Looking at just one branch of the circuit (both
are equivalent here), we find four paths: rfile→adder→register, rfile→adder→rfile,
register→adder→register, and register→adder→rfile. Since the logic delay and setup
is the same for all paths, we look for the path with largest tc−q. The output register
has tc−q = 1ns. The register file has a read delay of 2ns; however, if the same
location is being written as read, then on the rising edge of the clock, the register
file picks up the data at the data input and takes the write delay (1ns) to store the
value successfully in the register. This means that since the rfile value is not valid
for 1ns after the clock edge, the read delay will be added to this, for a total of 3ns.
One way to convince yourself of this is to consider that the rfile may be implemented
by registers and a mux for the read port. The write delay would then be from the
clock-to-q of the rfile registers, and the read delay would be from the mux logic to
output the value. So, the critical path is rfile→adder→rfile.

Tmin = (twrite + tread) + tlogic,max + tsetup

Tmin = 1ns + 2ns + 4ns + 1ns = 8ns

fmax = 1/Tmin = 1/8ns = 125MHz

Note1: Some answers included setups and clock-to-q for both the rfile and the output
register. Keep in mind that the register file is asynchronous read, but unlike your
MIPS cpu project, there is not a combinational path through it in this problem. The
reason is that the combinational path through the register file would be from the output
address (OAa) to the output, but the path in this circuit instead includes the data
write port, which only “takes” data on the clock edge, making it a path a endpoint.
Note2: Some answers included the hold time in the calculation of Tmin. Hold time
is a separate timing constraint, which says that the minimum time from the clock
edge to the endpoint flipflop input changing has to be greater than the hold time of
the flipflop. thold <= tc−q + tlogic,min.

8

5. Verilog and Finite State Machines [12pts].

For the state transision diagram shown below:

(a) Complete the Verilog description, following the CS150 style rules.

S0
[0]

S1
[0]

S2
[1]

S3
[1]0

in = 0
0

101

1
1

rst

The solution is given here:

module FSM(clk, rst, in, out);

input clk, rst;

input in;

output out;

parameter S0 = 2’b00, S1 = 2’b01, S2 = 2’b10, S3 = 2’b11;

reg [1:0] CS, NS;

always @(posedge clk) begin:

if (rst) CS <= S0;

else CS <= NS;

end

assign out = (CS == S2) | (CS == S3);

always @(*) begin

NS = CS;

case (CS)

S0: if (in) NS = S1;

S1: if (in) NS = S0; else NS = S2;

S2: if (in) NS = S3; else NS = S0;

S3: if (in) NS = S1; else NS = S2;

endcase

end

endmodule

This part was given 9 points. In addition to grading down for functionally incorrect
Verilog, solutions which might have been functionally correct but heavily deviated
from the FSM style shown in class lost points.

9

(b) Complete the waveform for “out” corresponding the input signals shown below:

The solution waveform is given here:

This part was given 3 points. Each cycle whose output value was incorrect lost 1
3

points, rounded up at the end to the nearest point.

10

6. Transistor Circuits [10pts].

Draw a transistor level circuit diagram for the function depicted in the gate level circuit below.
Minimize the total number of transistors. No “pass-transistor logic”, use only “static cMOS”
circuits.

a
b
c
d

a

b

c

d

a b

c d

After “pushing the bubbles”, the expression becomes much simpler to map to CMOS.

Many students implemented the function by translating each gate to its transistor implemen-
tation, and composing the resulting circuits. This approach yields a far less optimal solution,
although a functionally correct one. Full credit was given only for a correctly optimized tran-
sistor schematic.

Up to 5 points were awarded for a functionally correct implementation. Up to 5 points were
awarded for an implementation optimized at the transistor level.

11

7. Stack Machine Design [24pts].

A stack machine is a type of CPU that uses a hardware stack instead of a register file. All
instructions take their operands from the stack and leave their result on the top of the stack.
Remember, a stack is a “LIFO” (last in first out data structure) and typically supports “push”
and “pop” operations.

