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EECS150, Spring 2010
Homework 3 Solutions: Verilog and Sequential Logic

Keep in mind that problems requiring writing a Verilog module may have many solutions. You
should compare your answers with those below and perhaps even run the Synthesis tool on them to see
what schematics they produce. Two correct behavioral modules describing the same functionality may
or may not produce the same circuit.

1. One-hot counter
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The above approach is to chain 8 flipflops together, reset the circuit so only the first flipflop holds
a 1, and each cycle, pass the values along the chain. The following Verilog implements this
design.

module OneHotCounter (Reset, Enable, Clock, Out);
input wire Reset, Enable, Clock;
output reg [7:0] Out;

always @ (posedge Clock) begin



if (Reset) Out <= 8’b00000001 ;
else if (Enable) begin // pass reg i—1 value to reg i
Out[0] <= Out[7];
Out[1] <= Out[0];
Out[2] <= Out[1];
Out[3] <= Out[2];
Out[4] <= Out[3];
Out[5] <= Out[4];
Out[6] <= Out[5];
Out[7] <= Out[6];
end
end
endmodule

Alternatively, we could create a binary counter, then decode its output into one-hot.

module OneHotCounter (Reset, Enable, Clock, Out);
input wire Reset, Enable, Clock;
output reg [7:0] Out;

// binary counter
reg [2:0] count;
always @ (posedge Clock) begin
if (Reset) count <= 3°d0;
else if (Enable) count <= count + 1;
end

// decode
always @ % begin
case (count)
2°d0 : Out = 8’h01;
2’dl : Out = 8’h02;
2°d2 : Out = 8’h04;
2°’d3 : Out = 8’h08;
2’d4 : Out = 8’hl10;
2°d5 : Out = 8’h20;
2°d6 : Out = 8’h40;
2°d7 : Out = 8’ h80;
endcase
end
endmodule

2. Write a Verilog module for a 2:4 decoder circuit

(a) using an always block

module Decoder2_4 (Select, OutO0, Outl, Out2, Out3);



input wire [1:0] Select;
output reg OutO, Outl, Out2, Out3;

always @ x begin
case(Select)

2’b00 : {Out3, Out2, Outl, Out0} = 4°b0001;
2’b01 : {Out3, Out2, Outl, Out0} = 4°b0010;
2’b10 : {Out3, Out2, Outl, Out0} = 4°b0100;

2’bll : {Out3, Out2, Outl, Out0} = 4°b1000;
endcase
end
endmodule

(b) using continuous assignment

module Decoder2_4 (Select, OutO0, Outl, Out2, Out3);
input wire [1:0] Select;
output wire OutO, Outl, Out2, Out3;

assign Out3

(Select==2"bl1);
assign Out2 (Select==2"b10);
assign Outl (Select==2"b01);
assign Out0 = (Select==2"b00);

endmodule

3. DDCA 4.19 We want the position of the highest order bit of A that is a 1. We use priority logic
to check each of the bits of A, starting at the highest order bit. It is called priority logic because
the circuit acts behaves like it considers certain bits before others. Think about when if-else
statements in Verilog will create priority logic and when they will not.

module PriorityEncoder83 (A, Y, NONE);
input wire [7:0] A;
output reg [2:0] Y;
output reg NONE;

always @ (x) begin

NONE = 0;

if (A[7]1) Y = 3’bll1;
else if (A[6]) Y = 3°b110;
else if (A[5]) Y = 3°bl01;
else if (A[4]) Y = 3°b100;
else if (A[3]) Y = 3°b011;
else if (A[2]) Y = 3°b010;
else if (A[l]) Y = 3°b001;
else if (A[0]) Y = 3°b000;
else begin

Y = 3°b000;



NONE = 1°bl;
end
end
endmodule

Note that in the else clause Y is set. If a signal is assigned in only some but not all paths through
an always@* block, then a latch will be generated. The latch stores the old value for cases when
the signal is not assigned. This is usually not the intended behavior.

