# EECS150 - Digital Design Lecture 19-Combinational Logic Circuits: A Deep Dive 

March 30, 2010

John Wawrzynek

# Boolean Algebra I <br> [Representations of Combinational <br> Logic Circuits) 

## Outline

- Review of three representations for combinational logic:
- truth tables,
- graphical (logic gates), and
- algebraic equations
- Relationship among the three
- Adder example
- Laws of Boolean Algebra
- Canonical Forms
- Boolean Simplification


## Combinational Logic (CL) Defined


$y_{i}=f_{i}(x 0, \ldots, x n-1)$, where $x, y$ are $\{0,1\}$.
$Y$ is a function of only $X$.

- If we change $X, Y$ will change immediately (well almost!).
- There is an implementation dependent delay from $X$ to $Y$.


## CL Block Example \#1



Boolean Equation:

$$
\begin{aligned}
y_{0}= & {\left[x_{0} \text { AND not }\left[x_{1}\right]\right] } \\
& \text { OR }\left[\operatorname{not}\left[x_{0}\right] \operatorname{AND} x_{1}\right] \\
y_{0}= & x_{0} x_{1}{ }^{\prime}+x_{0} x^{\prime} x_{1}
\end{aligned}
$$

Truth Table Description:

## Gate Representation:



How would we prove that all three representations are equivalent?

## Boolean Algebra/Logic Circuits

- Why are they called "logic circuits"?
- Logic: The study of the principles of reasoning.
- The 19th Century Mathematician, George Boole, developed a math. system (algebra) involving logic, Boolean Algebra.
- His variables took on TRUE, FALSE
- Later Claude Shannon (father of information theory) showed (in his Master's thesis!) how to map Boolean Algebra to digital circuits:

- Primitive functions of Boolean Algebra:

| ab | AND |
| :--- | :--- |
| 00 | 0 |
| 0 | 1 |
| 10 | 0 |
| 10 | 0 |
| 11 | 1 |

## Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.


How do we convert from one to the other?

## CL Block Example \#2

- 4-bit adder:

- Truth Table Representation:

| $\square$ | $\square$ | $\square$ | $\square$ | 0 | $\square$ | $\square$ | 0 | 0 | $\square$ | $\square$ | $\square$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square$ | $\square$ | $\square$ | $\square$ | 0 | 0 | 0 | 1 | $\square$ | $\square$ | $\square$ | 1 | 0 |
| $\square$ | $\square$ | $\square$ | $\square$ | 0 | 0 | 1 | 0 | $\square$ | $\square$ | 1 | 0 | 0 |
| $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | 1 | 1 | $\square$ | 0 | 1 | 1 | 0 |
| $\square$ | 0 | $\square$ | $\square$ | 0 | 1 | 0 | 0 | $\square$ | 1 | $\square$ | $\square$ |  |

$R=A+B$, $C$ is carry out


In general: $2^{\mathrm{n}}$ rows for n inputs.
256 rows!
Is there a more efficient (compact) way to specify this function?

## 4-bit Adder Example

- Motivate the adder circuit
design by hand addition:
a3 az a1! an!
+ b3 b2 b1: ba!
c r3 r2 r1:ro
- Add a0 and b0 as follows:

| $a$ | $b$ | $c$ | carry to |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\square$ | 0 |  | next stage |
| 1 | 1 | 1 |  |  |
| 1 | 1 | 1 | 1 |  |
| $r=a$ XOR $b=a \oplus b$ |  |  |  |  |
| $c=a$ AND $b=a b$ |  |  |  |  |

- Add a1 and b1 as follows:

| $c i$ | $a$ | $b$ | $r$ | $c o$ |
| :---: | :---: | :---: | :---: | :---: |
| $\square$ | 0 | $\square$ | $\square$ | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | $\square$ | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

$$
\begin{aligned}
& r=a \oplus b \oplus c_{i} \\
& c o=a b+a c_{i}+b c_{i}
\end{aligned}
$$

## 4-bit Adder Example

- In general:

$$
\begin{aligned}
& r_{i}=a_{i} \oplus b_{i} \oplus c_{i n} \\
& c_{\text {out }}=a_{i} c_{\text {in }}+a_{i} b_{i}+b_{i} c_{i n}=c_{i n}\left(a_{i}+b_{i}\right)+a_{i} b_{i}
\end{aligned}
$$



- Now, the 4-bit adder:
"Full adder cell"

