EECS150 - Digital Design
Lecture 24 - Arithmetic Blocks,
Part 2 + Shifters

April 15, 2010
John Wawrzynek

Spring 2010 EECS150 - Lec24-arith2 Page 1

Multiplication

a, a, a, a, — Multiplicand

X asb, ab, a;b, agb,
azb, ab, ab, ayb, Partial
asb, ab, ab, agb, products

azb; ab; a;b; agb,

a,by,tayb, ayb, — Product

Many different circuits exist for multiplication.
Each one has a different balance between
speed (performance) and amount of logic (cost).

Spring 2010 EECS150 - Lec24-arith2 Page 2

“Shift and Add” Multiplier

* Sums each partial
product, one at a time.

|5 4| B In binary, each partial
product is shifted
versions of A or 0.

nbit 0 0 Control Algorithm:
adder 1|:i 1. P < 0, A < multiplicand,

A B < multiplier

2. If LSB of B==1 then add Ato P
else add 0

3. Shift [P][B] right 1

4. Repeat steps 2 and 3 n-1 times.

5. [P][B] has product.

n-bit shift registers

n-bit register

Spring 2010 EECS150 - Lec24-arith2 Page 3

“Shift and Add” Multiplier
Signed Multiplication:
Remember for 2's complement numbers MSB has negative weight:

N=-2 .
X = 2 x2 —x, 2"

ex: -6 = 11010, = 020 + 1421 + 0+22 + 1023 - 124
=0 +2+0+8 -16=-6

* Therefore for multiplication:
a) subtract final partial product
b) sign-extend partial products
* Modifications to shift & add circuit:
a) adder/subtractor

b) sign-extender on P shifter register
Spring 2010 EECS150 - Lec24-arith2 Page 4

Bit-serial Multiplier

 Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

shiftA
¢

carry [V
shiftB EA
B register shiftHI shiftLOW
reset | [, [[>
\Sum—»1 ——| HI register |——>| LOW reg|ster|

T_selectsum
» Control Algorithm:
repeat n cycles { // outer (i) loop
repeat n cycles{ // inner (3j) loop

shiftA, selectSum, shiftHI

} Ny
. . . ote: The occurrence of a control
shiftB, shiftHI, shiftLOW, reset signal x means x=1. The absence

} of x means x=0.

Spring 2010 EECS150 - Lec24-arith2 Page 5

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

b3 0 b2 0 b1 0 b0 0 Each row: n-bit adder with AND gates
A R N S I N B g
] || L a0
_— _— — 0 [
e e s s O
— — — —
|| — ——al ? a
f———1 e ['_O ! |
T T T T
—" — — —
. — [® FA
- - - | — o carry. , camy
T B B e R "
— — — —
a sum out
L] — 0
B T T r b P3
p7 P6 P P4 What is the critical path?

Spring 2010 EECS150 - Lec24-arith2 Page 6

Carry-Save Addition

» Speeding up multiplication is a * Example: sum three numbers,
matter of speeding up the 3,0, =001, 2,,=0010, 3,, = 0011
summing of the partial products.

+ “Carry-save” addition can help. 3,, 0011

+ Carry-save addition passes + 2., 0010
(saves) the carries to the output, c 0100 = 4 carry-save add
rather than propagating them. (10

s 0001 = 1,
carry-save add < 3. 0011
10
c 0010 = 2,,
carry-propagate add< \' s 0110 = 610
1000 = 8,4

* In general, carry-save addition takes in 3 numbers and produces 2.
* Whereas, carry-propagate takes 2 and produces 1.

» With this technique, we can avoid carry propagation until final addition
Spring 2010 EECS150 - Lec24-arith2 Page 7

Carry-save Circuits

oy
. |FA||FA||FA||FA||FA||FA||FA||FA| o / .
I x2 - -t
C SC SC SC SC SC SC SC SC
CSA
* When adding sets of numbers, Xp v~
carry-save can be used on all CSA
but the final sum. X E]
« Standard adder (carry 0 1
propagate) is used for final sum. CSTSV
» Carry-save is fast (no carry i
propagation) and cheap (same CPA

cost as ripple adder)

Spring 2010 EECS150 - Lec24-arith2 Page §

Array Multiplier using Carry-save Addition

B30 b20 b10 b0 O
| L] |] |] _
|] — ——ao0 b, sum in
ol ol Pl 1
[| [| [| 1
i e L S - -3
] -] -] - af
9(o o i
[[[| [1
e e e e e FA
— - - -— a2 carry carry
9(il H N out” " in
Kl Sh L ,
| || || | a3 sum out
0 | L]] L] |
. ps

| L -1 Fast carry-
F [[|-, Ppropagate adder

I

P7 P6 P5 P4
Spring 2010 EECS150 - Lec24-arith2 Page 9

Carry-save Addition

CSA is associative and communitive. For example:
(Ko + Xq) +X3) +X5) = ((Xg + Xy) +(X3+ X5))

xx6xxx xxx

7
l { * Abalanced tree can be used to
CSA CSA reduce the logic delay.
CSA \CS,‘i\/ » This structure is the basis of the
| N Wallace Tree Multiplier.
@7 093 » Partial products are summed
with the CSA tree. Fast CPA
(ex: CLA) is used for final sum.
\CSA/ « Multiplier delay a log,,N + log,N
CPA/ log,N

