
Spring 2010 EECS150 - Lec7-CAD2 Page

EECS150 - Digital Design
Lecture 7 - Computer Aided Design

(CAD) - Part II (Logic Simulation)
Feb 9, 2010

John Wawrzynek

1

Spring 2010 EECS150 - Lec7-CAD2 Page

Finite State Machine Review

2

State Transition Diagram

Implementation Circuit Diagram

Holds a symbol to
keep track of which

bubble the FSM is in.

CL functions to determine output
value and next state based on input

and current state.
out = f(in, current state)

next state = f(in, current state)
What does this one do?

Every Synchronous Digital System is a FSM.

Spring 2010 EECS150 - Lec7-CAD2 Page

Procedural Assignments
The sequential semantics of the blocking assignment allows
variables to be multiply assigned within a single always block.
Unexpected behavior can result from mixing these
assignments in a single block. Standard rules:

i. Use blocking assignments to model combinational logic
within an always block (“=”).

ii. Use non-blocking assignments to implement sequential logic
(“<=”).

iii. Do not mix blocking and non-blocking assignments in the
same always block.

iv. Do not make assignments to the same variable from more
than one always block.

3

Spring 2010 EECS150 - Lec7-CAD2 Page

Finite State Machines
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) state <= IDLE;
 else state <= next_state;

4

Must use reset to force
to initial state.

reset not always shown in STD

out not a register, but assigned in always block

THE register to hold the “state” of the FSM.

Combinational logic
signals for transition.

Constants local
to this module.

A separate always block should be used for combination logic part of FSM. Next
state and output generation. (Always blocks in a design work in parallel.)

Spring 2010 EECS150 - Lec7-CAD2 Page

FSM CL block rewritten

5

always @(state or in)
 case (state)
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;

 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
 endcase
endmodule

always @*
 begin
 next_state = IDLE;
 out = 1’b0;
 case (state)
 IDLE : if (in == 1’b1) next_state = S0;
 S0 : if (in == 1’b1) next_state = S1;
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 end
 default: ;
 endcase
 end
endmodule

* for sensitivity list

Normal values: used
unless specified below.

Within case only need to
specify exceptions to the

normal values.

Note: The use of “blocking assignments” allow signal
values to be “rewritten”, simplifying the specification.

Spring 2010 EECS150 - Lec7-CAD2 Page

Encoder Example
Nested IF-ELSE might lead to “priority logic”
Example: 4-to-2 encoder
always @(x)
begin : encode
if (x == 4'b0001) y = 2'b00;
else if (x == 4'b0010) y = 2'b01;
else if (x == 4'b0100) y = 2'b10;
else if (x == 4'b1000) y = 2'b11;
else y = 2'bxx;
end

This style of cascaded logic
may adversely affect the
performance of the circuit.

6

Spring 2010 EECS150 - Lec7-CAD2 Page

Encoder Example (cont.)

To avoid “priority logic” use the case construct:

always @(x)
begin : encode
case (x)
4’b0001: y = 2'b00;
4’b0010: y = 2'b01;
4'b0100: y = 2'b10;
4'b1000: y = 2'b11;
default: y = 2'bxx;
endcase
end

7

All cases are matched in parallel.

Spring 2010 EECS150 - Lec7-CAD2 Page

Encoder Example (cont.)

A similar simplification would be applied to the if-else version also.

8

This circuit would be simplified during synthesis to take
advantage of constant values and other Boolean equalities as
follows:

Spring 2010 EECS150 - Lec7-CAD2 Page

Encoder Example (cont.)
If you can guarantee that only one 1 appears in the input,
then simpler logic can be generated:

always @(x)
begin : encode
if (x[0]) y = 2'b00;
else if (x[1]) y = 2'b01;
else if (x[2]) y = 2'b10;
else if (x[3]) y = 2'b11;
else y = 2'bxx;
end

9

If the input applied has more than one 1, then this version
functions as a “priority encoder”. The least significant 1 gets
priority (the more significant 1’s are ignored). Again the
circuit will be simplified when possible.

