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MIPS150 Video Subsystem
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• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration
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Video Interface Details
• Physical Interface:
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Address MuxTri-state Buffers

Xilinx I/O buffer

2 pixels/read
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Video Interface Details
• Timing:

4

~49.5 Mpixels/sec

• All CPU frame buffer writes go through FIFO (and crosses clock 
domain boundary).

• Store Buffer writes to SRAM 3/4 SRAM cycles (4/4 during retrace?).
• Can Store Buffer fill up?  If so, need to stall CPU.  What if CPU runs 

at lower clock rate?

1 2 3 4 1 2

99MHz
RD RDWR WR WR WR WR

Store Buffer

FIFO

99MHz80MHz?
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Video Interface Details
• Address Translation:
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Reads in pixel 
number order:
0 ... 480000

Random writes using 
frame buffer addresses:

Y[9:0], X[9:0]

PN = X + 800*Y

Stored in pixel 
number order, 
2 per address

CPU writes need translation to convert from 20-bit 
frame buffer address to 19-bit SRAM address:

How to do this on FPGA?
How do we write a single pixel?

800 = 0x320 = 512 + 256 + 32 
Use SRAM “Byte Write Enables”
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MIPS150 Video Subsystem
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• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration
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Graphics Software
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clear:  # a0 holds 4-bit pixel color
        # t0 holds the pixel pointer
        ori     $t0, $0, 0x8000         # top half of frame address
        sll     $t0, $t0, 16            # form framebuffer beginning address
        # t2 holds the framebuffer max address
        ori     $t2, $0, 600            # 600 rows
        sll     $t2, $t2, 12            #  * 1K pixels/row * 4 Bytes/address
        addu    $t2, $t2, $t0           # form ending address
        addiu   $t2, $t2, -4            # minus one word address

 #
        # the write loop
L0:     sw      $a0, 0($t0)             # write the pixel
        bneq    $t0, $t2, L0            # loop until done
        addiu   $t0, $t0, 4             # bump pointer

 jr      $ra

“Clearing” the screen - fill the entire screen with same color 
Remember Framebuffer base address:  0x8000_0000
Size:  800 x 600 (for simplicity assume 1024 x 600)

How long does this take?  What do we need to know to answer?
How does this compare to the frame rate?
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Optimized Clear Routine
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clear:
.
.
.

        # the write loop
L0:     sw      $a0, 0($t0)             # write some pixels
        sw      $a0, 4($t0)
        sw      $a0, 8($t0)
        sw      $a0, 12($t0)
        sw      $a0, 16($t0)
        sw      $a0, 20($t0)
        sw      $a0, 24($t0)
        sw      $a0, 28($t0)
        sw      $a0, 32($t0)
        sw      $a0, 36($t0)
        sw      $a0, 40($t0)
        sw      $a0, 44($t0)
        sw      $a0, 48($t0)
        sw      $a0, 52($t0)
        sw      $a0, 56($t0)
        sw      $a0, 60($t0)
        bneq    $t0, $t2, L0            # loop until done
        addiu   $t0, $t0, 64            # bump pointer
        jr      $ra

What’s the performance of this one?

Amortizing the loop overhead.
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Line Drawing
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0

0  1  2  3  4  5  6  7  8  9  10  11  12
1
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3
4
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6
7

(x0,y0) (x1,y1)From to
Line equation defines 
all the points:

For each x value, could compute y, with: 
then round to the nearest integer y value.

Slope can be precomputed, but still requires floating 
point * and + in the loop:  slow or expensive!
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Bresenham Line Drawing Algorithm

• Computers of the day, slow at 
complex arithmetic operations, 
such as multiply, especially on 
floating point numbers.

• Bresenham’s algorithm works 
with integers and without 
multiply or divide.

• Simplicity makes it appropriate 
for inexpensive hardware 
implementation.

• With extension, can be used 
for drawing circles.

10

Developed by Jack E. Bresenham in 1962 at IBM. 
"I was working in the computation lab at IBM's San Jose 
development lab. A Calcomp plotter had been attached to 
an IBM 1401 via the 1407 typewriter console. ...
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Line Drawing Algorithm
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This version assumes: x0 < x1,  y0 < y1,  slope =< 45 degrees
function line(x0, x1, y0, y1)
   int deltax := x1 - x0
   int deltay := y1 - y0
   int error := deltax / 2
   int y := y0
   for x from x0 to x1
      plot(x,y)
      error := error - deltay
      if error < 0 then
         y := y + 1
         error := error + deltax

Note:  error starts at deltax/2 and gets decremented 
by deltay for each x, y gets incremented when error 
goes negative, therefore y gets incremented at a rate 
proportional to deltax/deltay.

