<u>EECS150 - Digital Design</u> <u>Lecture 24 - Arithmetic Blocks,</u> <u>Part 2 + Shifters</u>

April 15, 2010 John Wawrzynek

Spring 2010

EECS150 - Lec24-arith2

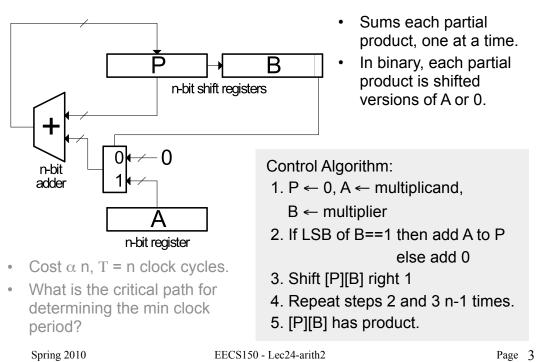
Page 1

 $a_1b_0+a_0b_1a_0b_0 \leftarrow Product$

Many different circuits exist for multiplication. Each one has a different balance between speed (performance) and amount of logic (cost).

. . .

"Shift and Add" Multiplier



"Shift and Add" Multiplier

Signed Multiplication:

Remember for 2's complement numbers MSB has negative weight:

$$X = \sum_{i=0}^{N-2} x_i 2^i - x_{n-1} 2^{n-1}$$

ex: $-6 = 11010_2 = 0.2^0 + 1.2^1 + 0.2^2 + 1.2^3 - 1.2^4$ = 0 + 2 + 0 + 8 - 16 = -6

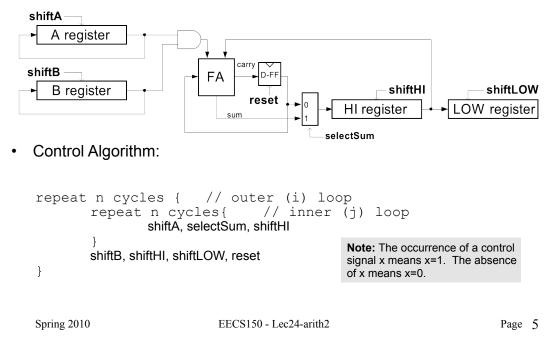
- Therefore for multiplication:
 - a) subtract final partial product
 - b) sign-extend partial products
- Modifications to shift & add circuit:
 - a) adder/subtractor
 - b) sign-extender on P shifter register

Spring 2010

EECS150 - Lec24-arith2

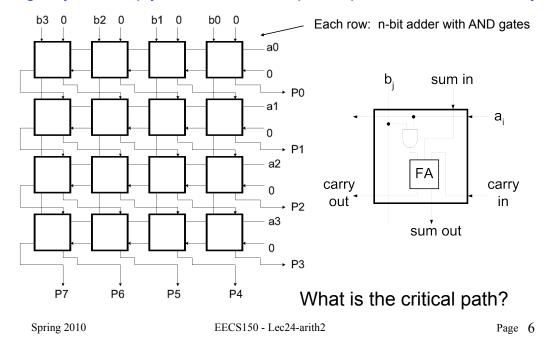
Bit-serial Multiplier

• Bit-serial multiplier (n² cycles, one bit of result per n cycles):



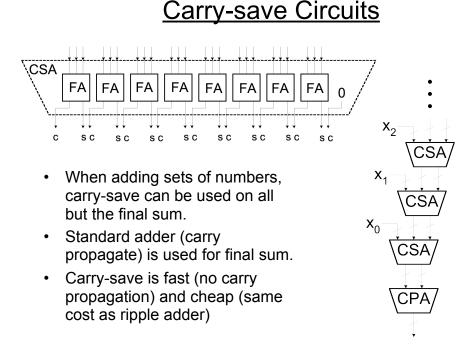
Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

