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Revision D

1 Time Table

ASSIGNED Friday, April 2nd

DUE Week 14: April 20th − 22nd, demo during your lab section

2 Motivation

The CPU is complete, and now the rest of the project will involve building a video subsystem. This
consists of a Framebuffer, which will require an arbiter, memory controller to communicate with off-chip
SRAM, a video interface, and a line drawing acceleration engine. This checkpoint will involve building
some and integrating all of those components except the Line Engine, which is the last checkpoint of the
project.
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3 SRAM

The XUPv5 board has a 256Kx36 ZBT1 SRAM chip. It supports a data width of 32 bits and 4 parity
bits. Although parity bits can be used for data, you are not required to make use of them. The SRAM
exposes a standard single-port memory interface with a single data bus, which means that reads and
writes share the same bus for data. The SRAM has burst read/write capability, but you will not need
to use bursts. You will be responsible for implementing an SRAM memory controller, which is the
interface between your design and the SRAM device. SRAM documentation is on the Documents page of
the website. The controller interface with the SRAM chip is already fixed. The controller interface with
your design is up to you, but you might include ports for Address, Read/Write Request, ValidRequest,
RequestData (writing), ByteMask, ResponseValid (reading).

The SRAM device is ZBT, so a Read command can be followed by a Write command the following
cycle and vice versa. Also, it is possible to do back-to-back writes and back-to-back reads. In short, on
every cycle you can issue a read or a write to the SRAM2.

As you will find from the documentation, the SRAM is a synchronous read/synchronous write device,
and the latency to complete an access is 2 cycles. Accesses can be pipelined, but keep the latency in
mind when designing this checkpoint.

Some signals going to the SRAM device are “active-low”, meaning they are interpreted as being
asserted when their value is 0, rather than 1. These signals are distiguished in the documentation using
a bar over the name.

In the SRAM documentation, you will be most interested in reading pages 1-2 (intro), 8 (pin defini-
tions), 9&11 (truth tables), 18-20 (timing diagrams), and maybe 21-22 (extra timing diagrams).

4 Framebuffer

The framebuffer’s responsibility is to store an entire frame of video in the FPGA fabric so that the
video subsystem always has data availible. This is a common problem with video interfaces: if the video
component does not get exactly the data that it needs when it needs it, the image will appear broken or
even not show up at all. Having a full frame worth of data ready “on demand” ensures that the rate at
which video data is required by the video subsystem is always satisfied. The conceptual Framebuffer in
this project is outlined in the diagram above.

4.1 Implementation with SRAM

The SRAM has capacity for 256K 32-bit words. An 800x600 display contains 480,000 pixels, and our
framebuffer needs one entry for every pixel. So how many bits per pixel? 256K ∗ 32bits/480000pixels =
17.47bits/pixel. A good choice would be to represent the color of a pixel using 16 bits, which means two
pixels per SRAM data word. Every access to SRAM could read or write two pixels, but only if these
pixels are a sequential even-odd pair.

4.2 CPU Interaction

The CPU–and eventually the Line Engine–must be able to write one color at a time to a pixel location
in the framebuffer. From the perspective of the CPU, the framebuffer will be another memory-mapped
IO device. The mapping is shown in Table 1. The CPU writes to pixel coordinates (Y,X), so addresses

Table 1 Framebuffer memory map.

0x80000000-0x803ffffc W Framebuffer

are of the form {0x80, 00, Y 10 bits, X 10 bits, 00}. Giving a separate 10 bits to each coordinate

1ZBT: Zero bus turnaround, which means that the data bus require does not require any cycles between read and write
operations

2This is in contrast to an error in Rev. C of this document that said W-W and R-R were not possible
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is technically a waste of address space, but there are more than enough addresses available and the
coordinate abstraction is convenient for software writing to the framebuffer.

Since the CPU writes only one 16-bit pixel at a time and the granularity of SRAM memory accesses
is 32-bit words, you will need to make use of the ByteWriteEnable (BWa-BWd) signals going to the
SRAM device. These specify for writes which of the four bytes in the word to write to and which to
leave as is. What would the consequences be if these enable inputs did not exist?

The staff provides a module WriteFIFOs, which will provide a ready/valid interface for each the
LineEngine and CPU Memory Map to enqueue data that is to be written to the Framebuffer. Notice
on the figure that there are stall signals generated in the case where the queue is not ready for data.
These will halt the LineEngine and CPU, respectively. To stall the CPU means that all stage registers
will hold their value so as to pause execution. Note: since it is a rare case for the CPU to need to stall
(e.g. when it is writing to the Framebuffer at a high and sustained rate and fills up the queue), try to
get the rest of the checkpoint working before implementing this. When you build the LineEngine, on the
other hand, you should build in stalls from the beginning. Below is the interface for WriteFIFOs. The
DataOut ports are asynchronous read, synchronous dequeue (i.e. the next data becomes available after
Take is high at the rising edge of the read clock).

Here is the port interface to the Video module.

Table 2 WriteFIFOs ports.

Name Width Description
CPUDataOut 16 Pixel color to write, coming out of FIFO.
CPUCoordOut 20 Pixel location to write, coming out of FIFO.
CPUValidRequest 1 There is valid data available to take.
CPUTake 1 The CPU write request was chosen and should be dequeued.
CPUCoordIn 20 Pixel coordinate address to be written to Framebuffer.
CPUDataIn 16 Pixel color to be written to Framebuffer.
CPUWriteEnable 1 “MemWrite” signal to Framebuffer.
CPUWriteReady 1 Ready to accept CPU writes (room in FIFO).
- - ...indentical ports for Line Engine...