Spring 2010 v EECS150 - Lec24-arith2 Page 10

Constant Multiplication

Our discussion so far has assumed both the multiplicand
(A) and the multiplier (B) can vary at runtime.

What if one of the two is a constant?

Y=C*X
“Constant Coefficient” multiplication comes up often in
signal processing and other hardware. EXx:

Yi= ayit X X, Y,

where o is an application dependent constant that is
hard-wired into the circuit.

How do we build and array style (combinational) multiplier
that takes advantage of the constancy of one of the
operands?

Spring 2010 EECS150 - Lec24-arith2 Page 11

Multiplication by a Constant

If the constant C in C*X is a power of 2, then the multiplication is simply
a shift of X.

Ex: 4*X

0 =y0
X X4 \0 =Y4 v

X2 \X0=V2

%3 \X1=V3

\X2:V4

X3=VY5

What about multiplication by non- powers of 2?

What about division?

Spring 2010 EECS150 - Lec24-arith2 Page 12

Multiplication by a Constant

* In general, a combination of fixed shifts and addition:

- Ex:6*X = 0110 * X = (22 +2")*X

X

\ Y

<< 2 << 1
: Y

— Details:
0 XS X2 X-1 XO 0
Xsl le X1l Xol
4-bit adder
Voo
Y5 Yq Y3 Yo Y1 Yo
Spring 2010 EECS150 - Lec24-arith2 Page 13

Multiplication by a Constant

Another example: C = 23,, = 010111
X

\/ \/ \J
|<<4| |<<2| |<<1|

v v
| : —»(: }—»@—» Y
In general, the number of additions equals the number of

1’s in the constant minus one.

Using carry-save adders (for all but one of these) helps
reduce the delay and cost, but the number of adders is still
the number of 1’s in C minus 2.

Is there a way to further reduce the number of adders (and
thus the cost and delay)?

Spring 2010 EECS150 - Lec24-arith2 Page 14

Multiplication using Subtraction

» Subtraction is ~ the same cost and delay as addition.
« Consider C*X where C is the constant value 15,, = 01111.
C*X requires 3 additions.
« We can “recode” 15
from 01111 = (23 + 22+ 21+ 20)
to 10007 = (24 - 20)
where T means negative weight.
» Therefore, 15*X can be implemented with only one
subtractor.

5]
—»@—»Y

Spring 2010 EECSI150 - Lec24-arith2 Page 15

Canonic Signed Digit Representation

« CSD represents numbers using 1, 1, & 0 with the least
possible number of non-zero digits.
— Strings of 2 or more non-zero digits are replaced.
— Leads to a unique representation.
» To form CSD representation might take 2 passes:
— First pass: replace all occurrences of 2 or more 1’s:
01..10 by 10..70
— Second pass: same as a above, plus replace 0110 by 0010

» Examples:

011101 = 29 0010111 = 23 0110110 = 54
100701 = 32-4 +1 0011007 1071070
010700T=32-8-1 1007070 =64 - 8- 2

» Can we further simplify the multiplier circuits?

Spring 2010 EECS150 - Lec24-arith2 Page 16

“Constant Coefficient Multiplication” (KCM)

Binary multiplier: Y = 231*X = (27 + 26 + 25 + 22 + 21420)*X
X

|<<7| |<<6| |<<5| |<<2| |<<1| l
v v v
(: }— : ——(: }—»@—» Y
* CSD helps, but the multipliers are limited to shifts followed by adds.
— CSD multiplier: Y = 231*X = (28 - 25 + 23 - 20)*X

" v v
|<<8| |<<5| |<<3|
v v

{ : }—»@—» Y
* How about shift/add/shift/add .

— KCM multiplier: Y = 231*X = 7*33*X (23 - 20)*(25 + 20)*X

LJL@

* No simple algorithm exists to determine the optimal KCM representation.

