
UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

2010-1-28
John Wawrzynek

EECS 150 -- Digital Design

Lecture 4 – Synchronous Digital
Systems Review (Part II)

www-inst.eecs.berkeley.edu/~cs150

Today’s lecture by John Lazzaro

1Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

EECS150 - Digital Design
Lecture 4 - Synchronous

Digital Systems Review Part 2
January 28, 2010

John Wawrzynek
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www-inst.eecs.berkeley.edu/~cs150

2

2Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Outline
• Topics in the review, you have already seen in

CS61C, and possibly EE40:
1. Digital Signals.
2. General model for synchronous systems.
3. Combinational logic circuits
4. Flip-flops, clocking

3

3Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Today’s Lecture

Flip-flop-based state machines

Registers and Pipelining

Register-based state machines

Flip-flop details ...

Operates on Boolean (single-bit) values.

Operates on multi-bit values (integers, CPU instruction, ...)

Adding state to speed up the clock.

(Reset, set, etc ...)

4Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Flip-Flop State Machines

5Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

A Simple System: Traffic Light Controller

R Y G
1 0 0

R Y G
0 0 1

R Y G
0 1 0

Power
up to
red

state

Show each light for 1 second.

“Loop” forever.

6Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

‘C’ program for traffic light controller
int main() {

 int r = 1, y = 0, g = 0; /* light off/on */

 while (1)
 {

 printf("r=%i\ny=%i\ng=%i\n\n", r, y, g);
 sleep(1);

 }
}

% ./traffic
r=1
y=0
g=0

r=1
y=0
g=0

r=1
y=0
g=0

r=1
y=0
g=0

7Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

‘C’ program for traffic light controller
int main() {

 int r = 1, y = 0, g = 0; /* light off/on */

 while (1)
 {

 printf("r=%i\ny=%i\ng=%i\n\n", r, y, g);
 sleep(1);

 }
}

 int next_r, next_y, next_g; /* extra state */

 next_r = y;
 next_y = g;
 next_g = r;

 r = next_r;
 y = next_y;
 g = next_g;

% ./traffic
r=1
y=0
g=0

r=0
y=0
g=1

r=0
y=1
g=0

r=1
y=0
g=0

r=0
y=0
g=1

Compute the “next”
state for the traffic
light.

Make the “next” state
the “current” state of
the traffic light.

8Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

int main() {

 int r = 1, y = 0, g = 0; /* light off/on */

 while (1)
 {

 printf("r=%i\ny=%i\ng=%i\n\n", r, y, g);
 sleep(1);

 }
}

 int next_r, next_y, next_g; /* extra state */

 next_r = y;
 next_y = g;
 next_g = r;

 r = next_r;
 y = next_y;
 g = next_g;

A few observations ...

Code would still work if
these statements
executed simultaneously.

Code would still work if
these statements
executed simultaneously.

Wouldn’t it be great
if we could group
“current” and “next”
variables with an
abstraction?

Sleep(1) sets
“time constant”,
not C instruction
execution rate.

A direct digital hardware implementation
addresses all of these issues!

9Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

 Clock waveform takes the role of sleep(1)

!"#$%&'())* ++,!-.)'/ 012-)34$5$%& 67&1'8

!"#$%&'

()#*#&&'&+,-+.'*/#&+0-12'*,'*3+

#

4 5+! ,/$'60&7"89+:+,/$'6$;"9+:+,/$'6.',;%9

5+! #0&7"8 :+#$;" :+#.',;%

0&7

f T

1 Hz 1 s

1 MHz 1 μs

1 GHz 1 ns

All state changes
happen on leading
edge of our 1 Hz
clock ... thus, lights
will switch once per
second.

1 second (posedge to posedge)

10Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

r & next_r? One edge-triggered D flip-flop

D Q

CLK

Value of D is sampled on positive clock edge.

Q outputs sampled value for rest of cycle.

D

Q

Positive-edge sampling makes it easy to think about state.

11Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Flip-flop Timing Waveforms?
• Edge-triggered d-type flip-flop

– This one is “positive edge-triggered”
• “On the rising edge of the clock, the input d is

sampled and transferred to the output. At all
other times, the input d is ignored.”

• Example waveforms:

12

12Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Use 3 Flip-Flops to represent state ...

D QD Q D QR G Y

R Y G
1 0 0

R Y G
0 0 1

R Y G
0 1 0

Power
up to
red

state

13Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Use 3 Flip-Flops to represent state ...

D QD Q D QR G Y

“One-Hot Encoding”: State machines where
exactly one D flip-flop is in the “1” state at a time
(forbidden states: RYG = 000, 011, 101, 110, 111).