0  1  2  3  4  5  6  7  8  9  10  11  12
1
2
3
4
5
6
7
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Line Drawing, Examples
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deltay = 1 (very low slope).   
y only gets incremented 
once (halfway between x0 
and x1)

0  1  2  3  4  5  6  7  8  9  10  11  12
1
2
3
4
5
6
7

deltay = deltax (45 degrees, 
max slope).  y gets 
incremented for every x
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Line Drawing Example
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function line(x0, x1, y0, y1)
   int deltax := x1 - x0
   int deltay := y1 - y0
   int error := deltax / 2
   int y := y0
   for x from x0 to x1
      plot(x,y)
      error := error - deltay
      if error < 0 then
         y := y + 1
         error := error + deltax

deltax = 10, deltay = 4, error = 10/2 = 5, y = 1

(1,1) -> (11,5)

x = 1:  plot(1,1)
error = 5 - 4 = 1

x = 2: plot(2,1)
error = 1 - 4 = -3
   y = 1 + 1 = 2
   error = -3 + 10 = 7

x = 3: plot(3,2)
error = 7 - 4 = 3

x = 4: plot(4,2)
error = 3 - 4 = -1
   y = 2 + 1 = 3
   error = -1 + 10 = 9

x = 5: plot(5,3)
error = 9 - 4 = 5

x = 6: plot(6,3)
error = 5 - 4 = 1

x = 7: plot(7,3)
error = 1 - 4 = -3
   y = 3 + 1 = 4
   error = -3 + 10 -= 7
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C Version
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#define SWAP(x, y) (x ^= y ^= x ^= y)
#define ABS(x) (((x)<0) ? -(x) : (x))

void line(int x0, int y0, int x1, int y1) {
  char steep = (ABS(y1 - y0) > ABS(x1 - x0)) ? 1 : 0;
  if (steep) {
    SWAP(x0, y0);
    SWAP(x1, y1);
  }
  if (x0 > x1) {
    SWAP(x0, x1);
    SWAP(y0, y1);
  }
  int deltax = x1 - x0;
  int deltay = ABS(y1 - y0);
  int error = deltax / 2;
  int ystep;
  int y = y0
  int x;
  ystep = (y0 < y1) ? 1 : -1;
  for (x = x0; x <= x1; x++) {
    if (steep)
      plot(y,x);
    else
      plot(x,y);
    error = error - deltay;
    if (error < 0) {
      y += ystep;
      error += deltax;
    }
  }
}

Modified to work in any 
quadrant and for any slope.

Estimate software 
performance (MIPS version)

What’s needed to do it in 
hardware?

Goal is one pixel per cycle.  
Pipelining might be necessary.



Spring 2010 EECS150 - Lec16-proj5 Page 

Hardware Implementation Notes
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x0

y1
x1

0

16

0x8040_0040:
0x8040_0044:

0x8040_0064:Read-only control register ready
0x8040_0060: color

y0

10

x0

x1

y0

0x8040_0048:
0x8040_004c:
0x8040_0050:
0x8040_0054:
0x8040_0058:
0x8040_005c:

Write-only trigger 
registers

Write-only non-trigger 
registers

• CPU initializes line engine by sending pair of points and color 
value to use.  Writes to 0x8040_005* trigger engine.

• Framebuffer has one write port - Shared by CPU and line engine.  
Priority to CPU - Line engine stalls when CPU writes.

y1
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Survey Results
• Summary (high-level bits only):

– GSIs are doing a great job!
– Frustration about grades not online.
– Lab Lectures not so useful.
– Drawing figures for homework is a drag.

• What we will do in response:
– GSIs: more of the same.
– Online grades: will work on getting all grades online 

ASAP (and keeping up with it).
– Lab Lectures: After quizzes, a couple of 

announcements, then optional Q/A session.
– Scanner in 199 Cory, maybe in lab later.

16
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MIPS150 Video Subsystem
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• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration
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Local Area Network (LAN) Basics

• A LAN is made up physically of a set of 
switches, connections (wired or wireless), 
and hosts.  Routers and gateways provide 
connectivity out to other LANs and to the 
internet.

