EECS 150 -- Digital Design

Lecture 4 — Synchronous Digital
Systems Review (Part Il)

2010-1-28
John Wawrzynek

Today’s lecture by John Lazzaro

www-inst.eecs.berkeley.edu/~cs150

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

1

EECS150 - Digital Design
Lecture 4 — Synchronous
Digital Systems Review Part 2

January 28, 2010

John Wawrzynek

Electrical Engineering and Computer Sciences
University of California, Berkeley

Spring 2010 EECS150 lec04-SDS-review?2

Page

Thursday, January 28, 2010

Outline

4. Flip-flops, clocking

Spring 2010 EECS150 lec04-SDS-review?2 Page 3

Thursday, January 28, 2010

Today’s Lecture

9'6 Flip-flop-based state machines
Operates on Boolean (single-bit) values.

Register-based state machines
Operates on multi-bit values (integers, CPU instruction, ...)

élé Registers and Pipelining
Adding state to speed up the clock.

élé Flip-flop details ...
(Reset, set, etc ...)

Q EECS 150 - L4: Synch Systems Il

Thursday, January 28, 2010

UC Regents Spr 2010 © UCB
4

Flip-Flop State Machines

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

5

A Simple System: Traffic Light Controller
o

red
state

élé Show each light for 1 second.
élé “Loop” forever.

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 6

‘C’ program for traffic light controller

int main() {

intr=1,y=0,8=0;

while (1)
{

/* light off/on */

printf("r=%i\ny=%i\ng=%i\n\n", r, y, £);

sleep(1);

}

EECS 150 - L4: Synch Systems Il

% STEAFFIC
=1

H=5

=B

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

7

‘C’ program for traffic light controller

int main() { % ./TRAFFIC
R=1
intr= 17 y= Ov g= Ov />X<].lght Off/OIl */ ff:i-::!
int next_r, next_y, next_g; /* extra state */ L=U
while (1) ed
{ =i
5=]
next_r=y; Compute the “next"
next_y = §; state for the traffic e
next_g=r; light. e
L=
printf("r=%i\ny=%i\ng=%i\n\n", r, y, 8);
sleep(1); -
Y=@
P =next_r; Make the "next” state G=0
y =next_y; the "current” state of
g =next_g; the traffic light. P=g
} Y=
} EECS 150 - L4: Synch Systems Il i:’.:] UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 8

A few observations ...

int main() {

intr=1,y=0,8=0; /* light off/on */
int next_r, next_y, next_g; /* extra state */

while (1)
{
next_r=y; Code would still work if
next_y = g; these statements
next_g=r; executed simultaneously.

printf("r=%i\ny=%i\ng=%i\n\n", r, y, £);
sleep(1);

Wouldn't it be great
if we could group
“current” and “"next”
variables with an
abstraction?

Sleep(1) sets
"time constant”,
hot C instruction
execution rate.

I =next_r; Code would still work if

v = next_y; these statements

g = next_g; executed simultaneously.

J A direct digital hardware implementation
} EECS 150 - L4: Synch Systems Il addresses a" Of these iss"eS! UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 9

Clock waveform takes the role of sleep(1)

1 second (posedge to posedge)

- T .
clk
All state changes f -
happen on o — —
edge of our 1 Hz — — :
clock ... thus, lights ‘ hs
will switch once per 1 GHz 1ns

second.

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 10

r & next_r? One edge-triggered D flip-flop

—ID Q[— Value of P is sampled on positive clock edge.

CLK 4@ O

0

9

Y

Q outputs sampled value for rest of cycle.

ol

Positive-edge sampling makes it easy to think about state.

EECS 150 - L4: Synch Systems Il

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

11

Flip-flop Timing Waveforms?

- Edge-triggered d-type flip-flop
— This one is "positive edge-triggered” J—

* "On the rising edge of the clock, the input d is
sampled and transferred to the output. At all
other times, the input d is ignored.”

