
Spring 2010 EECS150 - Lec16-proj5 Page

EECS150 - Digital Design
Lecture 16 - Project Description,

Part 5

March 11, 2010
John Wawrzynek

1

Spring 2010 EECS150 - Lec16-proj5 Page

MIPS150 Video Subsystem

2

• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration



































Spring 2010 EECS150 - Lec16-proj5 Page

Video Interface Details
• Physical Interface:

3

Address MuxTri-state Buffers

Xilinx I/O buffer

2 pixels/read

Spring 2010 EECS150 - Lec16-proj5 Page

Video Interface Details
• Timing:

4

~49.5 Mpixels/sec

• All CPU frame buffer writes go through FIFO (and crosses clock
domain boundary).

• Store Buffer writes to SRAM 3/4 SRAM cycles (4/4 during retrace?).
• Can Store Buffer fill up? If so, need to stall CPU. What if CPU runs

at lower clock rate?

1 2 3 4 1 2

99MHz
RD RDWR WR WR WR WR

Store Buffer

FIFO

99MHz80MHz?

Spring 2010 EECS150 - Lec16-proj5 Page

Video Interface Details
• Address Translation:

5

Reads in pixel
number order:
0 ... 480000

Random writes using
frame buffer addresses:

Y[9:0], X[9:0]

PN = X + 800*Y

Stored in pixel
number order,
2 per address

CPU writes need translation to convert from 20-bit
frame buffer address to 19-bit SRAM address:

How to do this on FPGA?
How do we write a single pixel?

800 = 0x320 = 512 + 256 + 32
Use SRAM “Byte Write Enables”

Spring 2010 EECS150 - Lec16-proj5 Page

MIPS150 Video Subsystem

6

• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration



































Spring 2010 EECS150 - Lec16-proj5 Page

Graphics Software

7

clear: # a0 holds 4-bit pixel color
 # t0 holds the pixel pointer
 ori $t0, $0, 0x8000 # top half of frame address
 sll $t0, $t0, 16 # form framebuffer beginning address
 # t2 holds the framebuffer max address
 ori $t2, $0, 600 # 600 rows
 sll $t2, $t2, 12 # * 1K pixels/row * 4 Bytes/address
 addu $t2, $t2, $t0 # form ending address
 addiu $t2, $t2, -4 # minus one word address

 #
 # the write loop
L0: sw $a0, 0($t0) # write the pixel
 bneq $t0, $t2, L0 # loop until done
 addiu $t0, $t0, 4 # bump pointer

 jr $ra

“Clearing” the screen - fill the entire screen with same color
Remember Framebuffer base address: 0x8000_0000
Size: 800 x 600 (for simplicity assume 1024 x 600)

How long does this take? What do we need to know to answer?
How does this compare to the frame rate?

Spring 2010 EECS150 - Lec16-proj5 Page

Optimized Clear Routine

8

clear:
.
.
.

 # the write loop
L0: sw $a0, 0($t0) # write some pixels
 sw $a0, 4($t0)
 sw $a0, 8($t0)
 sw $a0, 12($t0)
 sw $a0, 16($t0)
 sw $a0, 20($t0)
 sw $a0, 24($t0)
 sw $a0, 28($t0)
 sw $a0, 32($t0)
 sw $a0, 36($t0)
 sw $a0, 40($t0)
 sw $a0, 44($t0)
 sw $a0, 48($t0)
 sw $a0, 52($t0)
 sw $a0, 56($t0)
 sw $a0, 60($t0)
 bneq $t0, $t2, L0 # loop until done
 addiu $t0, $t0, 64 # bump pointer
 jr $ra

What’s the performance of this one?

Amortizing the loop overhead.

Spring 2010 EECS150 - Lec16-proj5 Page

Line Drawing

9

0

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

(x0,y0) (x1,y1)From to
Line equation defines
all the points:

For each x value, could compute y, with:
then round to the nearest integer y value.

Slope can be precomputed, but still requires floating
point * and + in the loop: slow or expensive!

Spring 2010 EECS150 - Lec16-proj5 Page

Bresenham Line Drawing Algorithm

• Computers of the day, slow at
complex arithmetic operations,
such as multiply, especially on
floating point numbers.

• Bresenham’s algorithm works
with integers and without
multiply or divide.

• Simplicity makes it appropriate
for inexpensive hardware
implementation.

• With extension, can be used
for drawing circles.

10

Developed by Jack E. Bresenham in 1962 at IBM.
"I was working in the computation lab at IBM's San Jose
development lab. A Calcomp plotter had been attached to
an IBM 1401 via the 1407 typewriter console. ...