R Y G
1 0 0

R Y G
0 0 1

R Y G
0 1 0

Power
up to
red

state

14Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

“Simplified” traffic light controller

R Y G
1 0 0

R Y G
0 0 1

R Y G
0 1 0

Power
up to
red

state

Next State Combinational Logic

D QD Q D QR G Y

“Simplified???”: We assume the state at the
beginning of time is RYG == 100. A “complete”
implementation would include “power up” logic.

15Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Inside the combinational logic box ...

R Y G
1 0 0

R Y G
0 0 1

R Y G
0 1 0

Power
up to
red

state

Next State Combinational Logic

D QD Q D QR G Y

Let’s revisit our original C code ...
16Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

int main() {

 int r = 1, y = 0, g = 0; /* light off/on */

 while (1)
 {

 printf("r=%i\ny=%i\ng=%i\n\n", r, y, g);
 sleep(1);

 }
}

 int next_r, next_y, next_g; /* extra state */

 next_r = y;
 next_y = g;
 next_g = r;

 r = next_r;
 y = next_y;
 g = next_g;

Recall: A few observations ...

6 C variables, but
only 3 flip-flops.
How does that
work?

17Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Flip-flops have an internal output delay ...

D Q

CLK

D

Q
t_clk-to-Q

Value of D is sampled on positive clock edge.

Q changes t_clk_to_Q seconds after the
positive edge happens (t_clk_to_Q > 0).

18Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

And so, even this circuit “works” ...

CLK

D

Q
t_clk-to-Q

D Q

CLK

Value of D is sampled on positive clock edge.

t_inv = 0

Assume inverter has no delay ! (real-world
inverters always have delay).

Flip-flip t_clk_to_Q delay is positive.

Circuit “goal”: 0->1->0->1-> ... toggle on posedge.

t_clk-to-Q

Q can’t “race” back to D in time to “catch” the positive edge
that caused it ... and so the “next” variables are not needed!

19Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

int main() {

 int r = 1, y = 0, g = 0; /* light off/on */

 while (1)
 {

 printf("r=%i\ny=%i\ng=%i\n\n", r, y, g);
 sleep(1);

 }
}

 int next_r, next_y, next_g; /* extra state */

 next_r = y;
 next_y = g;
 next_g = r;

 r = next_r;
 y = next_y;
 g = next_g;

Recall: A few observations ...

Where does this show up
in the circuit??

Where does this show up
in the circuit?

20Thursday, January 28, 2010

Next State Combinational Logic

D QD Q D QR G Y

Dr

Qr

Dg

Qg

Dy

Qy

CLK

From
yellow
to
red
...

0

0

1

0

0

1

0

0

1

0

1

0

t_clk-to-Q

logic delay

From
red
to
green
on
next
clock
edge.

0

1

0

21Thursday, January 28, 2010

Next State Combinational Logic

D QD Q D QR G Y

Dr

Qr

Dg

Qg

Dy

Qy

CLK

From
yellow
to
red
...

0

0

1 0

0

1
0

0

1 0

1

0

t_clk-to-Q

logic delay

From
red
to
green
on
next
clock
edge.

0

1

0

r = next_r;
y = next_y;
g = next_g;

next_r = y;
next_y = g;
next_g = r;

22Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

How fast can we run the clock?

Next State Combinational Logic

D QD Q D QR G Y!"#$%&'())* ++,!-.)'/ 012-)34$5$%& 67&1'8

!"#$%&'

()#*#&&'&+,-+.'*/#&+0-12'*,'*3+

#

4 5+! ,/$'60&7"89+:+,/$'6$;"9+:+,/$'6.',;%9

5+! #0&7"8 :+#$;" :+#.',;%

0&7

Timing Analysis
What is the

smallest T that
produces correct

operation?
An entire lecture (later in semester), here is the short version ...

23Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

D must stablize ahead of positive edge

D Q

CLK

Value of D is sampled on positive clock edge.

Q changes t_clk_to_Q seconds after the
positive edge happens.

D

Q

t_setup

t_clk-to-Q

D must be a stable “0” or “1” by t_setup
seconds before the positive edge happens.

24Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Revisiting the toggle circuit ...

D Q

CLK

Value of D is sampled on positive clock edge.
Flip-flip t_clk_to_Q delay is positive.

Circuit “goal”: 0->1->0->1-> ... toggle on posedge.t_inv > 0

Inverter t_inv delay is positive.
t_setup

t_inv delay
must fit in

this time slot!

T: the clock period

CLK

D

Q 0

1

t_clk-to-Q

0

1 0

1

T > t_clk_to_Q + t_inv + t_setup

25Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Or, more generally ...