Think of the circuits that could implement the PriorityEncoder. On one hand you might have a
cascading circuit where each stage passes the output thru if a previous stage set it or else checks
if the corresponding bit is high to set the output. On the other hand, you might instead have a
’priority mux’ that selects based on the most significant bit that is high. This is a simple truth
table that can be implemented without needing a stage of logic for every if statment.

extra question: How many 6LUTs could our PrioirtyEncoder83 fit into?

4. DDCA 4.46 The two modules have the same function and both imply the same hardware.
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Both modules use the non-blocking assignment (<=) in the always@ (posedge clk) block. Non-
blocking assignment means that all assignments happen at the same time and so ordering does not
matter. In both, X gets the value of @ & b and y gets the value of the old X ORed with . Remember
that always@(posedge clk) is used for inferring state elements that capture the value on their
input at the rising edge of clk. This is why X and y are outputs of flipflops.

5. DDCA 4.47

(a) Codel now has a different behavior and implies different hardware than that in 4.46.
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Blocking assignments (=) are procedural, which means that the assignments happen in the
order they appear in the always block. A simulator (like Modelsim) that is simulating this
this Verilog module would assign the variables in this order, like execution of a program-
ming language. However, remember that if we are synthesizing hardware from behavioral
Verilog (i.e. with always blocks), the hardware will just have the behavior of the Verilog.
When the always@(posedge clk) block is “executed”, X is assigned to a & b, then y is
assigned to x OR c. Since the y assignment comes second, the X used in x OR c is the
new X, so effectively what y is getting is (a & b) OR c, as can be seen in the diagram. This
is probably not the intended hardware, particularly since the value of internal reg X is not
even used. Since, using blocking assignment = in an always@(posedge clk) can be easy
to make mistakes with (and hard to comprehend), it is best to strictly use non-blocking in
always@(posedge clk) and blocking in always@*. Even more importantly, never mix
(=) and (<=) in the same always block; this is just asking for trouble and confusion. If you
find that you think you need to break these rules while writing a Verilog module, then you
should probably look for another way to write your code that obeys the rules.

(b) Code2 happens to have the same behavior and imply the same hardware as the modules in
4.46. This is just because the order of the assignments presents no dependencies. When
done in this order, y gets X OR c, then X gets a & b. So we use ”old” value of x for the y
assignment, just like with the non-blocking (<=) assignment.

How <= and = result in different circuits can be a subtle point to grasp; however, if you
are still confused trace carefully through each of the 4 modules to understand the behavior.
Trace this behavior in the respective circuit diagrams. For blocking assignments, you can
try substituting the new value of a variable into where it is used later in the always block
(as we did for X in 4.47 codel).

6. DDCA 4.48 excluding part h.

(a) Recall the behavior of a level-sensitive latch is that when clk is low, the latch is “opaque”
and g will hold its value, unaffected by d. When clK is high, the latch is “transparent”
and the latch will continously capture the value of d (i.e. q gets d). (Contrast this with a
flipflop that only captures d at the rising edge of the clk). Next, recall that an always block
is “executed” whenever one of the signals in its sensitivity list changes. Here only clK is
in the list, so the block is executed only when clk changes. So if clk is high, q should be
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getting the value of d, but even if d is changing, the always block will not execute in to
assign it to g. Clearly the incorrect behavior for a latch. (Interestingly, as it is written, this
circuit operates as a flipflop, because when clk goes high-to-low (a falling edge), the always
block executes, but no assignment occurs because ClK is low. When clk goes low-to-high
(a rising edge), the always block executes again, and the assignment occurs because CIK is
high.) Fix: include both clk and d in the sensitivity list. Even better just use always@*,
which is a catch-all for all signals in the always block.

By the title of the module, ’gates”, we can assume this is just trying to assign the output
to the output of 2-input (a and b) gates. Again, the problem is that a is included in the
sensitivity list of the always, but b is not, even though assignments depend on both signals.
Fix: include b in the sensitivity list or just use *.