Spring 2010 EECS150 - Lec7-CAD2 Page

Verilog in EECS150
• Primarily use behavior modeling. With instantiation to build

hierarchy and map to FPGA resources not supported by synthesis.

• Primary Style Guidelines:
– Favor continuous assign and avoid always blocks unless:

• no other alternative: ex: state elements, case

• they help readability and clarity of code: ex: large nested if-else-if

– Use named ports.

– Separate CL logic specification from state elements.

– Follow our rules for procedural assignments.

• Verilog is a big language. This is only an introduction.
– Our text book is a good source. Read and use chapter 4.

– When needed look at online IEEE Std 1364-2001 document.

– Be careful of what you read on the web! Many bad examples out there.
– We will be introducing more useful constructs throughout the

semester. Stay tuned!
10

Spring 2010 EECS150 - Lec7-CAD2 Page

Final thoughts on Verilog Examples
Verilog may look like C, but it describes hardware! (Except in
simulation test-benches - which actually behave like programs.)

Multiple physical elements with parallel activities and temporal relationships.

A large part of digital design is knowing how to write Verilog
that gets you the desired circuit. First understand the circuit
you want, then figure out how to code it in Verilog. If you do one
of these activities without the other, you will struggle. These
two activities will merge at some point for you.

Be suspicious of the synthesis tools! Check the output of the
tools to make sure you get what you want.

11

Spring 2010 EECS150 - Lec7-CAD2 Page

EECS150 Design Methodology

HDL
Specification

Hierarchically define
structure and/or
behavior of circuit.

Simulation

Functional verification.

Synthesis

Maps specification to
resources of implementation

platform (FPGA for us).

12

Let’s look at the other branch.

Spring 2010 EECS150 - Lec7-CAD2 Page

Design Verification

• Industrial design teams spend a large percentage of the design
time on design verification:
– Removing functional bugs, messaging the design to meet performance,

cost, and power constraints.

• Particularly important for IC design, less so for FPGAs.

• A variety of tools and strategies are employed.
– Simulation: software that interprets the design description and mimics

signal behavior and timing (and power consumption).

• Simulation provides better controllability and observability over real
hardware. Saves on wasted development time and money.

– Emulation: hardware platform (usually FPGAs) are used to mimic
behavior of another system. Fast simulation.

– Static Analysis: tools examines circuit structure and reports on
expected performance, power, or compares alternative design
representations looking for differences.

13

Spring 2010 EECS150 - Lec7-CAD2 Page

Simulation
Verilog/VHDL simulators use 4 signals values:
 0, 1, X (unknown), Z (undriven)
Simulation engine algorithm typically “discrete event simulation”

14

ModelSim:
waveform
viewer, GUI.

Scheduler!

Gate

Models!

Network Connections

(fanouts)!

executes!looks !

at!

schedules

new event!remove current

events!

time-ordered

event list!

Gate

Outputs!

updates!ti! tj! tk!
•••!

tn!

all the events
for time tj!

Spring 2010 EECS150 - Lec7-CAD2 Page

Discrete Event Simulation Engine
• A time-ordered list of events is maintained

Event: a value-change scheduled to occur at a given time
All events for a given time are kept together

• The scheduler removes events for a given time ...
... propagates values, executes models, and creates new events ...

15

Slide from Thomas. The Verilog Hardware Description Language,
By Thomas and Moorby, Kluwer Academic Publishers

Spring 2010 EECS150 - Lec7-CAD2 Page

Simulation Testing Strategies
• Unit Testing: Large systems are often too complex to test all at

once, so an bottom-up hierarchical approach. Sub-modules are
tested in isolation.

• Combinational Logic blocks: when practical, exhaustive testing.
Otherwise a combination of random and directed tests.

• Finite state machines: test every possible transition and output.

• Processors: use software to expose bugs.