 Example waveforms:

r .
l ‘ ! 1

S Y R N U A WS EERECT

|

CL’_L_jIﬂ[\SO“FF_‘"’%

i
|

l
|
|
[
|

77 ’
% / ‘;’: f ,.fJ " | -

Spring 2010 | EECS150 IecOl;-SDS-revieWZ | Page 12

Thursday, January 28, 2010

12

Use 3 Flip-Flops to represent state ...

Power
up to
red

state

®
R — G —iD Q
' + —b

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

13

Use 3 Flip-Flops to represent state ...

Power
up to
red

® =

R G —ID Q—Y
| | —>
“One-Hot Encoding”; State machines where

exactly one D flip-flop is in the “1” state at a time
(forbidden states: RYG = 000, 011, 101, 110, 111).

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 14

“Simplified” traffic light controller

Power

.)
up to
red

Next State Combinational Logic

R | G —1D QLY
| | —>

“Simplified?7?”: We assume the state at the
beginning of time is RYG == 100. A “complete”
implementation would include “power up” logic.

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 15

Inside the combinational logic box ...

Power

. v
up to
red

Next State Combinational Logic

Let’s revisit our original C code ...

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 16

Recall: A few observations ...

int main() {

intr=1,y=0,8=0; /* light off/on */
int next_r, next_y, next_g; /* extra state */

while (1)
{

next_r=y;

next_y =§;
next_g=r;

printf("r=%i\ny=%i\ng=%i\n\n", r, y, £);
sleep(1);

r =next_r;

y = next_y;
g =next_§g;

}

EECS 150 - L4: Synch Systems Il

6 C variables, but
only 3 flip-flops.
How does that
work?

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

17

Flip-flops have an internal output delay ...

—ID Q|— Value of D is sampled on positive clock edge.

Q changest _clk _to Q seconds after the
positive edge happens (t_clk_to_Q > 0).

y

\

0

b

<
L

]

Q EECS 150 - L4: Synch Systems Il

—

[

— «t_clk-to-Q— «—

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

18

And so, even this circuit “works” ...

tiinv=20 Circuit ‘goal™ 0->1->0->1-> ... fogale on posedge.
Value of U is sampled on positive clock edge.
Flip-flip t_clk_to_Q delay is positive.

Assuwme inverter has no delay ! (real-world
inverters always have delay).

g

CLK \ \ ¥

D

Q i
t clk-to-Q— <« — «—t_clk-to-Q

Q cant “race” back to D in time to ‘catch” the positive edge
that caused it ... and so the “next” variables are not needed!

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 19

Recall: A few observations ...

int main() {

intr=1,y=0,8=0; /* light off/on */
int next_r, next_y, next_g; /* extra state */
while (1)
{
DGXE—P =_y, Where does this show up
NEeXt_y =& in the circuit??
next_g=r;

printf("r=%i\ny=%i\ng=%i\n\n", r, y, £);

sleep(1l);
r =next r; .
- next v- Where does this show up
Y Y5 in the circuit?
g =next_§g;
]
} EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 20

From Next State Combinational Logic

fo
red A
QL Y
CLK
o, T Rlk-toq * Fl'gm
7 re
Qr 0 \ 1 % ‘l'o
Dy ~ green
Q, O o ~ on
next
~ 7 clock
1 0 edge.

—> logic delay <«—

Thursday, January 28, 2010

21

From Next State Combinational Logic

to
red }
5 R Q5 Y
next_r =y,
r =next_r; next_y = g;
y = next_y; next_g=r;
g =next_§g;
CLK —
D] t_clk-to-Q From
P ANy red
Qr —1 o 74\} fo
D, | green
~
0, 0 \0\4 on
=577 clock
1 0 edge.

—> logic delay <«—

Thursday, January 28, 2010

22

How fast can we run the clock?

Timing Analysis

What is the
smallest T that clk
produces correct —
operation?

An entire lecture (later in semester), here is the short version ...

Next State Combinational Logic

> R —ID Ql—Y

—>

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 23

D must stablize ahead of positive edge

I D wust be a stable “0” or “1” by t_setup

NN seconds before the positive edge happens.
Q changes t_clk to_ Q seconds after the
positive edge happens.