Since the always block triggers on posedge s, s is only ever going to be high when the if(s)
check occurs, so y will never be assigned to d0. In addition, a mux is just combinational
logic and should not be created using posedge because changes to the output occur at both
transitions (posedge and negedge). Also, since d1 and dO are not in the sensitivity list,
neither will be assigned to S except when S changes. Fix:

always @ x begin
if (s) vy di;
else y = dO;

end

Note that keeping the <= would have still given correct behavior, but it is best practice to
use = inside always@™* blocks.

In always @ (posedge clk) we should only use non-blocking assignments (<=).

The code does not state what happens to out1 when state!=0 or what happens to out2 when
state==0. Therefore, the tools will assume that out1 holds its value when state!=0 and
out2 holds its value when state==0. This is not likely to be the intended behavior since the
module is an FSM, whose outputs should be a combinational logic function of the state and
input. Here, the output gets latched and actually each out signal would remain 1 after it
first becomes 1. To avoid generating unwanted latches, make sure that in your always@*
blocks, every path through the block assigns all signals that can be assigned in the block.
Consider adding default assignments at the top of the block or just cover all possibilities in
each if-clause. Fix: two solutions shown for the always block

always @ x begin

outl = 0;

out2 = 0;

if (state==0) outl = 1;
else out2 = 1;

end

OR

always @ x begin
if (state==0) begin
outl = 1;



out2 = 0;
end else begin
outl = 0;
out2 = 1;
end
end

(f) Ignoring the different apostrophes in the constants, the problem is that the if-statements do
not cover the case where a equals 4’b0000. Even if you know that the input a will never
be 4’00000, the tools do not necessarily know that and will likely generate a latch for y to
cover the case that a is 4’D0000. Again, use either a default assignment at the top of the
block or a default case, which for if-statements is “else”’. The default can be a don’t care, X,
if you do not care what the value is in the extra case. Fix:

always @ x begin
y = 4°bxxxXx;
if (a[3]) y = 4°b1000;

else if (a[2]) y = 4°b0100;
else if (a[l]) y = 4°b0010;
else if (a[0]) y = 4°b0001;

end

OR

always @ % begin
if (a[3]) y = 4°b1000;
else if (a[2]) y = 4°b0100;
else if (a[l]) y = 4°b0010;
else if (a[0]) y = 4°b0001;
else y = 4°bxxxx;
end

(g) The problem here is that FSM module state encodings should, in general, be private to the
module implementation. This means use localparam instead of parameter for state en-
codings. The state encodings could actually be parameters as long as the implementation
does not depend on the chosen encoding and the instantiator sets the parameters to be the
right bit width and all different. However, in this case, it would not work because the imple-
mentation does depend on the encoding. The last case line is 2", which is the encoding for
S2 (2°b10), but now makes the case dependent on S2 being 2°b10. In addition to this, the
case statement has no default behavior for the case where state is 2’b11. This will generate
a latch for nextstate to cover the case of 2’bl11. When coding a state machine, make sure
that if your states don’t use all the possible encodings for the bit width of state (in this
case there are 2 bits of state but only 3 not 4 states), then make a default case in logic. Fix:
change state encodings to be localparam. Also add the extra case and change 72" to ”S2”.

always @ x begin
case(state)
SO : nextstate = S1;
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S1 : nextstate = S2;

S2 : nextstate = SO;
default : nextstate = 2’bxx;
endcase
end
OR
always @ x begin
nextstate = 2’bxx;
case(state)
SO : nextstate = S1;
S1 : nextstate = S2;
S2 : nextstate = SO;
endcase

end

We did not assign h, but if you are interested, read on. The definition for the tristate module
and an explanation is on DDCA page 180. It has the following truth table.