• In all cases, the simulated output values are checked against the
expected values. Expected values are derived through a variety
of means:
– behavior model running along side the design under test

– precomputed inputs and outputs (vectors)

– co-simulation. Ex: C-language model runs along side ModelSim

16

Spring 2010 EECS150 - Lec7-CAD2 Page

Testbench

 module testmux;
 reg a, b, s;
 wire f;
 reg expected;

 mux2 myMux (.select(s), .in0(a), .in1(b), .out(f));

 initial
 begin
 s=0; a=0; b=1; expected=0;
 #10 a=1; b=0; expected=1;
 #10 s=1; a=0; b=1; expected=1;
 end
 initial
 $monitor(
 "select=%b in0=%b in1=%b out=%b, expected out=%b time=%d",
 s, a, b, f, expected, $time);
 endmodule // testmux

Top-level modules written specifically to test other modules.

17

Usually never synthesized to circuits.
Therefore free to use “simulation only”
language constructs.

A variety of other “system functions exist for
displaying output and controlling the simulation. Most simulators also include a

way to view waveforms of a
set of signals.

Instantiation of DUT
(device under test).

Generally no ports.

Initial block similar to “always” block
without a trigger. It triggers once
automatically at the beginning of
simulation. (Also supported on FPGAs).

“#n” used to advance time in
simulation. Delays some action by
a number of simulation time units.

Note use of blocking
assignments. Note multiple initial blocks.

$monitor triggers whenever
any of its inputs change.
Sends output to console.

Spring 2010 EECS150 - Lec7-CAD2 Page

Mux4 Testbench

18

module testmux4;
 reg [5:0] count = 6’b000000;
 reg a, b, c, d, expected;
 reg [1:0] S;
 wire f;
 mux4 myMux (.select(S), .in0(a), .in1(b), .in2(c), .in3(d), .out(f));
 initial
 begin
 repeat(64)
 begin
 {S, d, c, b, a} = count[5:0];
 case (S)
 2’b00: expected = a;
 2’b01: expected = b;
 2’b10: expected = c;
 2’b11: expected = d;
 endcase // case(S)
 #8 $strobe("select=%b in0=%b in1=%b in2=%b in3=%b out=%b,

expected=%b time=%d", S, a, b, c, d, f, expected, $time);
 #2 count = count + 1’b1;
 end
 $stop;
 end
endmodule

Alternative to $strobe in this case,

#8 if (f != expected) $display(“Mismatch: ...);

Wait a bit, then bump count.

Declaration and initialization all at once.
Generally not available in synthesis.

DUT instantiation

Enumerate all possible input patterns.

Apply pattern to DUT

Behavioral model of mux4

$strobe displays data at a selected time. That
time is just before simulation time is
advanced (after all other events).

Delay to allow mux outputs to stabilize.
Here we assume mux delay < 8ns.

Spring 2010 EECS150 - Lec7-CAD2 Page

module testFSM;
 reg in;
 wire out;
 reg clk=0, rst;
 reg expect;
 FSM1 myFSM (.out(out), .in(in), .clk(clk), .rst(rst));
 always #5 clk = ˜clk;
 initial
 begin
 rst=1;
 #10 in=0; rst=0; expect=0;
 #10 in=1; rst=0; expect=0;
 #10 in=0; rst=0; expect=0;
 #10 in=1; rst=0; expect=0;
 #10 in=1; rst=0; expect=1;
 #10 in=1; rst=0; expect=1;
 #10 in=0; rst=0; expect=0;
 #10 $stop;
 end
 always
 begin
 #4 $strobe($time," in=%b, rst=%b, expect=%b out=%b", in, rst, expect, out);
 #6 ;
 end
endmodule

FSM Testbench Example

19

DUT instantiation

100MHz clk signal

self-loop
start in IDLE

transition to S0
transition to IDLE
transition to S0
transition to S1
self-loop
transition to IDLE

Note: Input changes are forced to
occur on negative edge of clock.

Strobe output occurs 1ns
before rising edge of clock.

Debug is easier if you have access to state value also.
Either 1) bring out to ports, or 2) use waveform viewer.

Test all arcs.

Spring 2010 EECS150 - Lec7-CAD2 Page

Final Words (for now) on Simulation

Testing is not always fun, but you should view it as part
of the design process. Untested potentially buggy
designs are a dime-a-dozen. Verified designs have real
value.

Devising a test strategy is an integral part of the the
design process. It shows that you have your head
around the design. It should not be an afterthought.

20