Spring 2010 EECS150 - Lec16-proj5 Page

Line Drawing Algorithm

11

This version assumes: x0 < x1, y0 < y1, slope =< 45 degrees
function line(x0, x1, y0, y1)
 int deltax := x1 - x0
 int deltay := y1 - y0
 int error := deltax / 2
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error - deltay
 if error < 0 then
 y := y + 1
 error := error + deltax

Note: error starts at deltax/2 and gets decremented
by deltay for each x, y gets incremented when error
goes negative, therefore y gets incremented at a rate
proportional to deltax/deltay.

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

Spring 2010 EECS150 - Lec16-proj5 Page

Line Drawing, Examples

12

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

deltay = 1 (very low slope).
y only gets incremented
once (halfway between x0
and x1)

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

deltay = deltax (45 degrees,
max slope). y gets
incremented for every x

Spring 2010 EECS150 - Lec16-proj5 Page

Line Drawing Example

13

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

function line(x0, x1, y0, y1)
 int deltax := x1 - x0
 int deltay := y1 - y0
 int error := deltax / 2
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error - deltay
 if error < 0 then
 y := y + 1
 error := error + deltax

deltax = 10, deltay = 4, error = 10/2 = 5, y = 1

(1,1) -> (11,5)

x = 1: plot(1,1)
error = 5 - 4 = 1

x = 2: plot(2,1)
error = 1 - 4 = -3
 y = 1 + 1 = 2
 error = -3 + 10 = 7

x = 3: plot(3,2)
error = 7 - 4 = 3

x = 4: plot(4,2)
error = 3 - 4 = -1
 y = 2 + 1 = 3
 error = -1 + 10 = 9

x = 5: plot(5,3)
error = 9 - 4 = 5

x = 6: plot(6,3)
error = 5 - 4 = 1

x = 7: plot(7,3)
error = 1 - 4 = -3
 y = 3 + 1 = 4
 error = -3 + 10 -= 7

Spring 2010 EECS150 - Lec16-proj5 Page

C Version

14

#define SWAP(x, y) (x ^= y ^= x ^= y)
#define ABS(x) (((x)<0) ? -(x) : (x))

void line(int x0, int y0, int x1, int y1) {
 char steep = (ABS(y1 - y0) > ABS(x1 - x0)) ? 1 : 0;
 if (steep) {
 SWAP(x0, y0);
 SWAP(x1, y1);
 }
 if (x0 > x1) {
 SWAP(x0, x1);
 SWAP(y0, y1);
 }
 int deltax = x1 - x0;
 int deltay = ABS(y1 - y0);
 int error = deltax / 2;
 int ystep;
 int y = y0
 int x;
 ystep = (y0 < y1) ? 1 : -1;
 for (x = x0; x <= x1; x++) {
 if (steep)
 plot(y,x);
 else
 plot(x,y);
 error = error - deltay;
 if (error < 0) {
 y += ystep;
 error += deltax;
 }
 }
}

Modified to work in any
quadrant and for any slope.

Estimate software
performance (MIPS version)

What’s needed to do it in
hardware?

Goal is one pixel per cycle.
Pipelining might be necessary.

Spring 2010 EECS150 - Lec16-proj5 Page

Hardware Implementation Notes

15

x0

y1
x1

0

16

0x8040_0040:
0x8040_0044:

0x8040_0064:Read-only control register ready
0x8040_0060: color

y0

10

x0

x1

y0

0x8040_0048:
0x8040_004c:
0x8040_0050:
0x8040_0054:
0x8040_0058:
0x8040_005c:

Write-only trigger
registers

Write-only non-trigger
registers

• CPU initializes line engine by sending pair of points and color
value to use. Writes to 0x8040_005* trigger engine.

• Framebuffer has one write port - Shared by CPU and line engine.
Priority to CPU - Line engine stalls when CPU writes.

y1

Spring 2010 EECS150 - Lec16-proj5 Page

Survey Results
• Summary (high-level bits only):

– GSIs are doing a great job!
– Frustration about grades not online.
– Lab Lectures not so useful.
– Drawing figures for homework is a drag.

• What we will do in response:
– GSIs: more of the same.
– Online grades: will work on getting all grades online

ASAP (and keeping up with it).
– Lab Lectures: After quizzes, a couple of

announcements, then optional Q/A session.
– Scanner in 199 Cory, maybe in lab later.

16

Spring 2010 EECS150 - Lec16-proj5 Page

MIPS150 Video Subsystem

17

• Gives software ability to display information on screen.
• Equivalent to standard graphics cards:

• Processor can directly write the display bit map
• 2D Graphics acceleration



































Spring 2010 EECS150 lec01-intro Page

Local Area Network (LAN) Basics

• A LAN is made up physically of a set of
switches, connections (wired or wireless),
and hosts. Routers and gateways provide
connectivity out to other LANs and to the
internet.

