
Spring 2010 EECS150 - Lec7-CAD2 Page 

EECS150 - Digital Design
Lecture 7 - Computer Aided Design 

(CAD) - Part II (Logic Simulation)
Feb 9, 2010

John Wawrzynek

1

Spring 2010 EECS150 - Lec7-CAD2 Page 

Finite State Machine Review
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State Transition Diagram














Implementation Circuit Diagram

Holds a symbol to 
keep track of which 

bubble the FSM is in.

CL functions to determine output 
value and next state based on input 

and current state.
out = f(in, current state)

next state = f(in, current state)
What does this one do?

Every Synchronous Digital System is a FSM.
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Procedural Assignments
The sequential semantics of the blocking assignment allows 
variables to be multiply assigned within a single always block.    
Unexpected behavior can result from mixing these 
assignments in a single block.  Standard rules:

i. Use blocking assignments to model combinational logic 
within an always block ( “=”).

ii. Use non-blocking assignments to implement sequential logic 
(“<=”).

iii. Do not mix blocking and non-blocking assignments in the 
same always block.

iv. Do not make assignments to the same variable from more 
than one always block.

3
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Finite State Machines
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) state <= IDLE;
 else state <= next_state;
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Must use reset to force 
to initial state.

reset not always shown in STD

out not a register, but assigned in always block

THE register to hold the “state” of the FSM.

Combinational logic 
signals for transition.

Constants local 
to this module.

A separate always block should be used for combination logic part of FSM.  Next 
state and output generation.  (Always blocks in a design work in parallel.)
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FSM CL block rewritten
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always @(state or in) 
 case (state)
  IDLE   : begin
           out = 1’b0;
           if (in == 1’b1) next_state = S0;
           else next_state = IDLE;  
         end
  S0     : begin
           out = 1’b0;
           if (in == 1’b1) next_state = S1;
           else next_state = IDLE;
         end
  S1     : begin
           out = 1’b1;
           if (in == 1’b1) next_state = S1;
           else next_state = IDLE;

               end
  default: begin
      next_state = IDLE;
      out = 1’b0;
    end
 endcase
endmodule

always @*
 begin 
  next_state = IDLE;
  out = 1’b0;  
  case (state)
   IDLE   : if (in == 1’b1) next_state = S0;
   S0     : if (in == 1’b1) next_state = S1;
   S1     : begin
             out = 1’b1;
             if (in == 1’b1) next_state = S1;
            end
   default: ; 
  endcase
 end
endmodule






















* for sensitivity list

Normal values: used 
unless specified below.

Within case only need to 
specify exceptions to the 

normal values. 

Note: The use of “blocking assignments” allow signal 
values to be “rewritten”, simplifying the specification.
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Encoder Example
Nested IF-ELSE might lead to “priority logic”
Example: 4-to-2 encoder
always @(x) 
begin : encode 
if (x == 4'b0001) y = 2'b00; 
else if (x == 4'b0010) y = 2'b01; 
else if (x == 4'b0100) y = 2'b10; 
else if (x == 4'b1000) y = 2'b11; 
else y = 2'bxx; 
end 

This style of cascaded logic 
may adversely affect the 
performance of the circuit.

6



Spring 2010 EECS150 - Lec7-CAD2 Page 

Encoder Example (cont.)

To avoid “priority logic” use the case construct:

always @(x) 
begin : encode 
case (x)
4’b0001: y = 2'b00; 
4’b0010: y = 2'b01; 
4'b0100: y = 2'b10; 
4'b1000: y = 2'b11; 
default: y = 2'bxx; 
endcase 
end 
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All cases are matched in parallel.
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Encoder Example (cont.)

A similar simplification would be applied to the if-else version also.