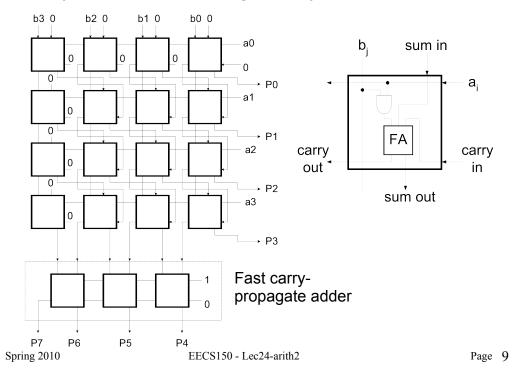


Carry-Save Addition

- Speeding up multiplication is a Example: sum three numbers, matter of speeding up the $3_{10} = 0011, 2_{10} = 0010, 3_{10} = 0011$ summing of the partial products. "Carry-save" addition can help. 3₁₀ 0011 Carry-save addition passes + 2₁₀ 0010 carry-save add (saves) the carries to the output, $c \ \overline{0100} = 4_{10}$ rather than propagating them. $s 0001 = 1_{10}$ carry-save add 3₁₀ <u>0011</u> $c 0010 = 2_{10}$ $s 0110 = 6_{10}$ carry-propagate add - $1000 = 8_{10}$ In general, *carry-save* addition takes in 3 numbers and produces 2. •
 - Whereas, *carry-propagate* takes 2 and produces 1.
 - With this technique, we can avoid carry propagation until final addition
 Spring 2010 EECS150 Lec24-arith2 Page 7



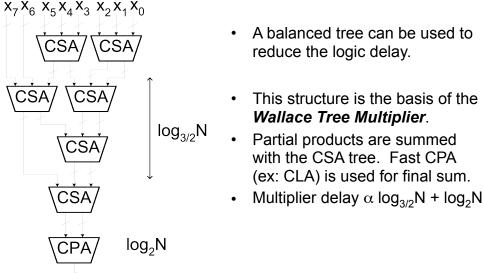
Array Multiplier using Carry-save Addition



Carry-save Addition

CSA is associative and communitive. For example:

$$(((X_0 + X_1) + X_2) + X_3) = ((X_0 + X_1) + (X_2 + X_3))$$



Spring 2010

EECS150 - Lec24-arith2

Constant Multiplication

- Our discussion so far has assumed both the multiplicand (A) and the multiplier (B) can vary at runtime.
- What if one of the two is a constant?

Y = C * X

• "Constant Coefficient" multiplication comes up often in signal processing and other hardware. Ex:

$$y_i = \alpha y_{i-1} + x_i$$
 $x_i \longrightarrow y_i$

where $\,\alpha$ is an application dependent constant that is hard-wired into the circuit.

• How do we build and array style (combinational) multiplier that takes advantage of the constancy of one of the operands?

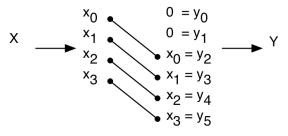
Spring 2010

```
EECS150 - Lec24-arith2
```

Page 11

Multiplication by a Constant

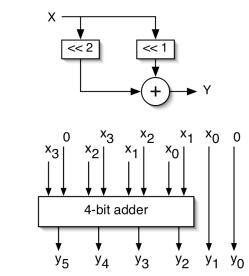
- If the constant C in C*X is a power of 2, then the multiplication is simply a shift of X.
- Ex: 4*X



- What about division?
- What about multiplication by non- powers of 2?

Multiplication by a Constant

- In general, a combination of fixed shifts and addition:
 - Ex: 6*X = 0110 * X = (2² + 2¹)*X



Details:

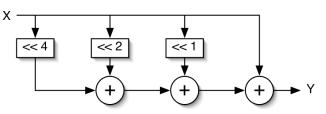
Spring 2010

EECS150 - Lec24-arith2

Page 13

Multiplication by a Constant

• Another example: C = 23₁₀ = 010111



- In general, the number of additions equals the number of 1's in the constant minus one.
- Using carry-save adders (for all but one of these) helps reduce the delay and cost, but the number of adders is still the number of 1's in C minus 2.
- Is there a way to further reduce the number of adders (and thus the cost and delay)?