"ripple" adder


## 4-bit Adder Example

- Graphical Representation of FAcell

$$
\begin{aligned}
& r_{i}=a_{i} \oplus b_{i} \oplus c_{\text {in }} \\
& c_{\text {out }}=a_{i} c_{\text {in }}+a_{i} b_{i}+b_{i} c_{\text {in }}
\end{aligned}
$$

- Alternative Implementation (with 2-input gates):

$$
\begin{aligned}
& r_{i}=\left[a_{i} \oplus b_{i}\right] \oplus c_{\text {in }} \\
& c_{\text {out }}=c_{\text {in }}\left(a_{i}+b_{i}\right]+a_{i} b_{i}
\end{aligned}
$$



## Boolean Algebra

 operation $\{$ '\}, such that the following axioms hold :1. $B$ contains at least two elements $a, b$ such that $a \neq b$.
2. Closure : $a, b$ in $B$, $a+b$ in $B, a \bullet b$ in $B, a^{\prime}$ in $B$.
3. Communitive laws:

$$
a+b=b+a, a \bullet b=b \bullet a
$$

4. Identities: 0,1 in $B$
$a+0=a, a \cdot 1=a$.
5. Distributive laws :
$a+(b \bullet c)=(a+b) \bullet(a+c), a \bullet(b+c)=a \bullet b+a \bullet c$.
6. Complement :

$$
a+a^{\prime}=1, a \bullet a^{\prime}=0
$$

## Logic Functions

$$
B=\{0,1\},+=\mathrm{OR}, \bullet=\mathrm{AND},^{\prime}=\mathrm{NOT}
$$

is a valid Boolean Algebra.


| $00 \mid$ | 0 |
| :--- | :--- |
| 01 | 1 |
| 10 | 1 |
| 11 | 1 |



0010
010 10 111

${ }^{0} 1{ }_{1}^{1}$

## Do the axioms hold?

- Ex: communitive law: $0+1=1+0$ ?

Other logic functions of 2 variables ( $\mathrm{x}, \mathrm{y}$ )


Look at NOR and NAND:


- Theorem: Any Boolean function that can be expressed as a truth table can be expressed using NAND and NOR.
- Proof sketch:

- How would you show that either NAND or NOR is sufficient?


## Laws of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and Os and 1s (literals are left unchanged).

$$
\left\{F\left(x_{1}, x_{2}, \ldots, x_{n}, 0,1,+, \bullet\right)\right\}^{D}=\left\{F\left(x_{1}, x_{2}, \ldots, x_{n}, 1,0, \bullet,+\right)\right\}
$$

Any law that is true for an expression is also true for its dual.
Operations with 0 and 1:

1. $x+0=x \quad x * 1=x$
2. $x+1=1 \quad x * 0=0$

Idempotent Law:
3. $x+x=x \quad x \quad x=x$

Involution Law:
4. $\left[x^{\prime}\right]^{\prime}=x$

Laws of Complementarity:
5. $x+x^{\prime}=1 \quad x \quad x^{\prime}=0$

Commutative Law:
6. $x+y=y+x \quad x \quad y=y x$

## Laws of Boolean Algebra [cont.]

Associative Laws:

$$
(x+y)+z=x+(y+z) \quad x y z=x(y z)
$$

Distributive Laws:

$$
x(y+z)=(x y)+(x z) \quad x+(y z)=(x+y)(x+z)
$$

"Simplification" Theorems:

$$
\begin{aligned}
& x y+x y^{\prime}=x \\
& x+x y=x
\end{aligned}
$$

$$
\begin{aligned}
& (x+y)\left(x+y^{\prime}\right)=x \\
& x(x+y)=x
\end{aligned}
$$

DeMorgan's Law:

$$
(x+y+z+\ldots)^{\prime}=x^{\prime} y^{\prime} z^{\prime} \quad(x y z \ldots)^{\prime}=x^{\prime}+y^{\prime}+z^{\prime}
$$

## Theorem for Multiplying and Factoring:

$(x+y)\left(x^{\prime}+z\right)=x z+x^{\prime} y$
Consensus Theorem:
$x y+y z+x^{\prime} z=(x+y)(y+z)\left(x^{\prime}+z\right)$
$x y+x^{\prime} z=(x+y)\left(x^{\prime}+z\right)$

# Proving Theorems via axioms of Boolean Algebra 

Ex: prove the theorem: $x y+x y^{\prime}=x$
$x y+x y^{\prime}=x\left(y+y^{\prime}\right)$ distributive law
$x\left(y+y^{\prime}\right)=x(1) \quad$ complementary law
$x(1)=x \quad$ identity

Ex: prove the theorem: $x+x y=x$
$x+x y=x 1+x y$ identity
$x 1+x y=x(1+y)$ distributive law
$x(1+y)=x(1) \quad$ identity
$x(1)=x \quad$ identity

## DeMorgan's Law

$$
\begin{aligned}
& (x+y)^{\prime}=x^{\prime} y^{\prime} \\
& D=-a \\
& (x y)^{\prime}=x^{\prime}+y^{\prime}
\end{aligned}
$$

## Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.