In this problem you will design the datapath and specify the control for the following subset of
a stack machine instruction set:

Instruction Description
add Pops two elements, forms their sum, and pushes the result.
sub Pops two elements, subtracts the first popped from the

second, and pushes the result.
dup Duplicates the top of the stack.
swap Exchanges the first two elements on the stack.
load Loads a word from data memory using the top of the stack as the

memory address (address is popped, the data from memory is pushed).
store Stores the top of the stack in data memory using the next

element on the stack as the address (both are popped).
const Pushes a sign-extended immediate value from the instruction.

Shown below are a few blocks that you will need for your datapath. The data memory block
has asynchronous read and synchronous write. The stack block has a data input and data
output, along with two control signals, push (PUSH), and enable (EN). The top of the stack is
always available on the data output signal Dout, i.e., it is always possible to peak at the top of
the stack. On the positive edge of the clock, if PUSH=1 and EN=1 then the value on the data
input is pushed onto the stack; if PUSH=0 and EN=1 then the top of the stack is popped; if
EN=0, then the stack is not changed.

(a) In the space provided below add wires and any other blocks that you need for the
above instructions. Be neat, and avoid crossing wires when possible. Circle your
control signals. You will assign control signal values in part (b), coming up.

Your top priority is to minimize the number of cycles per instruction, followed by
making the datapath as simple as possible. You may ignore instruction fetch for this
problem.

12

Solution

DMem

Stack ALU

enpush sel

we

Sign-Extended Immediate

src

enA

enB
00

01

10

11

PUSH EN A

B

sel

Din Dout

WE

Din

Dout

A

add: sel = 00

sub: sel = 01

pass A: sel = 10

pass B: sel = 11

Up to 10 points were awarded.

13

(b) Label the table columns with your control signal names. Fill in the table with the
control signal values for each instruction. Use “X” to indicate “don’t care”. Note
that some instructions may take more than one cycle. In those cases, use one row
for each cycle of the instruction.

push en enA enB sel we src

add 0 1 1 0 X 0 X
0 1 1 1 X 0 X
1 1 X X 00 0 10

sub 0 1 1 0 X 0 X
0 1 1 1 X 0 X
1 1 X X 01 0 10

dup 1 1 X X X 0 01

swap 0 1 1 0 X 0 X
0 1 0 1 X 0 X
1 1 X 0 10 0 10
1 1 X X 11 0 10

load 0 1 X X X 0 X
1 1 X X X 0 11

store 0 1 X 1 X 0 X
0 1 X X X 1 X

const 1 1 X X X 0 00

Up to 10 points were awarded.

14

(c) Most stack machines also include a rotate instruction:

Instruction Description
rot “Rotate” the top 3 elements; the third element

moves to the top and the top two elements move down one.

Is it possible to execute a rotate instruction on your machine without modifying the
datapath? If so, how many cycles will it take?
No, it is not possible to implement the rotate instruction without modifying the dat-
apath. To perform a rotate, three elements must be popped from the stack, and then
pushed back onto the stack in a modified order (pop A, pop B, pop C, push A, push
B, push C) This requires at least enough state to store the three words being rotated.
Note that a correct solution is not allowed to modify the data memory: such an im-
plementation breaks the ISA! The datapath shown in this solution only provides two
registers to store intermediate state, and is thus insufficient to implement the rotate
instruction.
Up to 4 points were awarded based on correctness (relative to your part a) and
reasoning.

15

8. Flip-flop Implementation [16pts].

Consider the circuit shown below. Its function is a level-sensitive “high transparent” latch—
transparent when the clock level is high.

qd
clk

If possible, modify the circuit to achieve the following functions by adding bubbles (inversions)
and extra gate inputs (no extra gates or transistors are allowed). If the desired function is not
possible, indicate it by writing “not possible”.