!"#$%&'())* ++,!-.)'/ 012-)34$5$%& 67&1'8

!"#$%&'

()#*#&&'&+,-+.'*/#&+0-12'*,'*3+

#

4 5+! ,/$'60&7"89+:+,/$'6$;"9+:+,/$'6.',;%9

5+! #0&7"8 :+#$;" :+#.',;%

0&7

Combinational Logic (CL) “time budget”

!"#$%&'())* ++,!-.)'/ 012-)34$5$%& 67&1'8

!"#"$%&'()*"&')+',-#./$)#)01'23$.034

5 6#'7"#"$%&8'+)$'.)$$".4')9"$%43)#:

+)$'%&&'9%4/1;

5 <)='*)'="'"#0>"$%4"'!""#$!%&'?

@ A#-'.3$.034'3#904')$'$"7314"$')04904'4)'%#-'$"7314"$'3#904')$'.3$.034'

)04904;

@ B1"409'43>"C'+)$'.3$.034')049041'*"9"#*1')#'=/%4'34'.)##".41'4)

@ B.&DEF'43>"C'+)$'.3$.034'3#9041'*"9"#*1')#'+$)>'=/"$"'34'.)>"1;

$"7 $"72G 2G

.&).D 3#904

)04904

)943)#'+""*H%.D

3#904)04904

I'! 43>"J.&D"FK'L'43>"J2GK'L'43>"J1"409K

I'! #.&D"F L'#2G L'#1"409

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.9

General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.11

Clocking Methodology

Clk

Combination Logic
.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Combinational Logic

One part of a long story, to be told later in semester ...
26Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Some Flip Flops have “hold” time ...

D

t_setup

CLK

t_hold

D must
stay

stable
here

D Q

CLK

If t_hold > 0, this circuit may fail
even if t_inv > 0 and t_clk_to_Q > 0 !!!

t_inv

t_clk-to-Q + t_inv > t_hold
For correct operation.

27Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Flip-Flop Timing Details

Three important times associated with flip-flops:
setup time
hold time
clock-to-q delay.

28

FF

clk

d q

28Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Register State Machines

29Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

 Register: Holds an ordered set of bits

Sometimes, we will add an “enable”
input: clock edge updates state only
if enable is high.

32
Din

Clk

PC

Dout
32

Built out of
an array of
flip-flops

D Q

clk

D Q

D Q

Din0

Din1

Din2

Dout0

Dout1

Dout2

30Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

State Elements: circuits that store info

• The value stored by the register appears on the output (after a
small delay).

• Until the next load, changes on the data input are ignored
(unlike CL, where input changes change output).

• These get used for short term storage (ex: register file), and
to help move data around the processor.

Examples: registers, memories

Register: Under the control of
the “load” signal, the register
captures the input value and
stores it indefinitely.

register

output

input

load

n

n

often replace by clock signal (clk)

31

31Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Register Details…What’s inside?

• n instances of a “Flip-Flop”
• Flip-flop name because the output flips and flops

between and 0,1
• D is “data”, Q is “output”
• Also called “d-type Flip-Flop”

32

32Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

 Multi-bit adder: Doing logic on an integer

Combinational: Put a A
and B values on inputs,
a short time later A + B
appears on output.

32
+

32

32

A

B

A + B

Just like we use gates to operate on Q
output of a flip-flop, we use components
like multi-bit adders to operate on all
output bits of a register.

33Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

A simple register-based state machine

Clk

Addr
32

D

PC

Q
32

32

+

32

32
0x4

+4 in hexadecimal

PC + 12PC + 8PC + 4

CLK

Addr (Q)

D PC

PC PC + 4 PC + 8

34Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Accumulator Circuit Example

• We need something like this:

Assume X is a vector of N integers, presented to the input of
our accumulator circuit one at a time (one per clock cycle), so
that after N clock cycles, S hold the sum of all N numbers.

 S=0; Repeat N times

 S = S + X;

But not quite.
Need to use the clock signal to
hold up the feedback to match up
with the input signal.

X

35

35Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Accumulator Circuit
• Put register, with clock signal

controlling its load, in feedback path.
• On each clock cycle the register

prevents the new value from reaching
the input to the adder prematurely.
(The new value just waits at the input
of the register).

36

Timing:

36Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Register Details (again)
• A n-bit wide register is nothing but a set of flip-flops (1-bit wide

registers) with a common load/clk signal.

• A flip-flop captures its input on the edge of the clock (rising edge in
this case - positive edge flip-flop). The new input appears at the
output after a short delay.

37

37Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Accumulator Revisited

38

• Note:
– Reset signal

(synchronous)
– Timing of X signal is not

known without
investigating the circuit
that supplies X. Here
we assume it comes just
after Si-1.

– Observe transient
behavior of Si.

38Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Only Two Types of Circuits Exist
• Combinational Logic Blocks (CL)
• State Elements (registers)

State elements are
mixed in with CL
blocks to control the
flow of data.

39

Register file
or

Memory Block

Address
Input Data

Output Data
Write Control

clock

Sometimes used in
large groups by
themselves for “long-
term” data storage.

39Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

 Register File example: MIPS R-format CPU

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10

Logic

40Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

MIPS Register file: From the top down

R1

R2

...

R31

Why is R0 special?

Q

Q

Q

R0 - The constant 0 Q

clk

.

.

.

32M
U
X

32

32

sel(rs1)

5

.

.

.

rd1

32M
U
X

32

32

sel(rs2)

5

.

.

.

rd2

“two read ports”

D

D

D

En

En

En

D
E
M
U
X

.

.

.

sel(ws)
5

WE

wd

32

41Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Uses for State Elements
1) As a place to store values for some indeterminate

amount of time:
– Register files (like $1-$31 on the MIPS)
– Memory (caches, and main memory)

2) Help control the flow of information between
combinational logic blocks.

– State elements are used to hold up the movement
of information at the inputs to combinational logic
blocks and allow for orderly passage.

42

42Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Pipelining and Registers

43Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Pipelining to improve performance (1/2)

Timing…

Extra Register are often added to help
speed up the clock rate.

Note: delay of 1 clock cycle from input to output.
Clock period limited by propagation delay of adder/shifter.

44

44Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Pipelining to improve performance (2/2)

Timing…

Insertion of register allows higher clock
frequency.
More outputs per second.

45

45Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Pipelining in a real CPU design ...

Goal: Increase clock frequency by
reducing delay between registers.

1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

1
6
0
0

IE
E
E
JO
U
R
N
A
L
O
F
S
O
L
ID
-S
T
A
T
E
C
IR
C
U
IT
S
,
V
O
L
.
3
6
,
N
O
.
1
1
,
N
O
V
E
M
B
E
R
2
0
0
1

F
ig
.
1
.
P
ro
ce
ss
S
E
M
cr
o
ss
se
ct
io
n
.

T
h
e
p
ro
ce
ss

w
as
ra
is
ed
fr
o
m
[1
]
to
li
m
it
st
an
d
b
y
p
o
w
er
.

C
ir
cu
it
d
es
ig
n
an
d
ar
ch
it
ec
tu
ra
l
p
ip
el
in
in
g
en
su
re
lo
w
v
o
lt
ag
e

p
er
fo
rm
an
ce
an
d
fu
n
ct
io
n
al
it
y.
T
o
fu
rt
h
er
li
m
it
st
an
d
b
y
cu
rr
en
t

in
h
an
d
h
el
d
A
S
S
P
s,
a
lo
n
g
er
p
o
ly
ta
rg
et
ta
k
es
ad
v
an
ta
g
e
o
f
th
e

v
er
su
s

d
ep
en
d
en
ce
an
d
so
u
rc
e-
to
-b
o
d
y
b
ia
s
is
u
se
d

to
el
ec
tr
ic
al
ly
li
m
it
tr
an
si
st
o
r

in
st
an
d
b
y
m
o
d
e.
A
ll
co
re

n
M
O
S
an
d
p
M
O
S
tr
an
si
st
o
rs
u
ti
li
ze
se
p
ar
at
e
so
u
rc
e
an
d
b
u
lk

co
n
n
ec
ti
o
n
s
to
su
p
p
o
rt
th
is
.
T
h
e
p
ro
ce
ss
in
cl
u
d
es
co
b
al
t
d
is
il
i-

ci
d
e
g
at
es
an
d
d
if
fu
si
o
n
s.
L
o
w
so
u
rc
e
an
d
d
ra
in
ca
p
ac
it
an
ce
,
as

w
el
l
as
3
-n
m
g
at
e-
o
x
id
e
th
ic
k
n
es
s,
al
lo
w
h
ig
h
p
er
fo
rm
an
ce
an
d

lo
w
-v
o
lt
ag
e
o
p
er
at
io
n
. II
I.
A
R
C
H
IT
E
C
T
U
R
E

T
h
e
m
ic
ro
p
ro
ce
ss
o
r
co
n
ta
in
s
3
2
-k
B
in
st
ru
ct
io
n
an
d
d
at
a

ca
ch
es
as
w
el
l
as
an
ei
g
h
t-
en
tr
y
co
al
es
ci
n
g
w
ri
te
b
ac
k
b
u
ff
er
.