* Most use exhaustive search method.
Spring 2010 EECS150 - Lec24-arith2 Page 17

Fixed Shifters / Rotators

* "“fixed" shifters
“hClI"dWir‘eu The Shlf'l' Logica|
amount into the circuit. Shift
* Ex: verilog: X > 2 7 e Y e ds 2 N
— (right shift X by 2 places) 7 & °5 ’4 °3 72 1 70
Rotate

° Fixed ShifT/POTGTOP is Y7 Y6 Y5 Ya Y3 Y2 Y1 Yo
nothing but wires!
X7 Xg X5 Xq4 X3 X x1 Xo

So what? ! Arithmetic
Shift

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Yo

Spring 2010 EECS150 - Lec24-arith2 Page 18

Variable Shifters / Rotators

* Example: X > S, where S is unknown when we synthesize the circuit.

* Uses: shift instruction in processors (ARM includes a shift on every
instruction), floating-point arithmetic, division/multiplication by
powers of 2, etfc.

* One way to build this is a simple shift-register:

a) Load word, b) shift enable for S cycles, c) read word.

x[3] x[2] x[1] x[0] LD Shift enable
from controller
1 1 1 1
FF FF FF FF
)]] 0 T
yl3l] yl2] y[1] y[o]

— Worst case delay O(N) , not good for processor design.
— Can we do it in O(logN) time and fit it in one cycle?

Spring 2010 EECS150 - Lec24-arith2 Page 19

Log Shifter / Rotator

Log(N) stages, each shifts (or not) by a power of 2 places,

X7 X6 X5 X4 X3 X2 X.1 XO

Shift by N/2

|
e e e e

L L L L L L L L

Shift by 2

N
S E o B E o o Pl
L L L L L L L L
Shift by 1

L e e C e Y

Y7 Yg Y5 Y4 Y3 Yo ¥4 Yo
Spring 2010 EECS150 - Lec24-arith2 Page 20

325 32 32 32 32 32
—» 01> 0|2F» 0|4 0|8 0| 16>

LS = L — L

sO s1 s2 s3 s4

Efficient with 2tol multiplexors, for instance, 3LUTs.

24
00
01
10
1"

Virtex5 has 6LUTs. Naturally makes 4tol muxes:

L1

Reorganize shifter to use 4tol muxes.

32 32 32 32
—»0]1]2]3 014|8|12>{0]16 >

¥ T | Final stage
{s0,s1} {s2,s3} s4 uses F7 mux

Spring 2010 EECS150 - Lec24-arith2 Page 21

“Improved” Shifter / Rotator

How about this approach? Could it lead to even less delay?

*p

X7

76543210/ [\7‘5543210 \75543210 \755432101| S
vy v

Y7 Yo ¥q Yo

What is the delay of these big muxes?
Look a transistor-level implementation?

Spring 2010 EECS150 - Lec24-arith2 Page 22

<

<,

transmission
gate

control
line

data
line

shift
amount 3

<5

Barrel Shifter
‘7"4 ‘|73 :‘7"2 ‘,7X1 :17 Cost/delay?

\\ﬁ

\‘\Jj'

Xg
Yo - (don't forget
tk > the decoder)

!
sl
B
Y]

N
N N
N
S

,,,,,,,,,

>
i/l

i

R L

.

— tg >3
+,|

7777777

,,,,,,,,,,,,

i

/ i3
I PO] L
mae

.
.
.
.
JH

,,,,,,

a
. . ' Y6
AE e

fffffff

N
| N
N N
N N
~ 4
N
N

o\ & B
l‘ \4\ IA\
! ‘
N ~
.
A | I
N N
N N
= |\ I N
I [N
N \\ [

\
~ }j—
N
Z
R
.

,,,,,,,, . -

.
[N N N N
o | N N N N
N 1 N N N
o | IH

decoder 7 | Page 23

<5

<

Connection Matrix

<

v v

<,

Generally useful structure:

a1

- N2 control points.

Y1 . .
o - What other interesting
unctions can it do?
" 2 f ions can it do

"

el

b

a1

s = s = = IS =

s = s = = B s

pu Y= = I B = R s

Spring 2010

b S BV VS B A s

R R
I R R

B8 B B B OB B O

i

EECS150 - Lec24-arith2 Page 24

Cross-bar Switch

X7 X6 X5 X4 XS X2 X1 XO
V V¥V ¥V ¥V ¥ V¥V ¥V ¥ _, - NogN)control
N W W W W W > signals.
0 1 2 ecoder 5 6 7 |{>_y1 . Suppor"l's all
-|10 411 -{12 "1 decoc-il} qs qs 7 inferesﬁng
|{>_y2 permutations
ﬂo ﬂ1 ﬂz S decocErL ﬂs ﬂs ﬂ7| - All one-to-one and
3 {>_y3 one-to-many
iuy uy iy ﬂd CFL a 1 'tLl connections.
Pl Commonly used in
ﬁ‘o 'tH {LZ i\ deco;i "15 "16 "171 communication
[hardware (switches,
ﬂo ﬂ1 th i decoE ﬂs ﬂe) routers).
Y6
W W W W W W P
[[| [| [[Y7
N L LV W P

Page 25