8

This circuit would be simplified during synthesis to take 
advantage of constant values and other Boolean equalities as 
follows:
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Encoder Example (cont.)
If you can guarantee that only one 1 appears in the input, 
then simpler logic can be generated:

always @(x) 
begin : encode 
if (x[0]) y = 2'b00; 
else if (x[1]) y = 2'b01; 
else if (x[2]) y = 2'b10; 
else if (x[3]) y = 2'b11; 
else y = 2'bxx; 
end 
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If the input applied has more than one 1, then this version 
functions as a “priority encoder”.  The least significant 1 gets 
priority (the more significant 1’s are ignored).   Again the 
circuit will be simplified when possible.
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Verilog in EECS150
• Primarily use behavior modeling.  With instantiation to build 

hierarchy and map to FPGA resources not supported by synthesis.

• Primary Style Guidelines:
– Favor continuous assign and avoid always blocks unless:

• no other alternative: ex: state elements, case

• they help readability and clarity of code: ex: large nested if-else-if

– Use named ports.  

– Separate CL logic specification from state elements.

– Follow our rules for procedural assignments.

• Verilog is a big language.  This is only an introduction.  
– Our text book is a good source.  Read and use chapter 4.

– When needed look at online IEEE Std 1364-2001 document.

– Be careful of what you read on the web!  Many bad examples out there.
– We will be introducing more useful constructs throughout the 

semester.  Stay tuned!
10
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Final thoughts on Verilog Examples
Verilog may look like C, but it describes hardware!  (Except in 
simulation test-benches - which actually behave like programs.)

Multiple physical elements with parallel activities and temporal relationships.

A large part of digital design is knowing how to write Verilog 
that gets you the desired circuit.  First understand the circuit 
you want, then figure out how to code it in Verilog.  If you do one 
of these activities without the other, you will struggle.  These 
two activities will merge at some point for you.

Be suspicious of the synthesis tools!  Check the output of the 
tools to make sure you get what you want.  

11
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EECS150 Design Methodology

HDL
Specification

Hierarchically define 
structure and/or 
behavior of circuit.

Simulation

Functional verification.

Synthesis

Maps specification to 
resources of implementation 

platform (FPGA for us).

12

Let’s look at the other branch.
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Design Verification

• Industrial design teams spend a large percentage of the design 
time on design verification:  
– Removing functional bugs, messaging the design to meet performance, 

cost, and power constraints.

• Particularly important for IC design, less so for FPGAs.

• A variety of tools and strategies are employed.
– Simulation: software that interprets the design description and mimics 

signal behavior and timing (and power consumption).  

• Simulation provides better controllability and observability over real 
hardware.  Saves on wasted development time and money.

– Emulation: hardware platform (usually FPGAs) are used to mimic 
behavior of another system.  Fast simulation.

– Static Analysis: tools examines circuit structure and reports on 
expected performance, power, or compares alternative design 
representations looking for differences.

13
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Simulation
Verilog/VHDL simulators use 4 signals values:
           0, 1, X (unknown), Z (undriven) 
Simulation engine algorithm typically  “discrete event simulation”

14

ModelSim: 
waveform 
viewer, GUI.



Scheduler!

Gate 
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Network Connections 
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Discrete Event Simulation Engine
• A time-ordered list of events is maintained

Event: a value-change scheduled to occur at a given time
All events for a given time are kept together

• The scheduler removes events for a given time ...
... propagates values, executes models, and creates new events ...

15

Slide from Thomas. The Verilog Hardware Description Language,
By Thomas and Moorby, Kluwer Academic Publishers
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Simulation Testing Strategies
• Unit Testing:  Large systems are often too complex to test all at 

once, so an bottom-up hierarchical approach.  Sub-modules are 
tested in isolation.

• Combinational Logic blocks:  when practical, exhaustive testing.  
Otherwise a combination of random and directed tests.

• Finite state machines: test every possible transition and output.

• Processors: use software to expose bugs.