T
h
e
in
st
ru
ct
io
n
an
d
d
at
a
ca
ch
e
fi
ll
b
u
ff
er
s
h
av
e
tw
o
an
d
fo
u
r

en
tr
ie
s,
re
sp
ec
ti
v
el
y.
T
h
e
d
at
a
ca
ch
e
su
p
p
o
rt
s
h
it
-u
n
d
er
-m
is
s

o
p
er
at
io
n
an
d
li
n
es
m
ay
b
e
lo
ck
ed
to
al
lo
w
S
R
A
M
-l
ik
e
o
p
er
-

at
io
n
.
T
h
ir
ty
-t
w
o
-e
n
tr
y
fu
ll
y
as
so
ci
at
iv
e
tr
an
sl
at
io
n
lo
o
k
as
id
e

b
u
ff
er
s
(T
L
B
s)
th
at
su
p
p
o
rt
m
u
lt
ip
le
p
ag
e
si
ze
s
ar
e
p
ro
v
id
ed

fo
r
b
o
th
ca
ch
es
.
T
L
B
en
tr
ie
s
m
ay
al
so
b
e
lo
ck
ed
.
A
1
2
8
-e
n
tr
y

b
ra
n
ch
ta
rg
et
b
u
ff
er
im
p
ro
v
es
b
ra
n
ch
p
er
fo
rm
an
ce
a
p
ip
el
in
e

d
ee
p
er
th
an
ea
rl
ie
r
h
ig
h
-p
er
fo
rm
an
ce
A
R
M
d
es
ig
n
s
[2
],
[3
].

A
.
P
ip
el
in
e
O
rg
a
n
iz
a
ti
o
n

T
o
o
b
ta
in
h
ig
h
p
er
fo
rm
an
ce
,
th
e
m
ic
ro
p
ro
ce
ss
o
r
co
re
u
ti
li
ze
s

a
si
m
p
le
sc
al
ar
p
ip
el
in
e
an
d
a
h
ig
h
-f
re
q
u
en
cy
cl
o
ck
.
In
ad
d
it
io
n

to
av
o
id
in
g
th
e
p
o
te
n
ti
al
p
o
w
er
w
as
te
o
f
a
su
p
er
sc
al
ar
ap
p
ro
ac
h
,

fu
n
ct
io
n
al
d
es
ig
n
an
d
v
al
id
at
io
n
co
m
p
le
x
it
y
is
d
ec
re
as
ed
at
th
e

ex
p
en
se
o
f
ci
rc
u
it
d
es
ig
n
ef
fo
rt
.
T
o
av
o
id
ci
rc
u
it
d
es
ig
n
is
su
es
,

th
e
p
ip
el
in
e
p
ar
ti
ti
o
n
in
g
b
al
an
ce
s
th
e
w
o
rk
lo
ad
an
d
en
su
re
s
th
at

n
o
o
n
e
p
ip
el
in
e
st
ag
e
is
ti
g
h
t.
T
h
e
m
ai
n
in
te
g
er
p
ip
el
in
e
is
se
v
en

st
ag
es
,
m
em
o
ry
o
p
er
at
io
n
s
fo
ll
o
w
an
ei
g
h
t-
st
ag
e
p
ip
el
in
e,
an
d

w
h
en
o
p
er
at
in
g
in
th
u
m
b
m
o
d
e
an
ex
tr
a
p
ip
e
st
ag
e
is
in
se
rt
ed

af
te
r
th
e
la
st
fe
tc
h
st
ag
e
to
co
n
v
er
t
th
u
m
b
in
st
ru
ct
io
n
s
in
to
A
R
M

in
st
ru
ct
io
n
s.
S
in
ce
th
u
m
b
m
o
d
e
in
st
ru
ct
io
n
s
[1
1
]
ar
e
1
6
b
,
tw
o

in
st
ru
ct
io
n
s
ar
e
fe
tc
h
ed
in
p
ar
al
le
l
w
h
il
e
ex
ec
u
ti
n
g
th
u
m
b
in
-

st
ru
ct
io
n
s.
A
si
m
p
li
fi
ed
d
ia
g
ra
m
o
f
th
e
p
ro
ce
ss
o
r
p
ip
el
in
e
is

F
ig
.
2
.
M
ic
ro
p
ro
ce
ss
o
r
p
ip
el
in
e
o
rg
an
iz
at
io
n
.

sh
o
w
n
in
F
ig
.
2
,
w
h
er
e
th
e
st
at
e
b
o
u
n
d
ar
ie
s
ar
e
in
d
ic
at
ed
b
y

g
ra
y.
F
ea
tu
re
s
th
at
al
lo
w
th
e
m
ic
ro
ar
ch
it
ec
tu
re
to
ac
h
ie
v
e
h
ig
h

sp
ee
d
ar
e
as
fo
ll
o
w
s.