• Ethernet defines a set of standards for 
data-rate (10/100Mbps, 1/10Gbps), and 
signaling to allow switches and computers 
to communicate. 

• Most Ethernet implementations these 
days are “switched” (point to point 
connections between switches and hosts, 
no contention or collisions).

• Information travels in variable sized 
blocks, called Ethernet Frames, each 
frame includes preamble, header (control) 
information, data, and error checking.  We 
usually call these packets.

• Preamble is a fixed pattern used by 
receivers to synchronize their clocks to 
the data.

• Link level protocol on Ethernet is called 
the Medium Access Control (MAC) 
protocol.  It defines the format of the 
packets.

switch
switch

host

host

host host

switch

host

to router 
or gateway

Preamble  MAC     Payload   CRC
 (8 bytes)  header

18
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Ethernet Medium Access Control (MAC)

• MAC protocol encapsulates a payload by adding a 14 byte header before the data 
and a 4-byte cyclic redundancy check (CRC) after the data.

• The CRC provides error detection in the 
case where line errors result in corruption 
of the MAC frame. In most applications a 
frame with an invalid CRC is discarded by 
the MAC receiver. 

• A 6-byte destination address, specifies 
either a single recipient node (unicast 
mode), a group of recipient nodes 
(multicast mode), or the set of all 
recipient nodes (broadcast mode). 

• A 6-byte source address, is set to the 
sender’s globally unique node address. 
Its common function is to allow address 
learning which may be used to configure 
the filter tables in switches. 

• A 2-byte type field, identifies the type of 
protocol being carried (e.g. 0x0800 for 
IP protocol). 

19
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Protocol Stacks
• Usual case is that MAC protocol 

encapsulates IP (internet protocol) 
which in turn encapsulates TCP 
(transport control protocol) with in 
turn encapsulates the application 
layer.  Each layer adds its own headers 
(with MAC as the first).

• Other protocols exist for other 
network services (ex: printers).

• When the reliability features 
(retransmission) of TCP are not 
needed, UDP/IP is used.  Gaming and 
other applications where reliability is 
provided at the application layer.

application layer 
ex: http

TCP
IP

MAC Layer 2
Layer 3
Layer 4
Layer 5

Streaming 
Ex. Mpeg4

UDP

IP

MAC Layer 2
Layer 3
Layer 4
Layer 5

20
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CS150 File Transfers
• Our Boot Monitor program will use TFTP protocol.  

– “Trivial file transfer protocol” - per packet acks for reliability.

– Server (tftpd) will run on host machine (lab machine or your laptop).

– MIPS150 acts like client (built into the boot monitor).
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> get 192.148.1.0 /tmp/myfile.exe 0x40000 
> put 1024 0x80000 192.148.1.0 /tmp/dump.dat – You must interface the 

FPGA MAC to the CPU
• FIFO buffering, 

simple packet 
filtering

– You are welcome to 
write/prot a web server 
if interested.

21
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Standard Hardware-Network-Interface

• Usually divided into three hardware 
blocks.  (Application level processing 
could be either hardware or software.)

– MAG.  “Magnetics” chip is a 
transformer for providing electrical 
isolation.

– PHY.  Provides serial/parallel and 
parallel/serial conversion and 
encodes bit-stream for Ethernet 
signaling convention.  Drives/receives 
analog signals to/from MAG.  
Recovers clock signal from data input.

– MAC.  Media access layer 
processing.  Processes Ethernet 
frames: preambles, headers, 
computes CRC to detect errors on 
receiving and to complete packet for 
transmission.  Buffers (stores) data 
for/from application level.

• Application level interface
– Could be a standard bus (ex: PCI)
– or designed specifically for 

application level hardware.
• MII is an industry standard for 

connection PHY to MAC.

MAG
(transformer)

PHY
(Ethernet signal)

MAC
(MAC layer processing)

application 
level 

interface
Ethernet 

connection

Media Independent Interface (MII)

Virtex 6 has basic MAC block on chip. 
XUP board has PHY and MAG.

22
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XUP Board
• Virtex-5 FPGA has basic tri-mode MAC (10/100/1000 Mbps) 

block on chip. 

• XUP board has PHY and MAG.

Marvell “Alaska” (88E111) PHY

Ethernet 
Connector
(RJ45)
with built-in 
MAG

• You will need to interface the MAC to your processor.  
• Handshaking circuits (polling interface)
• Packet buffering
• MAC header creation and filtering
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