EECS150 - Digital Design Lecture 8 -CMOS Implementation Technologies

Feb 11, 2010
John Wawrzynek

Mux4 Testbench

```
module testmux4; Declaration and initialization all at once.
    reg [5:0] count = 6'b000000; ..... Generally not available in synthesis.
    reg
    reg [1:0] S;
    wire f;
    mux4;myMux (.select(S), .in0(a), .in1(b), .in2(c), .in3(d), .out(f));
    initial
        begin
            Trepeat(64)!
                beginn------------------------- Apply pattern to DUT
                i{S, d, c, b, a} = count[5:0];
                case-\overline{S});
                        ---'\mp@code{00: expected = a; }
                                    'b01 a;
                                    2'b01: expected = b; ,' $strobe displays data at a selected time. That
                                    2'b10: expected = c; ,' time is just before simulation time is
                                    2'b11: expected = d; '' advanced (after all other events).
                            endcase // case(S)
                            -#\overline{|}
                                    expected=%b time=%d", S, a, b, c, d, f, expected, $time);
                #2 count = count + 1'b1;
            end Wait a bit, then bump count.
                $stop;
        end
endmodule
```

Delay to allow mux outputs to stabilize.
Here we assume mux delay $<8 \mathrm{~ns}$.
Alternative to \$strobe in this case,
\#8 if (f != expected) \$display("Mismatch: ...);

FSM Testbench Example

Final Words [for now] on Simulation

Testing is not always fun, but you should view it as part of the design process. Untested potentially buggy designs are a dime-a-dozen. Verified designs more rare and have real value.

Devising a test strategy is an integral part of the the design process. It shows that you have your head around the design. It should not be an afterthought.

Overview of Physical Implementations

The stuff out of which we make systems.

- Integrated Circuits (ICs)
- Combinational logic circuits, memory elements, analog interfaces.
- Printed Circuits (PC) boards
- substrate for ICs and interconnection, distribution of CLK, Vdd, and GND signals, heat dissipation.
- Power Supplies
- Converts line $A C$ voltage to regulated $D C$ low voltage levels.
- Chassis (rack, card case, ...)
- holds boards, power supply, fans, provides physical interface to user or other systems.
- Connectors and Cables.

Printed Circuit Boards

- fiberglass or ceramic
- 1-25 conductive layers
- 1-20in on a side
- IC packages are soldered down.

Multichip Modules (MCMs)

- Multiple chips directly connected to a substrate. (silicon, ceramic, plastic, fiberglass) without chip packages.

Integrated Circuits

- Package provides:
- spreading of chip-level signal paths to board-level
- heat dissipation.
- Ceramic or plastic with gold wires.

Integrated Circuits

- Moore's Law has fueled innovation for the last 3 decades.

- "Number of transistors on a die doubles every 18 months."
- What are the consequences of Moore's law?

Chip-level Function Implementation Alternatives

Full-custom: All circuits/transistor layouts optimized for application.
Standard-cell: Arrays of small function blocks (gates, FFs) automatically placed and routed.

ASIC

Gate-array/structured-ASIC: Partially prefabricated wafers customized with metal layers.
FPGA: Prefabricated chips customized with switches and wires.
GPP (general purpose processor): fixed architecture customized through software.
Domain Specific Processor: (Digital Signal Processor, Network Processor, Graphics Processing Unit).

What are the important metrics of comparison?

Why FPGAs?

A tradeoff exists between NRE* cost and manufacturing costs:

The ASIC approach is only viable for products with very high volume (where NRE could be amortized), and which were not time to market (TTM) sensitive.

Cross-over point has moved to the right (favoring FPGA) implementation as ASIC NREs have increased.

> *Non-recurring Engineering Costs

CMOS Devices

- MOSFET [Metal Oxide Semiconductor Field Effect Transistor).

Top View

Cross Section

nFET Vgs = ' 0 '
\qquad

The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation, the device acts like a switch.

Transistor-level Logic Circuits

Inverter (NOT gate):

NAND gate:

- out = 0 iff a AND $b=1$ therefore out $=(a b)^{\prime}$
- pFET network and nFET networks are duals of one another.

Transistor-level Logic Circuits

Simple rule for wiring up MOSFETs:
nFET is used only to pass logic zero.
pFET is used only to pass logic one.

Note: This rule is sometimes violated
For example, consider the NAND gate:
 by expert designers under special conditions.

Transistor-level Logic Circuits

NOR gate:

Note:

- out = 0 iff a OR b $=1$ therefore out $=(a+b)^{\prime}$
- Again pFET network and nFET networks are duals of one another.

Other more complex functions are possible. Ex: out $=(a+b c)^{\prime}$

CMOS Logic Gates in General

Conductance must be mutually exclusive - else, short circuit!

Pull-up network conducts under input conditions to generate a logic 1 output
output

Pull-down network conducts for logic 0 output

Pull-up and pull-down networks are "topological duals"

Transmission Gate

- Transmission gates are the way to build "switches" in CMOS.
- In general, both transistor types are needed:
- nFET to pass zeros.
- pFET to pass ones.
- The transmission gate is bi-directional (unlike logic gates).

- Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Transmission-gate Multiplexor

2-to-multiplexor:

$$
c=s a+s^{\prime} b
$$

Switches simplify the implementation:

Compare the cost to logic gate implementation.

4-to-1 Transmission-gate Mux

- The series connection of pass-transistors in each branch effectively forms the AND of s1 and s0 (or their complement).
- Compare cost to logic gate implementation

Alternative 4-to-1 Multiplexor

- This version has less delay from in to out.
- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Multiplexor

If $s=1$ then $c=a$ else

Transistor Circuit for inverting multiplexor:

Latches and Flip-flops

Positive level-sensitive latch:

Latch Implementation:

Spring 2010