— — t_setup — «—

UL

D I

Q | [

Value of D is sampled on positive clock edge.

(d — «—t_clk-to-Q—> «—
EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

24

Revisiting the toggle circuit ...
t_inv> 0 Circuit goal” 0->1->0->1-> ... fogale on posedge.
| Value of D is sampled on positive clock edge.
Flip-flip t_clk_to_Q delay is positive.
—ID Q

Inverter t_inv delay is positive.
t_ setup-> [«—

CE> 0 0

) INE
0 1 |0
Q J(_ t_inv delay — L
Tr>t clk to_ Q+*t inv+t_setup fh?;u:i];u?sllv(;ﬂ

t_clk-to-Q — <
<T: the clock period—

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 25

Or, more generally ...

iR
' ' Combinational Logic

L > e

}

_P
v

_P
i..

A

— ‘ ‘ -—Clk=~ Q — ‘ ‘ -—setup

< >
Combinational Logic (CL) “time budget”

T2t ,qtteL Tsetup
(d One part of a long story, to be told later in semester ...

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 26

Some Flip Flops have “hold” time ...

— «—t_setup — «— tinv
— «— t_hold ;« _D<]t|
CLK JET _(£)_ —D Q
| |1 2

D must

sta cLk |
stable

here

If t_hold > 0, this circuit may fail
evenift inv>0andt clk_ to Q>0 !

t_clk-to-Q + t_inv > t_hold

(d For correct operation.

Thursday, January 28, 2010 27

Clk m = = u
dﬁ'qFllp-FIop Timing Details

I ‘ i

!

|

CLK ey < | Tnput date W\ug* be <table

' | \W'\'\\\S peried

--_, <—-—~——~ " serup™ timeL

%8 ‘ h__.; { ‘ "hold!" time

; ' f .

> «— Yelk-to-4" dedo

0\/ | } o L Ckkj
I

Three important times associated with flip-flops:
setup time
hold time
clock-to-q delay.

Spring 2010 EECS150 lec04-SDS-review?2 Page 28

Thursday, January 28, 2010 28

Register State Machines

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

29

Register: Holds an ordered set of bits

Built out of
an array of
flip-flops

PC

32

;T’ Din Dout ;T)

/\

|

Clk

Sometimes, we will add an “enable”
input: clock edge updates state only

if enable is high.

Q EECS 150 - L4: Synch Systems Il

32

DinQ0 ——>

Q —> Dout0

Dinl —}+—>

Q —> Doutl

Din2 —}

Q > Dout?2

clk

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

30

State Elements: circuits that store info

Examples: registers, memories input
n
Rﬁgis;re:j: Underi ’rhhe control of J[
the "“load" signal, the register :
captures the input value and load —> register
stores it indefinitely. J{n
output

often replace by clock signal (clk)

The value stored by the register appears on the output (after a
small delay).

Until the next load, changes on the data input are ignored
(unlike CL, where input changes change output).

These get used for short term storage (ex: register file), and
to help move data around the processor.

Spring 2010 EECS150 lec04-SDS-review?2 Page 31

Thursday, January 28, 2010 31

Register Details...What’s inside?

- P
Register g = Féj '
o - H;
}I “ Por

* ninstances of a "Flip-Flop”

* Flip-flop hame because the output flips and flops
between and O,1

* Dis “datad", Q is "output”
* Also called "d-type Flip-Flop"

Spring 2010 EECS150 lec04-SDS-review?2 Page 32

Thursday, January 28, 2010

32

Multi-bit adder: Doing logic on an integer

32 Combinational: Put a A

32 and B values on inputs,
+ <> 2 + B ashort time later A + B
a2 appears on output.

Just like we use gates to operate on Q
output of a flip-flop, we use components
like multi-bit adders to operate on all
output bits of a register.

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 33

A simple register-based state machine

A

b;» Fe 32
32
+ ;T) D 0 3\2\)Addr
32
0x4 ;r»/ A\

+4 in hexadecimal clk

CLK @ | O @7
Addr (Q) PC X PC + 4 X% PC+8
A }' v iyl v /' .