(a) Clock enable (CE) input.

qd
clk

(b) Asynchronous Reset (clear)—sets the latch value to 0 independently of the clock.

qd
clk

(c) Synchronous Reset (reset)—set the latch value to 0 if the clock is high.

qd
clk

16

(d) Negative Edge-triggered Flip-Flop. For this part you may add another copy of the
latch, if needed.

qd
clk

The solution to each part is shown below:

(a)

q
d

c

q
d

clk

CE

(b)

q
d

clk

clear

(c) Not Possible

(d) We abstract:

Into a level-sensitive latch block:

Then a negative Edge-triggered

Flip-flop is given by:

d q

c

d q

c

d q

c

in out

clk

Each part was worth 4 points. Partial credit was given based on whether you handled the case
where the added signal was logic 0 or logic 1, but not both. No credit was given to solutions
that said an implementation was “Not Possible” when it was possible, and vice versa.

17

9. Short Answers [19pts].

(a) [1pt] List the primary reason why FPGAs have lower performance than ASICs.
Critical path delay on FPGAs is dominated by interconnect. Because the wiring is

“general purpose” and not optimized for a particular logic function, the individual
wires are longer and therefore higher capacitance. Furthermore, the connections
between the wires are made with transistors, which add resitance. The net result is
connections with a longer RC delay constant.

(b) [4pt] Over the years, the size of LUTs have been increased by the FPGA manufac-
turers (from 3-LUTs to, now, 6-LUTs).
List two reasons why larger LUTs are a good idea: Larger LUTs can result in higher

performance and lower power for some functions, as the function can be mapped
with less reliance on the interconnection fabric.
Larger LUTs help amortize the area expense of extra circuitry that exits at the per
LUT or per CLB-level, such as connections to the interconnection fabric, flip-flops,
muxes, etc.
List two reasons why smaller LUTs are a good idea: When a simple logic function

is needed and it cannot be combined with another such function, mapping to a larger
LUT would result in not utilizing the entire LUT (internal fragmentation). In other
words, smaller LUTs are easier to pack full. In cases where the larger LUTs could
not be fully packed, a smaller LUT would lead to better area density and higher
performance.

(c) [3pt] Assume a product development based on an FPGA has a NRE cost of $1M
and a per unit FPGA cost of $100. An ASIC version of the product has an NRE
cost $10M and a per unit cost of $10. Your company plans to ship 10,000 units of
the final product. Would you choose FPGA or ASIC, and why? The total cost to

the company for the FPGA approach is:

$1M + 10, 000 units× $100/unit = $2M

And for the ASIC approach:

$10M + 10, 000 units× $10/unit = $10.1M

Therefore the FPGA approach is the least expensive for the company.

(d) [2pt] List two reasons why you might choose to use Block RAM (BRAM) over
distributed RAM (LUT-RAM) in an FPGA based design. BRAMs have higher

bit density and therefore are more area efficient for a relatively large number of bits.
BRAMs have two true dual ports built in support for FIFO generation, built in ECC,
two independent clocks.

(e) [1pt] List one reason why you might choose to use LUT-RAM over BRAM in an
FPGA based design. LUT-RAMs allow asynchronous reads and are more area effi-

cient when a relatively small number of bits need to be stored.

18

(f) [4pt] Suppose you are given a 256 X 8 simple-dual-ported memory block. How many
such memory blocks would it take to implement a 512 X 16 memory with two read
ports and two write ports? 2 blocks for 16-bit width × 2 for 512 word depth × 2 for

two read ports × 2 for two write ports = 16 blocks total.

(g) [3pt] Consider a video system with a 1K by 1K image, 100 frames/second, and
3 Bytes per pixel. We would like to send a video stream over Ethernet and have
available 10Mbps, 100Mbps, and 1000Mbps connections. Which of these connections
would provide sufficient bandwidth?

1K pixels× 1K pixels× 100 frames/sec× 3Bytes/pixel

= 300MB/s (Million Bytes per second

The highest of the three Ethernet connections is 1000Mpbs (Million bits per sec-
ond), which is approximately 125 Bytes per second. Therefore, none would provide
sufficient bandwidth.

(h) [1pt] Put your name and SID on each page.

19

Spare page. Will not be graded.

20

Spare page. Will not be graded.

21

Spare page. Will not be graded.

22

Spare page. Will not be graded.

23

Spare page. Will not be graded.

24