T
h
e
sh
if
te
r
a
n
d
A
L
U
re
si
d
e
in
se
p
a
ra
te
st
a
g
es
.
T
h
e
A
R
M
in
-

st
ru
ct
io
n
se
t
al
lo
w
s
a
sh
if
t
fo
ll
o
w
ed
b
y
an
A
L
U
o
p
er
at
io
n
in
a

si
n
g
le
in
st
ru
ct
io
n
.
P
re
v
io
u
s
im
p
le
m
en
ta
ti
o
n
s
li
m
it
ed
fr
eq
u
en
cy

b
y
h
av
in
g
th
e
sh
if
t
an
d
A
L
U
in
a
si
n
g
le
st
ag
e.
S
p
li
tt
in
g
th
is
o
p
-

er
at
io
n
re
d
u
ce
s
th
e
cr
it
ic
al
A
L
U
b
y
p
as
s
p
at
h
b
y
ap
p
ro
x
im
at
el
y

1
/3
.
T
h
e
ex
tr
a
p
ip
el
in
e
h
az
ar
d
in
tr
o
d
u
ce
d
w
h
en
an
in
st
ru
ct
io
n
is

im
m
ed
ia
te
ly
fo
ll
o
w
ed
b
y
o
n
e
re
q
u
ir
in
g
th
at
th
e
re
su
lt
b
e
sh
if
te
d

is
in
fr
eq
u
en
t.

D
ec
o
u
p
le
d
In
st
ru
ct
io
n
F
et
ch
.A
tw
o
-i
n
st
ru
ct
io
n
d
ee
p
q
u
eu
e
is

im
p
le
m
en
te
d
b
et
w
ee
n
th
e
se
co
n
d
fe
tc
h
an
d
in
st
ru
ct
io
n
d
ec
o
d
e

p
ip
e
st
ag
es
.
T
h
is
al
lo
w
s
st
al
ls
g
en
er
at
ed
la
te
r
in
th
e
p
ip
e
to
b
e

d
ef
er
re
d
b
y
o
n
e
o
r
m
o
re
cy
cl
es
in
th
e
ea
rl
ie
r
p
ip
e
st
ag
es
,t
h
er
eb
y

al
lo
w
in
g
in
st
ru
ct
io
n
fe
tc
h
es
to
p
ro
ce
ed
w
h
en
th
e
p
ip
e
is
st
al
le
d
,

an
d
al
so
re
li
ev
es
st
al
l
sp
ee
d
p
at
h
s
in
th
e
in
st
ru
ct
io
n
fe
tc
h
an
d

b
ra
n
ch
p
re
d
ic
ti
o
n
u
n
it
s.

D
ef
er
re
d
re
g
is
te
r
d
ep
en
d
en
cy

st
a
ll
s.
W
h
il
e
re
g
is
te
r
d
ep
en
-

d
en
ci
es
ar
e
ch
ec
k
ed
in
th
e
R
F
st
ag
e,
st
al
ls
d
u
e
to
th
es
e
h
az
ar
d
s

ar
e
d
ef
er
re
d
u
n
ti
l
th
e
X
1
st
ag
e.
A
ll
th
e
n
ec
es
sa
ry
o
p
er
an
d
s
ar
e

th
en
ca
p
tu
re
d
fr
o
m
re
su
lt
-f
o
rw
ar
d
in
g
b
u
ss
es
as
th
e
re
su
lt
s
ar
e

re
tu
rn
ed
to
th
e
re
g
is
te
r
fi
le
.

O
n
e
o
f
th
e
m
aj
o
r
g
o
al
s
o
f
th
e
d
es
ig
n
w
as
to
m
in
im
iz
e
th
e
en
-

er
g
y
co
n
su
m
ed
to
co
m
p
le
te
a
g
iv
en
ta
sk
.
C
o
n
v
en
ti
o
n
al
w
is
d
o
m

h
as
b
ee
n
th
at
sh
o
rt
er
p
ip
el
in
es
ar
e
m
o
re
ef
fi
ci
en
t
d
u
e
to
re
-

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.9

General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.11

Clocking Methodology

Clk

Combination Logic
.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Register:

An Array of
Flip-Flops

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.9

General C/L Cell Delay Model

° Combinational Cell (symbol) is fully specified by:
• functional (input -> output) behavior

- truth-table, logic equation, VHDL

• Input load factor of each input

• Propagation delay from each input to each output for each transition

- THL(A, o) = Fixed Internal Delay + Load-dependent-delay x load

° Linear model composes

Cout

Vout

Cout

Delay

Va -> Vout

X
X

X

X

X

X

Ccritical

delay per unit load

A

B

X

.

.

.

Combinational

Logic Cell

Internal Delay

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.10

Storage Element’s Timing Model

Clk

D Q

° Setup Time: Input must be stable BEFORE trigger clock edge

° Hold Time: Input must REMAIN stable after trigger clock edge

° Clock-to-Q time:

• Output cannot change instantaneously at the trigger clock edge

• Similar to delay in logic gates, two components:

- Internal Clock-to-Q

- Load dependent Clock-to-Q

Don’t Care Don’t Care

HoldSetup

D

Unknown

Clock-to-Q

Q

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.11

Clocking Methodology

Clk

Combination Logic
.

.

.

.

.

.

.

.

.

.

.

.