alen|y
0] 0| z
O 110
110 | z
111 |1

So if en (enable) is high, the tri-state passes the input to the output. If en is low, then the
tri-state does not drive the output. This allows two tri-state outputs to attach to the same
wire, with the condition that their enable signals are never high at the same time (otherwise
the wire has two drivers at once!). Therein lies the problem with the code in part (h). The
same signal S is used for both tri-states and both tri-states output on y. The correct code
should be:

module mux2tri(input [3:0] dO, dIl,
input s,
output [3:0] y);

tristate tO (dO, “s, y);
tristate tl (dl, s, y);
endmodule

Assuming that the designer intended to have an asynchronous set and reset (note that asyn-
chronous reset and set are sometimes called clear and preset, respectively), the problem is
that when reset and set go high at the same time, which takes precedence. The code is am-
biguous; assignments to q must be mutually exclusive, as are the two assignments in the first
always block. We will take the convention that reset has priority over set, to demonstrate
our fix. Note also the posedge on reset is not necessary, since we only do something special
if reset is high anyway. Fix:

module floprsen (input clk,



input reset,
input set,

input [3:0] d,
output [3:0] q);

always @ (posedge clk, reset, set) begin
if (reset) q <= 0;
else if (set) q <= 1;
else q <= d;
end
endmodule

In addition to the priority of set and reset, if the designer intended to make a flipflop with
synchronous set and reset, then we have to make the always block only sensitive to posedge
clk, not reset and set. This way, the reset or set happens only at the rising edge of the clock.

(j) Non-blocking (<=) assignments are used, so the second assignment will use the previous
tmp value not the one that just got the current AND of a and b. Also, even though it is
necessary here because the always only needs to trigger on a, b, or ¢, we might as well use
always@-*. Fix:

always @ (x) begin
tmp = a & b;
y = tmp & c;
end

7. DDCA 4.27
module TrafficLight (Ta, Tb, La, Lb, Clock, Reset);

input wire Ta, Tb;
output wire [1:0] La, Lb;

reg [1:0] state, next_state;

// state encodings

localparam SO0 = 2°b00,
S1 = 2°b01,
S2 = 2°bl0,
S3 = 2°bl1;

// color encodings

localparam GREEN = 2°’b00,
YELLOW = 2°b01,
RED = 2°bl10;

// state
always @ (posedge Clock) begin



if (Reset) next_state <= SO;
else state <= next_state;
end

// next_state logic
always @ (x) begin
case (state)

SO : begin
if (Ta) next_state = SO;
else next_state = S1;
end
S1 : next_state = S2;
S2 : begin
if (Tb) next_state = S2;
else next_state = S3;
end

S3 : next_state = SO;
endcase
end

// output logic (separate for clarity)
always @ (x) begin
case (state)

SO : begin
La = GREEN;
Lb = RED;
end
S1 : begin
La = YELLOW;
Lb = RED;
end
S2 : begin
La = RED;
Lb = GREEN;
end
S3 : begin
La = RED;
Lb = YELLOW;
end
endcase
end
endmodule

Notice that encodings are used for the color outputs. This is useful because you can later change
things more easily. Also, you don’t have to think too hard: just assign the output based on the

10



state (as shown in the state bubbles of the FSM diagram). You can let the tools do the logic
simplification for you.

The tools should reduce the high-level output assignments shown above to gates that correspond
to:

assign La[l] = state[1];

assign La[0] = "state[1] & state [0];
assign Lb[1] = “state[1];

assign Lb[0] = &state;
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8. Consider the following finite state machine (FSM) circuit:
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(a) Write a Verilog description of the circuit using continuous assignment for the NS and OUT
signals.

module FooCircuit(Clock, Reset, In, Out)
input Clock, Reset, In;
output Out;

reg [1:0] PS, NS;

always @ (posedge Clock) begin
if (Reset) PS <= 2°b00;
else PS <= NS;

end

assign NS[O0] (In & "PS[0]) | ("In & PS[1]);
assign NS[1] PS[1] ~ PS[O];
assign Out = "PS[1] | "PS[O];

endmodule

(b) Draw a state transition diagram describing the behavior of the circuit. Within each state
bubble indicate the bit encoding for that state. Remember to label the arcs with input values
and state with output values.