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 34

Accumulator Circuit Example

Assume X is a vector of N integers, presented to the input of
our accumulator circuit one at a time (one per clock cycle), so
that after N clock cycles, S hold the sum of all N numbers.

S=0; Repeat N times

]
N-**TS S=S+X;

We need something like this: Byt not quite.

X Need to use the clock signal o
N hold up the feedback to match up

with the input signal.

Spring 2010 EECS150 lec04-SDS-review?2 Page 35

Thursday, January 28, 2010

35

Accumulator Circuit

Put register, with clock signal
AL < controlling its load, in feedback path.

On each clock cycle the register
| prevents the new value from reaching

el — regucter LOAD/ Lk, the input to the adder prematurely.
(The new value just waits at the input
L

of the register).

Timing:
e] L L L)L
S :[7(0 Ixoﬂm LMXHXL ‘ﬁﬁww | L

A e e e T

Spring 2010 EECS150 lec04-SDS-review2 Page 36

Thursday, January 28, 2010

36

Register Details (again)

A n-bit wide register is nothing but a set of flip-flops (1-bit wide
registers) with a common load/clk signal.

th dLn-\ Cim_l Ao
(Reg\s\'fr CL%_— = FF FE « « - |FF

: 3 I

{” Got Gua i

A flip-flop captures its input on the edge of the clock (rising edge in
this case - positive edge flip-flop). The new input appears at the
output after a short delay. ' |

LU
S
A I e U e B N

Spring 2010 EECS150 lec04-SDS-review?2

|
77

Page 37

Thursday, January 28, 2010

37

Accumulator Revisited

Rt
o
Y 7/ * Note:
< - — Reset signal
el — Reg. LK (synchronous)
Se- — Timing of X signal is not

known without
investigating the circuit
that supplies X. Here
we assume it comes just
after S .

Observe transient
behavior of S..

Spring 2010 EECS150 lec04-SDS-review2 Page 38

Thursday, January 28, 2010 38

Only Two Types of Circuits Exist

« Combinational Logic Blocks (CL)
o State Elements (registers)

dock 117 - input

State elements are

| mixed in with CL
input CL CL output blocks to control the

| +++ flow of data.

______ opfionfeedback | |
v wtput
Sometimes used in
Address large groups by
Input Data themselves for "long-

Write Control term" data storage.

Output Data
Spring 2010 EECS150 lec04-SDS-review?2 Page 39

Thursday, January 28, 2010 39

Register File example: MIPS R-format CPU

Decode fields to get

: ADD $8 $9 $10

opcode

rt

rd

shamt

funct

—

ih

5

S

)

RegFile
rsl

rs2 rdl

wSs
rd2

wd/A\ E

|]

2~
32
| 32
32
T~

)

Logic

ORK/

c B

__;;T_T

Q EECS 150 - L4: Synch Systems Il

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

40

MIPS Register file: From the top down

clx Why is RO special? “two read ports?

sel(ws) rsl)
\1\5 RO - The constant 0 Q 32
4)
D _’|> p " R >
E)
WE
M
e ,|> 5 B0 R2 Q
X ¢
N 1
N p M R31 0
I
\\32
wd

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 41

Uses for State Elements

1) As a place to store values for some indeterminate
amount of time:

— Register files (like $1-$31 on the MIPS)
— Memory (caches, and main memory)

2) Help control the flow of information between
combinational logic blocks.

— State elements are used to hold up the movement
of information at the inputs tfo combinational logic
blocks and allow for orderly passage.

Spring 2010 EECS150 lec04-SDS-review?2 Page 42

Thursday, January 28, 2010

42

Pipelining and Registers

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

43

Pipelining to improve performance (1/2)

by Extra Register are often added to help
| register 4— speed up the clock rate.
PU {V\? ote Tlmmg...