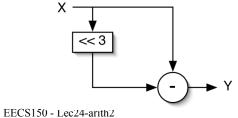
Multiplication using Subtraction

- Subtraction is ~ the same cost and delay as addition.
- Consider C*X where C is the constant value 15₁₀ = 01111.
 C*X requires 3 additions.
- We can "recode" 15

from $01111 = (2^3 + 2^2 + 2^1 + 2^0)$ to $1000\overline{1} = (2^4 - 2^0)$

where $\overline{1}$ means negative weight.

Therefore, 15*X can be implemented with only one subtractor.



Spring 2010

Canonic Signed Digit Representation

- CSD represents numbers using 1, 1, & 0 with the least possible number of non-zero digits.
 - Strings of 2 or more non-zero digits are replaced.
 - Leads to a unique representation.
- To form CSD representation might take 2 passes:
 - First pass: replace all occurrences of 2 or more 1's:

- Second pass: same as a above, plus replace $0\overline{1}10$ by $00\overline{1}0$
- Examples:

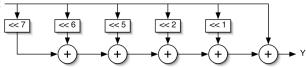
011101 = 29	0010111 = 23	0110110 = 54	
100101 = 32 - 4 + 1	001100T	1071070	
	010 T 00 T = 32 - 8 - 1	1001010 = 64 - 8 - 2	

• Can we further simplify the multiplier circuits?

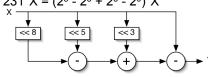
Page 15

"Constant Coefficient Multiplication" (KCM)

Binary multiplier: $Y = 231^*X = (2^7 + 2^6 + 2^5 + 2^2 + 2^1 + 2^0)^*X$

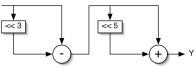


CSD helps, but the multipliers are limited to shifts followed by adds.
 CSD multiplier: Y = 231*X = (2⁸ - 2⁵ + 2³ - 2⁰)*X



- How about shift/add/shift/add ...?
 - KCM multiplier: $Y = 231*X = 7*33*X = (2^3 2^0)*(2^5 + 2^0)*X$

Х

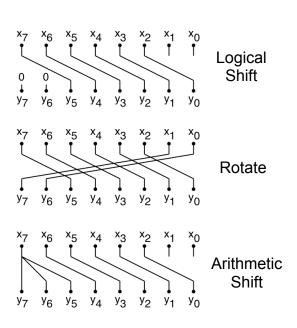


- No simple algorithm exists to determine the optimal KCM representation.
- Most use exhaustive search method. Spring 2010 EECS150 - Lec24-arith2

Page 17

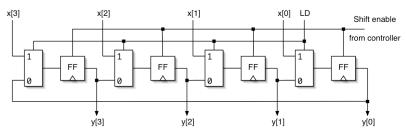
Fixed Shifters / Rotators

- "fixed" shifters
 "hardwire" the shift
 amount into the circuit.
- Ex: verilog: X >> 2
 (right shift X by 2 places)
- Fixed shift/rotator is nothing but wires!



<u>Variable Shifters / Rotators</u>

- Example: X >> S, where S is unknown when we synthesize the circuit.
- Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point arithmetic, division/multiplication by powers of 2, etc.
- One way to build this is a simple shift-register:
 - a) Load word, b) shift enable for S cycles, c) read word.



- Worst case delay O(N) , not good for processor design.
- Can we do it in O(logN) time and fit it in one cycle?

