
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

EECS150, Spring 2010

Homework 10 Solutions: Combinational Logic

1. This circuit was a mux, given by the truth table:

a b c Out

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

From this, we construct the minimized K-map:

0 0 1 1

0 1 1 0

00 01 11 10

0

1

ab
c

b

a

c

And from the minimized K-map, we derive the optimal logic expression:

Out = ac̄ + bc

Can we optimize this circuit further? Yes we can - with transistor-level optimizations. In the case
of the mux, we can use the pass-gate approach shown in lecture:

1

Transistor-level optimizations usually yield a more optimal solution relative to K-map optimiza-
tions because K-maps deal at the logic gate level. The lower down (in terms of abstractions), we
optimize, the better result we are going to get.

2. DDCA 2.19

Two different ways of arriving at a minimal boolean expression for this truth table are shown
here:

2

Note that the X’s (don’t cares) are allowed to take on either a zero or a one. We can let specific
X’s be 1’s if we can use them to grow a bigger covering in our K-Map (remember, the bigger the
covering, the more minimal it is). We let all the other X’s be 0’s so we don’t have to make new
coverings just to accomodate them (the fewer the coverings, the more minimal the implementa-
tion).

Once we have our minimized boolean expressions, building the circuit is trivial (again, two dif-
ferent answers):

3. DDCA 2.24

We can capture the exact behavior of this circuit by first describing its function using a truth table:

Now that we have our truth table, we can go ahead and minimize its logic by entering it into a
K-Map:

3

Note that there are two different ways to minimize the boolean expression for P.

From our K-Map, we arrive at the following two boolean equations:

D = A3 A2 A1 A0 + A3 A2 A1 A0 + A3 A2 A1 A0 + A3 A2 A1 A0 + A3 A2 A1 A0

P = A3 A2 A0 + A3 A1 A0 + A3 A2 A1 + A2 A1 A0 or
P = A3 A1 A0 + A3 A2 A1 + A2 A1 A0 + A2 A1 A0

With our boolean expressions, we can implement our circuit in the standard fashion:

Note that the circuit implements only the first minimized expression for P .

4

4.

Ftwo = ac + ad + bc + bd + e

= a(c + d) + b(c + d) + e

Fthree = (a + b)(c + d) + e

Each 2-input gate requires 2 transistors per input = 2 transistors.

2 Level AND/OR Logic:
4x 2-input AND gates
4x 2-input OR gates (

Total Cost: 4*(4 + 4) = 32 transistors
Worst Case Delay: 1 AND gate + 3 OR gates = 4 gate delays

3 Level Logic:
1x 2-input AND gates

3x 2-input OR gates
Total Cost: 4*(1 + 3) = 16 transistors
Worst Case Delay: 1 AND gate + 2 OR gates = 3 gate delays

5

5. DDCA 3.24

The first thing we do in any FSM design problem is translate the problem statement into the state
transition diagram for the FSM we are building. In the case of the gray code counter we are
building, the state transition diagram is shown here:

Once we have the state transition diagram, we pick a convenient encoding for all the states. In
this case, we will pick the state encoding to be just the gray codes themselves (i.e. state S011 has
an encoding of 3’b011). This has the advantage that the output of this FSM is just the current
state (i.e. the output of the FSM is just the output of the current state register). The next state
transition table is shown here:

6

S2 S1 S0 NS2 NS1 NS0

0 0 0 0 0 1
0 0 1 0 1 1
0 1 0 1 1 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 0 1

The output logic truth table is shown here:

S2 S1 S0 Out2 Out1 Out0
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

6. Repeated DDCA 3.24

The only thing that changes between this problem and the last is how we encode our states. Using
one-hot encoded states, the following table shows the new state encodings for each state:

State Encoding
S000 00000001
S001 00000010
S011 00000100
S010 00001000
S110 00010000
S111 00100000
S101 01000000
S100 10000000

This particular encoding has the advantage that the next state function is just a left shift of the
current state (and that the top bit, when shifted off to the left, wraps around to the bottom bit)
and can be implemented with just a simple shift register. The following table shows the next state
transition table with one-hot encoded states:

7

State Next State
00000001 00000010
00000010 00000100
00000100 00001000
00001000 00010000
00010000 00100000
00100000 01000000
01000000 10000000
10000000 00000001
All else xxxxxxxx

However, since our current state is no longer just the gray code itself, our output function will not
just be the current state. We will need a circuit that converts our one-hot encoded states to their
respective gray code values. This circuit implements the behavior described by the truth table:

State Output
00000001 000
00000010 001
00000100 011
00001000 010
00010000 110
00100000 111
01000000 101
10000000 100
All Else xxx

8

7. This problem appeared on midterm 1 of CS150 spring 2007. The minimal covering that they
came up with is shown here:

The expression corresponding to this minimal covering was:

G = A C F +A C D+A B C D+A B C D+A B C E +A B D E +A B C E +A B D E +
A B C D F + A B C D F + A B D F

8. The last Bear in line can see every skullcap but his own, and so he calls out Red if the Red
skullcaps in front of him have odd parity, White if the Red skullcaps in front have even parity.
Hes got a 50To see this, consider the Bear immediately in front of the last Bear. The parity
computed by the last Bear is the parity of all the caps in front of him XORd with his own cap. He
knows the parity of all the caps (he just heard the last Bear yell it out) and he knows the parity of
the caps in front. From this, he can deduce his own color, from the following table:

9

Now consider the third Bear from the back in line. He knows three things: the parity of the caps
in front of him, the parity of all the caps (except for the cap of the last Bear, which were ignoring),
and the cap of the Bear behind him. And he knows the following equation must hold: Parity of
all caps = my cap is Red⊕ Parity of caps ahead⊕ Cap behind is Red So this yields the following
table:

This is of course our familiar three-variable parity function, with some change of names and
variables! Now consider the general case. The kth Bear from the end waits until he hears all k-1
Bears behind him call out their caps. From this, he knows three things: first, the global parity
(from the original call; two, the parity behind him (hes kept track as hes heard the Bears behind
him call out their colors correctly), and, three, the parity of caps in front of him. And he knows he
must maintain the following invariant: Parity of all caps = my cap is Red ⊕ Parity of caps ahead
⊕ Parity of caps behind Which gives the following table:

Which again is the familiar parity function. Using these observations and this table, the Bears are
able to defeat the Evil Cardinal. They then captured his Axe and, to prevent further violence of
this type, mounted it on a wooden plaque where it remains today.

10

9. The bubble-arc diagram for this state machine is given below:

000

010

110
111

101100

001

011

From this, we can construct the truth table for this FSM. Like other counters, which transition
unconditionally based on their current state and always to a known next state, the current state
can be thought of as the inputs:

cs0 cs1 cs2 ns0 ns1 ns2

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 1 0 0
1 1 1 0 1 1

With three next state bits, we need 3× 3 variable K-Maps (let a, b, c equate to cs0,1,2):

11

0 1 1 1

0 0 0 1

00 01 11 10

0

1

ab
c

b

a

c

1 1 0 0

0 0 1 1

00 01 11 10

0

1

ab
c

b

a

c

0 0 0 1

0 1 1 1

00 01 11 10

0

1

ab
c

b

a

c

ns0

ns1

ns2

Which yield the following minimized boolean expressions (equate x[2 : 0] to ns0,1,2):

ns0 = bc̄ + ab̄

ns1 = āc̄ + ac

ns2 = bc + ab̄

12

10. This circuit is, in fact, an S-R latch. We can transform the circuit using bubble-pushing techniques
as follows:

B

C

C

A

B

C

C

A

B

C

C

A

Push the inverter back to the top OR

gate’s output. In order to maintain the

same logic function, we need another

inverter at the top input of the AND gate.

Use bubble-pushing/De Morgan’s laws

to transform the AND into a NOR.

And the corresponding wave diagram (which follows from standard S-R latch behavior) is:

A

B

C

C

1

0

1

0

1

0

1

0

13