¥ LT

} 1
i mpots T[0T [0 ()
‘sh\{lw |

R, 1O 1 G
K |

register 2 e <« add/chidt prop, Aalmj

k K-y Ri-1 J o @

Note: delay of 1 clock cycle from input to output.
Clock period limited by propagation delay of adder/shifter.

Spring 2010 EECS150 lec04-SDS-review?2 Page 44

Thursday, January 28, 2010 44

Pipelining to improve performance (2/2)

Insertion of register allows higher clock

J J‘(_ frequency.
regl | re.ﬁ‘\s&\J’ éi . I\Icl)ore outputs per second. Timing..
fttb ~ LU UL
_—j/ P S—— g C | | |
regz Tﬁo—g\ﬁk’f 3 \\‘NPU‘\'Q J (1) I (1) X(Hz)ﬂ‘u%l
{ «¢—— gL -
E\W‘\g‘;&(} S I L‘\ G Y e | (€ iﬂm
4 = EL . \ : : ——
s @] St | | Wy ‘ (| (2) Y@y
& P _ | - , | |
& - Ry L (‘L\T (L Q-X ([z‘m
R | (& @] (@
Spring 2010 EECS150 |ch4-b‘L)S-reV|ew2 1 I-’m

Thursday, January 28, 2010 45

Pipelining in a real CPU design ...

[
z
2
]
i syaen .
Z z
1] uopannsy| :
i s ! [
#
I 1
1
]
. M
N —

T

instruction

ID
TH/ID
RF
RF
hift
ALY X1
5
B
L]
o
» g X2
O
5
- | T e — — = = - — — — =
RIS o
RF Write RF Write
Port 3 Port1 wB
RF Write DWB
Port2

Q EECS 150 - L4: Synch Systems Il

Register:

An Array of
Flip-Flops

T D > D>
: : Combinational Logic))

=g
Am e —

Y
Y

Goal: Increase clock frequency by
reducing delay between registers.

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

Inspiration: Automobile assembly line

Assembly line moves on a steady clock.
Each station does the same task on each car.

The _ 3 \"" -_ T ~ Car
7 e - - body
clock o
Merge ‘/
station

Car

Bolting B Chassis

station @

(2! O T
| &
- —— S— . §
— _f'.‘ — = 1B
ﬂ EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 47

Inspiration: Automobile assembly line

Simpler station tasks — more cars per hour.
Simple tasks take less time, clock is faster.

-#
“.'-.rl.-ﬂ-

' .v"'r

e T

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 48

Inspiration: Automobile assembly line

Line speed limited by slowest task.
Most efﬂment if aII tasks take same time to do

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 49

Inspiration: Automobile assembly line

Slmpler tasks, complex car — Iong line!

These lines go 24 x 7,
and rarely shut down.

EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 50

Lessons from car assembly lines

X

X
X
X

Faster line movement yields more
cars per hour off the line.

Faster line movement requires more
stages, each doing simpler tasks.

To maximize efficiency, all stages
should take same amount of time
(if not, workers in fast stages are idle)

“Filling”, “flushing”, and “stalling”
assembly line are all bad news.

Q EECS 150 - L4: Synch Systems Il UC Regents Spr 2010 © UCB

Thursday, January 28, 2010 51

Flip-Flop Details

Q EECS 150 - L4: Synch Systems Il

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

52

FPGA: Xilinx Virtex-5 XC5VLX1

Virtex-5 “die photo”

EOALINX
VIRTEX-

“k

|

=y
|¢

FEG1TGOEGUERTD Y
OD1T7T308A

=1
i

;5

AR

P e 8
AR e A AR A
PR S S A A S

AR R AR SRR AR R A

LG G N T

PR S SR Y
A A A AR E RS s S
Am AR AR s AR S S S
AR AR RA AR S & AS

5 533 EEF PR

Aaasmnnass s
A m s s s AR As e
R A R R

=
-
=
=
=
-
-
-
-
"
-
-
Lol
5
-
-

BE AR B

A O R R
P S T S o Y

aE s BB AS S S S R S
- maddHHSaesSS
- - T T L L]
ERC A N R
L -
P L L

A AR A AR

PRSP RSN RN

SO N NE R R BRI RO R B K
FLE N S O R AR L

L R B R R R RN BN R O T S B G

TR TN
S B BE BE RN N OE E
3RS EDD

A die is an unpackaged part

Thursday, J.anuary 28, 2010 53

Colors represent
different types
of resources:

Logic

DSP (ALUs)

I/0
Serial I/0

A routing fabric
runs throughout
the chip to wire
everything
together.