Write out the truth table to see what the transitions are.
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PS[1] | PS[O] | In || NS[1] | NS[O]
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 0
1 0 0 1 1
1 0 1 1 1
1 1 0 0 1
1 1 1 0 0

Using this we look at each state PS[1], PS[0] and make an arc to state NS[1], NS[0] for each
value of In. Below is the resulting state transition diagram. Arcs with no label for the input
mean that In==1 and In==0 both go the same path (i.e. the input does not matter from that
state).

9. A “population count” (PopCount)

(a) If the input Dataln is N bits, how many bits must the Count output be? This is “CW” in the
figure. For an N bit input there could be between 0 and N high (1) bits. This means Count
can take on N+1 values. So we need log2(N+1) bits. Since this can be a fraction, we will
take the ceiling. ceil(log2(N+1)).

(b) Draw your PopCount circuit for N=4. (shown for N) The below shows one possible design
for PopCount. It uses a parallel-to-serial converter to take in the N-bit input and shift it out
one bit each cycle. On each cycle the bit coming out of the converter is added to a running
total, so if itis 1 the count is increased and if O then the count stays the same. A counter with
the same width is used to assert the Done signal after the N cycles. When Done is high, the
counters are disabled so that the Count output stays valid until the next load happens.

13
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(c) Write the Verilog for the PopCount, making N a parameter.

module PopCount(Clock, Reset, Load, Done, Dataln, Count);
parameter N = 32; // 32 is just an arbitrary default for N
parameter CW = ceil (log2 (N+1));
// ceil and log2 not available in Verilog, but there is an
// integer ‘log2 macro available in Const.v. If you ever
// use it in your Verilog code make sure to look at Const.v
// to see exactly what it does

input Clock, Reset, Load;
input [N—1:0] Dataln;
output Done;

output reg [CW—1:0] Count;

// infer a counter that stops when Done is high
reg [CW—1:0] DoneCount;
always @ (posedge Clock) begin

if (Reset|Load) DoneCount <= 0;

else if ("Done) DoneCount <= DoneCount+1;
end

// Done when DoneCount reaches N
assign Done = (DoneCount==N);

// serial bit to count during the cycle
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wire bitout;

// We want to load the input in parallel but feed it
// to the adder serially one bit per clock cycle.

// We will use the parallel—to—serial converter

// from " Lecture #6 CAD Tools (Synthesis)”

// (with a Reset signal).

ParToSer #(.N(N)) (

ptos (.LD(Load),

.Reset(Reset),
.X(Dataln),
.out(bitout),
.CLK(Clock));

// zero extend the bit to be the width of the
// adder to add to current count if bitout is
// 0 then will add zero, if bitout is a I then
// we will be adding 1 (incrementing the count)
wire [CW—1:0] zeroExtendedBit;
assign zeroExtendedBit = {{(CW—1){1°'b0}}, bitout };

// add the bit to the stored count so far
wire [CW—1:0] addresult;
assign addresult = zeroExtendedBit + Count;

// register for Count; gets disabled when Done
// is high to hold the output until the next
// Load happens
always @ (posedge Clock) begin

if (Reset|Load) Count <= 0;

else if ("Done) Count <= addresult;
end

endmodule

Keep in mind that for the N-cycle PopCount, many Verilog implementations are possible.
For example, instead of zero-extending the bit and adding it to the current Count, we could
have instead implemented an incrementer like in Lab3, where if the bit==1 then increment
and if b==0 keep the current value. It is likely that this would synthesize to the same hard-
ware since the add one is like increment enable. Also, keep in mind, that other implementa-
tions of general PopCount are possible. You could count all the bits purely combinationally
using a tree of adders and carry-save addition. We will cover design components, like dif-
ferent types of adders, later in the semester.
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