• Ethernet defines a set of standards for
data-rate (10/100Mbps, 1/10Gbps), and
signaling to allow switches and computers
to communicate.

• Most Ethernet implementations these
days are “switched” (point to point
connections between switches and hosts,
no contention or collisions).

• Information travels in variable sized
blocks, called Ethernet Frames, each
frame includes preamble, header (control)
information, data, and error checking. We
usually call these packets.

• Preamble is a fixed pattern used by
receivers to synchronize their clocks to
the data.

• Link level protocol on Ethernet is called
the Medium Access Control (MAC)
protocol. It defines the format of the
packets.

switch
switch

host

host

host host

switch

host

to router
or gateway

Preamble MAC Payload CRC
 (8 bytes) header

18

Spring 2010 EECS150 lec01-intro Page

Ethernet Medium Access Control (MAC)

• MAC protocol encapsulates a payload by adding a 14 byte header before the data
and a 4-byte cyclic redundancy check (CRC) after the data.

• The CRC provides error detection in the
case where line errors result in corruption
of the MAC frame. In most applications a
frame with an invalid CRC is discarded by
the MAC receiver.

• A 6-byte destination address, specifies
either a single recipient node (unicast
mode), a group of recipient nodes
(multicast mode), or the set of all
recipient nodes (broadcast mode).

• A 6-byte source address, is set to the
sender’s globally unique node address.
Its common function is to allow address
learning which may be used to configure
the filter tables in switches.

• A 2-byte type field, identifies the type of
protocol being carried (e.g. 0x0800 for
IP protocol).

19

Spring 2010 EECS150 lec01-intro Page

Protocol Stacks
• Usual case is that MAC protocol

encapsulates IP (internet protocol)
which in turn encapsulates TCP
(transport control protocol) with in
turn encapsulates the application
layer. Each layer adds its own headers
(with MAC as the first).

• Other protocols exist for other
network services (ex: printers).

• When the reliability features
(retransmission) of TCP are not
needed, UDP/IP is used. Gaming and
other applications where reliability is
provided at the application layer.

application layer
ex: http

TCP
IP

MAC Layer 2
Layer 3
Layer 4
Layer 5

Streaming
Ex. Mpeg4

UDP

IP

MAC Layer 2
Layer 3
Layer 4
Layer 5

20

Spring 2010 EECS150 lec01-intro Page

CS150 File Transfers
• Our Boot Monitor program will use TFTP protocol.

– “Trivial file transfer protocol” - per packet acks for reliability.

– Server (tftpd) will run on host machine (lab machine or your laptop).

– MIPS150 acts like client (built into the boot monitor).

MAC IP UDP TFTP CRC



































> get 192.148.1.0 /tmp/myfile.exe 0x40000
> put 1024 0x80000 192.148.1.0 /tmp/dump.dat – You must interface the

FPGA MAC to the CPU
• FIFO buffering,

simple packet
filtering

– You are welcome to
write/prot a web server
if interested.

21

Spring 2010 EECS150 lec01-intro Page

Standard Hardware-Network-Interface

• Usually divided into three hardware
blocks. (Application level processing
could be either hardware or software.)

– MAG. “Magnetics” chip is a
transformer for providing electrical
isolation.

– PHY. Provides serial/parallel and
parallel/serial conversion and
encodes bit-stream for Ethernet
signaling convention. Drives/receives
analog signals to/from MAG.
Recovers clock signal from data input.

– MAC. Media access layer
processing. Processes Ethernet
frames: preambles, headers,
computes CRC to detect errors on
receiving and to complete packet for
transmission. Buffers (stores) data
for/from application level.

• Application level interface
– Could be a standard bus (ex: PCI)
– or designed specifically for

application level hardware.
• MII is an industry standard for

connection PHY to MAC.

MAG
(transformer)

PHY
(Ethernet signal)

MAC
(MAC layer processing)

application
level

interface
Ethernet

connection

Media Independent Interface (MII)

Virtex 6 has basic MAC block on chip.
XUP board has PHY and MAG.

22

Spring 2010 EECS150 lec01-intro Page

XUP Board
• Virtex-5 FPGA has basic tri-mode MAC (10/100/1000 Mbps)

block on chip.

• XUP board has PHY and MAG.

Marvell “Alaska” (88E111) PHY

Ethernet
Connector
(RJ45)
with built-in
MAG

• You will need to interface the MAC to your processor.
• Handshaking circuits (polling interface)
• Packet buffering
• MAC header creation and filtering

23