° All storage elements are clocked by the same clock
edge

° The combination logic blocks:
• Inputs are updated at each clock tick

• All outputs MUST be stable before the next clock tick

1/28/04 ©UCB Spring 2004
CS152 / Kubiatowicz

Lec3.12

Critical Path & Cycle Time

Clk

.

.

.

.

.

.

.

.

.

.

.

.

° Critical path: the slowest path between any two storage
devices

° Cycle time is a function of the critical path

° must be greater than:

Clock-to-Q + Longest Path through Combination Logic + Setup

Combinational Logic

46Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Inspiration: Automobile assembly line
Assembly line moves on a steady clock.

Each station does the same task on each car.
Car

body
shell

Car
chassis

Merge
station

Bolting
station

The
clock

47Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Inspiration: Automobile assembly line
Simpler station tasks → more cars per hour.
Simple tasks take less time, clock is faster.

48Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Inspiration: Automobile assembly line
Line speed limited by slowest task.

Most efficient if all tasks take same time to do

49Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Inspiration: Automobile assembly line
Simpler tasks, complex car → long line!

These lines go 24 x 7,
and rarely shut down.

50Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Lessons from car assembly lines

Faster line movement yields more
cars per hour off the line.

Faster line movement requires more
stages, each doing simpler tasks.

To maximize efficiency, all stages
should take same amount of time
(if not, workers in fast stages are idle)

“Filling”, “flushing”, and “stalling”
assembly line are all bad news.

51Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Flip-Flop Details

52Thursday, January 28, 2010

UC Regents Fall 2008 © UCBCS 194-6 L1: Virtex-5 Microarchitecture

FPGA: Xilinx Virtex-5 XC5VLX110T
Virtex-5 “die photo”

A die is an unpackaged part

!"#$%&'()*$$+,,-$$$).'/0$1

!"#$%&'&()*+#',$#-$./012
3.445+6)*+#'7/4&6+-+6$0#895)($12#6: .(6;+*&6*9(&<

!"#$%&'()*
!"#$%&'(!"#$%&')

53Thursday, January 28, 2010

UC Regents Fall 2008 © UCBCS 194-6 L1: Virtex-5 Microarchitecture

!"#$%&'()*$$+,,-$$$).'/0$1

!"#$%&'&()*+#',$#-$./012
3.445+6)*+#'7/4&6+-+6$0#895)($12#6: .(6;+*&6*9(&<

!"#$%&'()*
!"#$%&'(!"#$%&')

Colors represent
different types
of resources:
Logic
Block RAM
DSP (ALUs)
Clocking
I/O
Serial I/O + PCI

A routing fabric
runs throughout
the chip to wire
everything
together.

54Thursday, January 28, 2010

UC Regents Fall 2008 © UCBCS 194-6 L1: Virtex-5 Microarchitecture

The simplest view of a slice

194 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Designing Large Multiplexers

4:1 Multiplexer

Each Virtex-5 LUT can be configured into a 4:1 MUX. The 4:1 MUX can be implemented
with a flip-flop in the same slice. Up to four 4:1 MUXes can be implemented in a slice, as
shown in Figure 5-21.

Figure 5-21: Four 4:1 Multiplexers in a Slice

UG190_5_21_050506

(D[6:1])

(C[6:1])

(B[6:1])

(A[6:1])

(CLK)
CLK

6

SLICE

LUT

LUT

LUT

LUT

A[6:1]

O6

6 A[6:1]

O6

Registered
Output

4:1 MUX Output

(Optional)

D Q

(D)

(DQ)

Registered
Output

4:1 MUX Output

(Optional)

D Q

(C)

(CQ)

Registered
Output

4:1 MUX Output

(Optional)

D Q

(B)

(BQ)

Registered
Output

4:1 MUX Output

(Optional)

D Q

(A)

(AQ)

6 A[6:1]

O6

6 A[6:1]

O6

SEL D [1:0], DATA D [3:0]
Input

SEL C [1:0], DATA C [3:0]
Input

SEL B [1:0], DATA B [3:0]
Input

SEL A [1:0], DATA A [3:0]
Input

Four 6-LUTs

Four Flip-Flops

Switching fabric may see
combinational and
registered outputs.

55Thursday, January 28, 2010

UC Regents Fall 2008 © UCBCS 194-6 L1: Virtex-5 Microarchitecture

Slice flip-flop properties ...

Virtex-5 FPGA User Guide www.xilinx.com 177
UG190 (v4.2) May 9, 2008

CLB Overview
R

Table 5-3: Truth Table when SRLOW is Used (Default Condition)

SR REV Function

0 0 No Logic Change

0 1 1

1 0 0

1 1 0

Table 5-4: Truth Table when SRHIGH is Used

SR REV Function

0 0 No Logic Change

0 1 0

1 0 1

1 1 0

Figure 5-5: Register/Latch Configuration in a Slice
UG190_5_05_071207

DX

CX

BX

CE

AX

DQ

CQ

BQ

AQ

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

DFFLUT D Output

LUT C Output

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

Q

Q

Q

SR

LUT B Output

LUT A Output AFF

BFF

CFF

CLK

Reset Type

Sync

Async

Each state element may be
edge-triggered or latching.