4.3 Arbiter

The SRAM memory is single-ported, yet we have three blocks using the framebuffer (CPU and Line
Engine writing and video interface reading). The framebuffer will essentially look like a memory with
2 write ports and 1 read port (except with some Ready signals in places). Your design must have
an “Arbiter” to choose between the memory users. A typical arbitration system involves each user
providing a Valid signal to indicate whether it wants to make a “request” to the shared device (e.g.
SRAM controller); the Arbiter chooses between the Valid requests and sends out the chosen request to
the device, while also notifying the corresponding user that its request was “granted”. Since you must
design the Arbiter and SRAM Controller, their communication interface is up to you. The following
constraints apply to the project:

1. The video interface read requests (indicated by AddressValid being high) have priority over CPU
writes.

2. The CPU writes have priority over Line Engine writes.

Notes:

1. Since the SRAM is single ported and there are three users, using a FIFO for CPU writes to the
Framebuffer has a benefit in performance, besides providing a clock crossing. Think of what the
benefit is.
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5 Video Interface

The Chrontel CH7301C chip on the XUPv5 board is a display controller device for transmitting data
through the DVI output to a display device, like a LCD monitor. The staff will provide a video interface
block (and an example of how to instantiate it within your design) that will communicate with this
off-chip device. Your design will need to just communicate with this block to accomplish sending pixel
data to a display device at the required rate. When AddressValid is high, the Arbiter should choose to
issue a read request to SRAM Controller for Address. This Address is a sequential pixel address from
0 to 239999 (number of pairs of pixels for 800x600 resolution). When the 32-bit data (2 pixels) comes
back from SRAM, the data should be transferred to the Video by asserting the PixelsValid signal.

The display specification we are using, SVGA Signal 800 x 600 @ 75 Hz, requires a pixel clock of
approximately 49.5MHz.

The video interface takes in 24-bit color on the Video input. Since we choose 16 bits for our pixels,
the 16 bits must be padded to 24 bits. The 24 bits are normally partitioned as 8 bit Red, 8 bit Blue,
8 bit Green. The partitioning and padding for 16 to 24 should be Red5, Green6, Blue5: {RRRRR000,
GGGGGG00, BBBBB000}. Notice that the color bits should be the upper bits; otherwise, colors going
to the video interface would all be too dark. The provided video interface implements this padding for
you.

5.1 Address Generator

The video interface expects pixels in order from left to right and from top line to bottom line, in that
order. Recall that we choose to store two 16-bit pixels in each SRAM 32-bit word. So, for maximum
SRAM read bandwidth, pixels should be stored sequentially in this order. If we can read two pixels in
one SRAM cycle and the video interface expects pixels at 50 MHz, then the read rate is 25 MHz. Since
the SRAM Framebuffer will run at 100 MHz, SRAM reads take up only 1 in 4 available cycles (and none
during blanking intervals). The Video interface will generate valid Addresses at the required rate.

If the SRAM stores pixels sequentially, but the CPU and Line Engine write to the Framebuffer
using coordinate addresses3, there must be address translation from coordinate to sequential address:
SeqAddress = 800∗Y +X. This translation is an interesting little block to optimize for performance/area
because it involves a multiply-by-constant and an add.

5.2 Interface

Here is the port interface to the Video module.

Table 3 Video ports.

Name Width Description
Pixels 32 Read data from the Framebuffer to the Video.
PixelsValid 1 High when data on Pixels is valid.
Address 18 Sequential pixel pair address of next pixel pair to read.
AddressValid 1 When high, indicates Address is valid and a read request should be issued for the address.

6 Requirements

You are responsible for implementing the following blocks:

1. Arbiter

2. SRAM memory controller

3Everyone’s CPU memory map must use coordinate addresses so that any code the staff provides involving writes to the
framebuffer will work. As for the Line Engine, you will see that coordinate addresses are a result of the drawing algorithm.
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You must integrate the blocks into your design so that the CPU and video interface can interact
with the Framebuffer as described in the previous sections. Refer to the diagram on the first page and
interfaces.

A reasonable on-board test scenario for the whole system up through this checkpoint is, for exam-
ple, using the BIOS/UART/Ethernet to transfer a bitmap image from a computer into the Framebuffer
and having it display correctly on a monitor hooked up to the DVI port on the board. A task that does
not require BIOS operation would be a CPU program that explicitly draws something by writing to the
framebuffer.

7 Additional Information

The following sources will be helpful throughout this checkpoint:

1. SRAM documentation

2. Lectures 14, 15, 16 on framebuffer, video, SRAM.

Rev. Name Date Description
D Brandon Myers &

Chris Fletcher

4/24/2010 Fixed an error that said back-to-back reads and back-to-back

writes to the SRAM are not possible. Clarifications in top level

figure.

C Brandon Myers 4/16/2010 Removed Framebuffer-to-DVI, CPU-to-Arbiter communication

from required blocks to implement.

B Brandon Myers 4/11/2010 Added information about acceptable SRAM command se-

quences.

A Brandon Myers &

John Wawrzynek

4/1/2010 Designed new checkpoint. Concept adapted from Framebuffer

checkpoint from Spring 2009.
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