Thursday, January 28, 2010

The simplest view of a slice

__________ SLCE _________
|
i Four 6-LUTs
06 L —
:(D[6:1]) 5| Aj6:1] LD 3 (D) !
"—, N e | :
| | Four Flip-Flops
: LUT :
I 06 ! (C)I > [] [] []
T | 5wl . Switching fabric may see
i i combinational and
LUT -
i — o registered outputs.
i(B[6:1]) o wor LD = (8Q) :,
| |
: LUT :
I (A) |
| 06 1 =
:(A[6:1]) A LD 5 (AQ):
: (CLK) i
o ________/

Thursday, January 28, 2010 55

Slice flip-flop properties ...

DFF

LUT D Outpur Each state element may be

S o0 _ /
H] e &S edge-triggered or latching.
|

LUT G Output CFF Clock enable, clock

OFF

D_] % polarity, and set/reset

| lines in a slice are shared.

SR>

O Sync
LUT B Output - 0 Asyne
- S Each state element
D T

) | ox ST .may respond
differently to set/

mil e I reset signa
m]
t signal
W oiNT1 @ AQ -
- | 2 S,
CE O
AX || ok oSRLOW
SR REV
|
CS 194-6 L1: Virtex-5 Microarchitecture UC Regents Fall 2008 © UCB

Thursday, January 28, 2010 56

Flip-flops on Virtex5 FPGA

SLICEL SLICEM

cout Reset Type
S P cout Reset Type
oSync g
oSync
? NS o Async I NS A
OAsync
DI
[DMUX o > DMUX
D6 C>—{ A6 D B D6 > re D2 DfH i
|~ 0 DPRAM64/32 L~
D5 [D—{As g'ﬁ%h IFD —o D5 [A5 0 SPRAMB4/32 IFD —b
D4 [O— A4 06 T NS OFF D4 [A4 D gg:ﬁg 06 1 NS OFF
05 o
D3 [D—A3 DX SRy o —D0a D3 [A3 oUOT 05 DX BLATCH ol >ba
D2 [>— A2 D aiNmo p2 [A2 ORAM DIt D aiNiTo
D1 [O— A1 —| CE OSRHIGH D1 [A1 OROM mc31 CE OSRHIGH
| ok osrLow [DSRLOW
X > < D» O ""SR Rev I A - Ok " R Rev
I : — was
J
D MUX X > .
Ll
ceD—As o r’ o T [[T
cs D As 2 Sc o= L
ROM ——— | > cMux
ca A ° 06 T IC\ OFF ‘ o
Cc3 [A3 05 ©X S:‘,@EH al——>ca .
c2[D—{A2 D giNITO —c
aas e say our THp-TIO er
o
x> d Hox o0y O ——ca
:D [™ : ‘ 1 . °
o /,280 slices in
B >—As Dann % /
o
B5 CD>— A5 OROM g i Y:]
B4 [D— A4 06 | N .
B3 [O—|A3 05 BX oM of—8a a n 5 BMUX
B2 [D— A2 D oiNiTo °
+—{cE oSRHIGH &
B1 [D>— A1 | | | oSRLow N o8
X > SR_REV TTES e R i L R oFF
T o LATCH
[NS [B3 > A3 g LUT 05 1 BX ﬁ i af->Ba
J A B2 [A2 0 ggl\’a DI D giNITo
o -
) > B> Al MC31 gu SE BSRLOw
A D—(AS o m m"w’w SR_REV
[u} 1 7
o = A oROM 1A ;' 1| wag
= o { ™ 5 LATCH
A3 D A3 05 AX Eiraliel s o e BX D
A2 [O— A2 D oiNiTo :P I ™
¢——{ CE TOSRHIGH M
AT A 0 SRLOW A ‘ > AMUX
- 1% "SR Rev D
AX > D2 =
SR o n T i A 5 bPRAMG4/32 [
SR A5 [A5 0 SPRAM64/32 1A DA
ALK A D> A4 OSRL32 0O 5 T NS oFF
Other flip-flops in the chip input sSHHeme o i S oo
A2 D> A2 ORAM DI ﬂi D oiNiTo
2606 A A1 BROM gy t——{ CE OSRHIGH
Il dinth T [e
S WA7
output cells, and in the form of e N
AX
registers in the slices an G ’D
CLK D—gﬂ