• In all cases, the simulated output values are checked against the 
expected values.  Expected values are derived through a variety 
of means:
– behavior model running along side the design under test

– precomputed inputs and outputs (vectors)

– co-simulation.  Ex: C-language model runs along side ModelSim

16
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Testbench

 module testmux;
  reg a, b, s;
 wire f;
 reg expected;

 mux2 myMux (.select(s), .in0(a), .in1(b), .out(f));

 initial
  begin
        s=0; a=0; b=1; expected=0;
          #10 a=1; b=0; expected=1;
          #10 s=1; a=0; b=1; expected=1;
        end
   initial
        $monitor(
            "select=%b in0=%b in1=%b out=%b, expected out=%b time=%d",
             s, a, b, f, expected, $time);
    endmodule // testmux

Top-level modules written specifically to test other modules.
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Usually never synthesized to circuits.  
Therefore free to use “simulation only” 
language constructs.

A variety of other “system functions exist for 
displaying output and controlling the simulation. Most simulators also include a 

way to view waveforms of a 
set of signals.

Instantiation of DUT 
(device under test).

Generally no ports.

Initial block similar to “always” block 
without a trigger.  It triggers once 
automatically at the beginning of 
simulation.  (Also supported on FPGAs).

“#n” used to advance time in 
simulation.  Delays some action by 
a number of simulation time units.  

Note use of blocking 
assignments. Note multiple initial blocks.

$monitor triggers whenever 
any of its inputs change.  
Sends output to console.
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Mux4 Testbench

18

module testmux4; 
  reg [5:0] count = 6’b000000; 
  reg a, b, c, d, expected; 
  reg [1:0] S; 
  wire f; 
  mux4 myMux (.select(S), .in0(a), .in1(b), .in2(c), .in3(d), .out(f)); 
  initial 
    begin 
      repeat(64) 
        begin 
          {S, d, c, b, a} = count[5:0]; 
          case (S) 
            2’b00:  expected = a; 
            2’b01:  expected = b; 
            2’b10:  expected = c; 
            2’b11:  expected = d; 
          endcase // case(S) 
          #8 $strobe( "select=%b in0=%b in1=%b in2=%b in3=%b out=%b, 

expected=%b time=%d", S, a, b, c, d, f, expected, $time); 
          #2 count = count + 1’b1; 
       end 
       $stop; 
    end 
endmodule

Alternative to $strobe in this case,

#8 if (f != expected) $display(“Mismatch: ...);

Wait a bit, then bump count.

Declaration and initialization all at once.  
Generally not available in synthesis.

DUT instantiation

Enumerate all possible input patterns.

Apply pattern to DUT

Behavioral model of mux4

$strobe displays data at a selected time. That 
time is just before simulation time is 
advanced (after all other events).

Delay to allow mux outputs to stabilize.  
Here we assume mux delay < 8ns.
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module testFSM; 
  reg in; 
  wire out; 
  reg clk=0, rst; 
  reg expect; 
  FSM1 myFSM (.out(out), .in(in), .clk(clk), .rst(rst)); 
  always #5 clk = ˜clk; 
  initial 
    begin 
      rst=1; 
      #10 in=0; rst=0; expect=0;
      #10 in=1; rst=0; expect=0; 
      #10 in=0; rst=0; expect=0; 
      #10 in=1; rst=0; expect=0; 
      #10 in=1; rst=0; expect=1; 
      #10 in=1; rst=0; expect=1; 
      #10 in=0; rst=0; expect=0; 
      #10 $stop; 
    end 
  always 
    begin 
      #4 $strobe($time," in=%b, rst=%b, expect=%b out=%b", in, rst, expect, out); 
      #6 ; 
    end 
endmodule

FSM Testbench Example
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DUT instantiation

100MHz clk signal

self-loop
start in IDLE

transition to S0
transition to IDLE
transition to S0
transition to S1
self-loop
transition to IDLE

Note: Input changes are forced to 
occur on negative edge of clock.

Strobe output occurs 1ns 
before rising edge of clock.

Debug is easier if you have access to state value also.    
Either 1) bring out to ports, or 2) use waveform viewer.

Test all arcs.
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Final Words (for now) on Simulation

Testing is not always fun, but you should view it as part 
of the design process.  Untested potentially buggy 
designs are a dime-a-dozen.  Verified designs have real 
value.

Devising a test strategy is an integral part of the the 
design process.  It shows that you have your head 
around the design.  It should not be an afterthought.
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