How do we convert from one to the other?

## Canonical Forms

- Standard form for a Boolean expression - unique algebraic expression directly from a true table (TT) description.
- Two Types:
* Sum of Products (SOP)
* Product of Sums (POS)
- Sum of Products [disjunctive normal form, minterm expansion].

Example:

| ern | abc |  |
| :---: | :---: | :---: |
| a'b'c' | 000 | 01 |
| a'b'c | 001 | 01 |
| a'bc' | 010 | 01 |
| a'bc | 011 | 10 |
| ab'c' | 100 | 10 |
| ab'c | 101 | 10 |
| abc' | 110 | 10 |
| abc | 11 | 10 |

One product [and) term for each 1 in f:
$f=a{ }^{\prime} b c+a b{ }^{\prime} c^{\prime}+a b{ }^{\prime} c+a b c^{\prime}+a b c$
$f^{\prime}=a{ }^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a{ }^{\prime} b c$ '

## Sum of Products [cont.]

Canonical Forms are usually not minimal:
Our Example:

$$
\begin{aligned}
f & =a^{\prime} b c+a b^{\prime} c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c \quad\left(x y^{\prime}+x y=x\right) \\
& =a^{\prime} b c+a b^{\prime}+a b \quad\left(x^{\prime} y+x=y+x\right) \\
& =a^{\prime} b c+a \quad \\
& =a+b c
\end{aligned}
$$

$f^{\prime}=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}$
$=a^{\prime} b^{\prime}+a^{\prime} b c^{\prime}$
$=a^{\prime}\left(b^{\prime}+b c^{\prime}\right)$
$=a^{\prime}\left(b^{\prime}+c^{\prime}\right)$

## Canonical Forms

- Product of Sums [conjunctive normal form, maxterm expansion]. Example:

$$
\begin{aligned}
& \begin{array}{ll|l}
\text { maxterms } & \mathrm{abc} & \mathrm{ff} \\
\mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{O} & \\
\hline \mathrm{OOO} & 01
\end{array} \\
& \text { a+b+c' } 00101 \\
& a+b+c \quad 01001 \\
& \text { a+b'+c' } 01110 \\
& a+b+c \quad 10010 \\
& a^{\prime}+b+c^{\prime} \quad 101 \mid 10 \quad \text { One sum (or) term for each } 0 \text { in } f: \\
& a^{\prime}+b^{\prime}+c \quad 11010 \\
& a^{\prime}+b^{\prime}+c^{\prime} \quad 11110 \\
& f=(a+b+c)\left(a+b+c^{\prime}\right)\left(a+b^{\prime}+c\right) \\
& f^{\prime}=\left(a+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a^{\prime}+b+c^{\prime}\right) \\
& \left(a^{\prime}+b^{\prime}+c\right)\left(a+b+c^{\prime}\right)
\end{aligned}
$$

Mapping from SOP to POS [or POS to SOP]: Derive truth table then proceed.

## Algebraic Simplification Example

Ex: full adder (FA) carry out function (in canonical form):
Cout $=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a b c$

## Algebraic Simplification

$$
\begin{aligned}
\text { Cout } & =a^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a b c+a b c \\
& =a^{\prime} b c+a b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =\left[a^{\prime}+a\right] b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =[1] b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =b c+a b^{\prime} c+a b c^{\prime}+a b c+a b c \\
& =b c+a b^{\prime} c+a b c+a b c^{\prime}+a b c \\
& =b c+a\left[b^{\prime}+b\right] c+a b c^{\prime}+a b c \\
& =b c+a[1] c+a b c^{\prime}+a b c \\
& =b c+a c+a b\left[c^{\prime}+c\right] \\
& =b c+a c+a b[1] \\
& =b c+a c+a b
\end{aligned}
$$