memory, block interfaces.

WSGEN 0
c04 Sl we> WE CiN I AR

Thursday, January 28, 2010

57

Virtex5 Slice Flip-flops

LUT D Output _EFFF . . _
e ol 0 4 flip-flops / slice (corresponding to
CE ©SRHIGH the 4 6"LUTS)
ok OSALOW
SH REV
|
e T o Each takes input from LUT output or
LUT C Output _ . . .
ek o] e Primary slice input.
D oNTe
L= . Edge-triggered FF vs. level-sensitive latch.
1 eset Type . .
SR [- Clock-enable input (can be set to 1 to disable)
LUT B Output BEF 0 Asyne (Shar'ed),
D_D— ;E&’F}TT?” . i Positive versus negative clock-edge.
i e, ommo Synchronous vs. asynchronous reset.
CLK D—f_OD . sle':SHLDI':Eu SRHIGH/SRLOW select reset (SR) set.
! REV forces opposite state.
LUT A Output AFF INITO/INITI1 used for global reset (not
sten ol aq shown - usually just after power-on and
= H EE c Shticn configuration).
SH REV
R 150 lec04-SDS-review?2 Page 58
Thursday, January 28, 2010 58

Virtex5 Flip-flops “Primitives”

Logic Table
EDRSE . . Inputs Output
0 o D Flip-Flop with Synchronous Resetz s cz v ¢ o
"__> and Set and Clock Enable S
Provided by the CAD oo 111
tools. This maps to co 1010
single slice flip-flop.
*17"| _ Negative-Clock Edge, Synchronous
°ob Reset and Set, and Clock Enable
[Pe=1| Negative-Edge Clock, Clock o) " | Clock Enable and
"f._o> ~ Enable, and Asynchronous 8 “ Asynchronous Preset
Preset and Clear ' and Clear
Spring 2010 EECS150 lec04-SDS-review?2 Page 59

Thursday, January 28, 2010 59

Inside a Flip-Flop

Q EECS 150 - L4: Synch Systems Il

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

60

Level-sensitive Latch

Positive Level-sensitive latch:

D QI
C

CLK

D

Q

When CLK is high, latch is transparent, when clk is low, latch retains

previous value.

Spring 2010 EECS

Positive Edge-triggered flip-flop
built from two level-sensitive
latches:

—» D Q D QF——»

:

clk

Page 61

Thursday, January 28, 2010

61

Upcoming events:

Tue 126 Lec #3: FPGA Architecture Introduction: [FDF] HW #1: [PDF] Lab #1: FPGA Physical Layou
Reading: Chapter 5 of the Virtex-5 User's Guide (PreLab reading) (Due Fﬂ,ﬂzg @ 14:10) [ZIP] [PDF]

Thr 1/28 |[Lec #4: Synchronous Digital Systems Review (2): Solution: Lab Lec #2:

Tue 272 |[eC #5: Verilog Primer: HW #2: Lab #2: Structure Verilog FPG
Reading: DDCA: Chapter 4 (Due Fri, Feb 5 @ 14:10)

Thr2/4 |Lec #6: CAD Tools (Synthesis): [Solution: Quiz: Lab Lec #3:

Q EECS 150 - L4: Synch Systems Il

Have a good weekend!

UC Regents Spr 2010 © UCB

Thursday, January 28, 2010

62