Each state element
may respond

differently to set/
reset signal.

Clock enable, clock
polarity, and set/reset

lines in a slice are shared.

56Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Flip-flops on Virtex5 FPGA

57

Virtex-5 FPGA User Guide www.xilinx.com 173
UG190 (v4.2) May 9, 2008

CLB Overview
R

Figure 5-3: Diagram of SLICEM

A6
DI2

COUT

D

DX

C

CX

B

BX

A

AX

O6

DI1
MC31

O5

UG190_5_03_041006

A5
A4
A3
A2
A1

D6

DI
DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

Reset Type

DX

D5
D4
D3
D2
D1

WA1-WA6
WA7
WA8

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

DPRAM64/32
SPRAM64/32
SRL32
SRL16
LUT
RAM
ROM

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CLK
WSGEN

CIN

0/1

WE

Sync

Async

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

C6

CI

CX

C5
C4
C3
C2
C1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

B6

BI

BX

B5
B4
B3
B2
B1

A6
DI2

O6

DI1

MC31

O5

A5
A4
A3
A2
A1

A6

AI

AX
SR
CE

CLK

WE

A5
A4
A3
A2
A1

Q

Q

Q

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

WA1-WA6
WA7
WA8

174 www.xilinx.com Virtex-5 FPGA User Guide
UG190 (v4.2) May 9, 2008

Chapter 5: Configurable Logic Blocks (CLBs)
R

Each CLB can contain zero or one SLICEM. Every other CLB column contains a SLICEMs.
In addition, the two CLB columns to the left of the DSP48E columns both contain a SLICEL
and a SLICEM.

Figure 5-4: Diagram of SLICEL

A6
LUT
ROM

COUT

D

DX

C

CX

B

BX

A

AX

O6
O5

UG190_5_04_032606

A5
A4
A3
A2
A1

D6

DMUX

D

DQ

C

CQ

CMUX

B

BQ

BMUX

A

AQ

AMUX

DX

D5
D4
D3
D2
D1

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

CE
CK

D

FF
LATCH
INIT1
INIT0
SRHIGH
SRLOW

SR REV

Q

CE
CK

CIN

0/1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

C6

CX

C5
C4
C3
C2
C1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

B6

BX

B5
B4
B3
B2
B1

A6
LUT
ROM

O6
O5

A5
A4
A3
A2
A1

A6

AX
SR
CE

CLK

A5
A4
A3
A2
A1

Q

Q

Q

Reset Type

Sync

Async

SLICEMSLICEL

37

Other flip-flops in the chip input/
output cells, and in the form of
registers in the DSP slices and
memory block interfaces.

Four flip-flops per
17,280 slices in

an LX110T.

57Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Virtex5 Slice Flip-flops

58

4 flip-flops / slice (corresponding to
the 4 6-LUTs)

Each takes input from LUT output or
primary slice input.

Edge-triggered FF vs. level-sensitive latch.
Clock-enable input (can be set to 1 to disable)
(shared).
Positive versus negative clock-edge.
Synchronous vs. asynchronous reset.
SRHIGH/SRLOW select reset (SR) set.
REV forces opposite state.
INIT0/INIT1 used for global reset (not
shown - usually just after power-on and
configuration).

58Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Virtex5 Flip-flops “Primitives”

59

Clock Enable and
Asynchronous Preset
and Clear

Negative-Edge Clock, Clock
Enable, and Asynchronous
Preset and Clear

D Flip-Flop with Synchronous Reset
and Set and Clock Enable

D Flip-Flop with Synchronous Reset and
Set and Clock Enable

Negative-Clock Edge, Synchronous
Reset and Set, and Clock Enable

Logic Table
Inputs Output
R S CE D C Q
1 - - - ↑ 0
0 1 - - ↑ 1
0 0 0 - - No Change
0 0 1 1 ↑ 1
0 0 1 0 ↑ 0

Provided by the CAD
tools. This maps to
single slice flip-flop.

59Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Inside a Flip-Flop

60Thursday, January 28, 2010

Spring 2010 EECS150 lec04-SDS-review2 Page

Level-sensitive Latch
Positive Level-sensitive latch:

Positive Edge-triggered flip-flop
built from two level-sensitive
latches:

61

When CLK is high, latch is transparent, when clk is low, latch retains
previous value.

61Thursday, January 28, 2010

UC Regents Spr 2010 © UCBEECS 150 - L4: Synch Systems II

Upcoming events:

Have a good weekend!

62Thursday, January 28, 2010