## Outline for remaining CL Topics

- K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
- EXOR revisited


## Algorithmic Two-level Logic Simplication

Key tool: The Uniting Theorem:

$$
x y^{\prime}+x y=x\left(y^{\prime}+y\right)=x(1)=x
$$

| ab | $\mathbf{f}$ | $f=a b^{\prime}+a b=a\left(b^{\prime}+b\right)=a$ |
| :--- | :--- | :--- |
| 00 | 0 | $b$ values change within the on-set rows |
| 01 | 0 | a values don't change |
| 10 | 1 | $b$ is eliminated, a remains |


| ab | g | $g=a^{\prime} b^{\prime}+a b^{\prime}=\left(a^{\prime}+a\right) b^{\prime}=b^{\prime}$ |
| :---: | :---: | :---: |
| 00 | 1 |  |
| 01 | 0 | $b$ values stay the same |
| 10 | 1 | a values changes |
| 11 | 0 | $b^{\prime}$ remains, $a$ is eliminated |

## Boolean Cubes

Visual technique for identifying when the Uniting Theorem can be applied

Alternative way to represent boolean functions.
Filled in nodes represent a in the function. Moving between adjacent nodes represents changing only one input.


- Sub-cubes of on-nodes can be used for simplification.
- On-set: filled in nodes, off-set: empty nodes
ab|f $g$ 0001 0100 1011 1110



## 3-variable cube example

FA carry out:



- Both b \& c change, $a$ is asserted \& remains constant.


## Karnaugh Map Method

- K-map is an alternative method of representing the TT and to help visual the adjacencies.



Note: "gray code" labeling.

## Karnaugh Map Method

- Adjacent groups of 1's represent product terms

b) | $a$ | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
|  |  | $f=a$ |


ab

cout $=a b+b c+a c$
ab

c |  | 00 | 01 | 11 | 10 |
| :---: | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |

$\mathrm{f}=\mathrm{a}$

## K-map Simplification

1. Draw K-map of the appropriate number of variables (between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1 's.
$\checkmark$ Dimensions of groups must be even powers of two ( $1 \times 1,1 \times 2$, $1 \times 4, \ldots, 2 \times 2,2 \times 4, \ldots)$
$\checkmark$ Form as large as possible groups and as few groups as possible.
$\checkmark$ Groups can overlap (this helps make larger groups)
$\checkmark$ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
4. For each group write a product term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)

5. Form Boolean expression as sum-of-products.

## K-maps [cont.]



## Product-of-Sums Version

1. Form groups of 0 's instead of 1's.
2. For each group write a sum term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.
ab

ad |  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 1 | 0 | 0 | 1 |
| 01 | 0 | 1 | 0 |  |
| 11 | 1 | 1 | 1 | 1 |
| 10 | 1 | 1 | 1 | 1 |
|  |  |  |  |  |

$$
f=\left(b^{\prime}+c+d\right)\left(a^{\prime}+c+d^{\prime}\right)\left(b+c+d^{\prime}\right)
$$

## BCD incrementer example

## Binary Coded Decimal



## BCD Incrementer Example

- Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
- These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
- We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.


## BCD incrementer example

|  | W |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ab |  |  |  |  |
| cd 00011110 |  |  |  |  |
| 00 | 0 | 0 | - | 1 |
| 01 | 0 | 0 | - | 0 |
| 11 | 0 | 1 | - | - |
| 10 | 0 | 0 | - | - |




| cd ${ }_{\text {ab }}^{\text {ab }}$ ( ${ }^{\text {Z }} 00011110$ |  |  |  |  | $y=$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 00 | 1 | 1 | - | 1 |  |
| 01 | 0 | 0 | - | 0 |  |
| 11 | 0 | 0 | - | - |  |
| 10 | 1 | 1 | - | - |  |

## BCD Incrementer Example

- Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
- These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
- We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.


## BCD incrementer example

|  | W |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ab |  |  |  |  |
| cd 00011110 |  |  |  |  |
| 00 | 0 | 0 | - | 1 |
| 01 | 0 | 0 | - | 0 |
| 11 | 0 | 1 | - | - |
| 10 | 0 | 0 | - | - |




| cd ${ }_{\text {ab }}^{\text {ab }}$ ( ${ }^{\text {Z }} 00011110$ |  |  |  |  | $y=$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 00 | 1 | 1 | - | 1 |  |
| 01 | 0 | 0 | - | 0 |  |
| 11 | 0 | 0 | - | - |  |
| 10 | 1 | 1 | - | - |  |

## Higher Dimensional K-maps