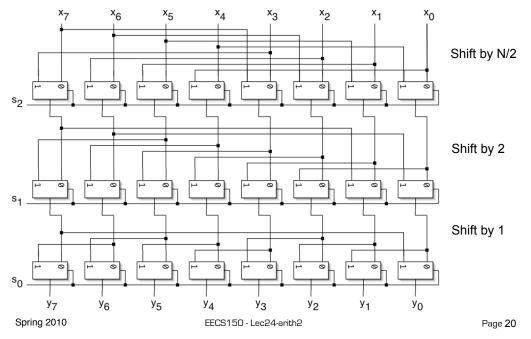
```
Spring 2010
```

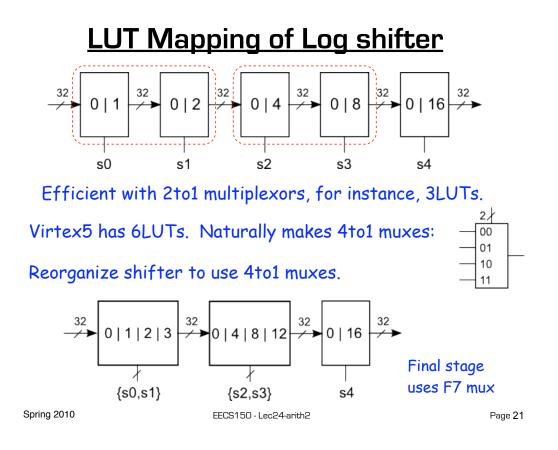
```
EECS150 - Lec24-arith2
```

```
Page 19
```

Log Shifter / Rotator

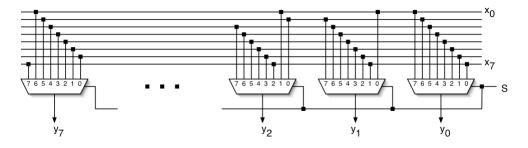
• Log(N) stages, each shifts (or not) by a power of 2 places,





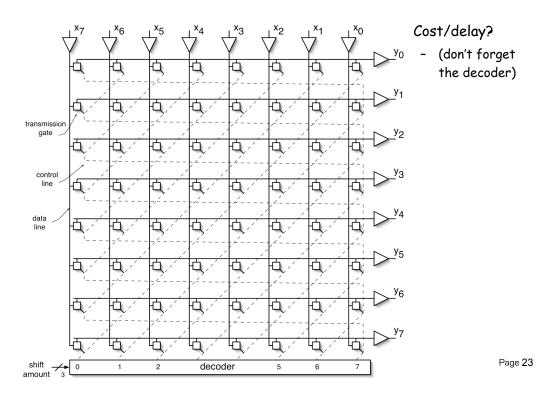
<u>"Improved" Shifter / Rotator</u>

• How about this approach? Could it lead to even less delay?



- What is the delay of these big muxes?
- · Look a transistor-level implementation?

Barrel Shifter



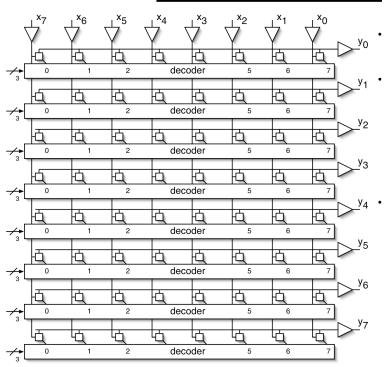
Connection Matrix

↓ ^x 7	↓ ^x 6	↓ ^x 5	\checkmark^{x_4}	↓ ^x 3	\checkmark^{x_2}	\checkmark^{x_1}	y ₀
Ľ۵,	μ Δ	ΓQ.	ά.	٩ ٩		ΓQ.	Q L
<u>م</u>	<u>م</u>	<u>م</u>	<u>م</u>	<u>م</u>	<u>م</u>	<u>م</u>	
<u>م</u>	- <u>a</u> -	۵.	<u>д</u>	<u>م</u>	Ą	<u>д</u>	<u> </u>
4	<u>م</u>	đ	<u>م</u>	đ	<u>ل</u>	- <u>a</u>	
4	<u>م</u>	đ	- <u>a</u> -	۵.	<u>م</u>	- <u>a</u>	
4	<u>م</u>	<u>م</u>	<u>م</u>	۵.	<u>ل</u>	- <u>a</u>	
4	- <u>a</u> -	<u>م</u>	- <u>a</u> -	۵.	<u>ل</u>	- <u>-</u>	
L	-L	-La	-L	<u>ц</u>	-L	-L	

Generally useful structure:

- N² control points.
- What other interesting functions can it do?

Cross-bar Switch



Nlog(N) control signals.

Supports all interesting permutations

> All one-to-one and one-to-many connections.

Commonly used in communication hardware (switches, routers).

Page 25