
EECS150: Spring 2010 Project Checkpoint 4, Line Engine

UC Berkeley College of Engineering
Department of Electrical Engineering and Computer Science

Revision C

1 Time Table

ASSIGNED Saturday, April 17th

DUE Week 15: April 27th − 29th, 10 minutes after your lab section starts

2 Overview

Now that the basic infrastructure for the video subsystem is complete, we can display an entire frame
of video on the screen. Still, however interesting the frame is, it is just a single frame (a static image!).
In order to make the video subsystem useful, we must have a means of changing the image that is to be
displayed.

What immediately comes to mind is to just change the contents of the frame buffer through the
MIPS150 processor. This definitely works: for example, to clear the entire screen, we could perform
480,000 sw operations (one for each pixel on the screen) and write the same color into all locations. As
it turns out, however, this approach has several shortcomings. First, it is memory intensive: we have to
allocate space for the sw instructions.1 Second, it wastes CPU time: the MIPS150 processor actually
has to perform all of the sw operations! Regardless of how we organize our code, given that the MIPS150
can only perform 1 sw per cycle, it will always take at least 480,000 CPU cycles to redraw an entire
frame. It will take less cycles if we only want to change a part of the frame, but it will consume CPU
cycles regardless.

In order to free up CPU time and resources when performing common graphics routines, we will
build a Line Drawing Engine (or “Vector Accelerator Engine”) that works alongside the processor
and frame buffer. The line engine is the deliverable in checkpoint 4. The job of the line engine is to
quickly draw a line from one set of x, y coordinates to another. This block will not only speed up the
line drawing process but also allow for the CPU to be doing other work while lines are being drawn.

We will be using the Bresenham Line Drawing Algorithm to to implement the the line engine.
The algorithm is explained later in this document using C. Your job will be to create a hardware
implementation for the given software routine.

3 Checkpoint Components

Your project, factoring in work done for checkpoint 3, now looks like what is shown in Figure 1.
Your goal in this checkpoint will be to implement the line engine in hardware. As mentioned in

Section 2, we have provided the software routine, that represents what your hardware implementation
will do, in Program 1.

1Depending on how we code the “clear screen” operation, it would take more or less space in instruction memory to store
all of the instructions necessary. For this example, we assume that all of the sw operations are in memory back-to-back to
optimize performance.

1

Figure 1 Your project circa checkpoint 4.

!""#$%%&
'$($#)*+#

,-.&
.(*$#/)0$

1#)2$&
34//$#

5+&,-.&
6789

6+:+#

;0#$$(&
6#"<

=8>$:&6+:+#

;0#$$(&
6#"

=8>$:&6+:+# ?@A

BCA

?DA

?@A

E8($&F(G8($

H$2+#I&
H)99$"&
.(*$#/)0$

H.=;BJ@&
=#+0$%%+#

K*7$#&"$L80$%

K*7$#&"$L80$%

=)%*&67$0M9+8(*%
67$0M9+8(*&D&N*78%&67$0M9+8(*OP

Q!R5&
.(*$#/)0$

F*7$#($*&
.(*$#/)0$

R'3&
=)""8(G

;0#$$(&
6#"

?@A
=8>$:&6+:+#

BCA BCA

;R!H&H$2+#I&
6+(*#+::$#

5+&;R!H
6789

The implementation shown in Program 1 works for drawing lines of any slope and for lines in any
quadrant of the 2D plane. Looking at the software implementation, think about how the MIPS150
processor would perform the line drawing algorithm if it had to in software. How long would drawing
an entire line take?

Given all of this, there is still a lingering issue: how the line engine will be told to start drawing a line
(and which line to draw). As with the other devices talking to MIPS150, the line engine communicates
over the memory mapped interface. Specifically, it occupies three addresses as shown in Table 1.

In Table 1, Ready is a single bit control signal that the MIPS150 CPU will poll to see if the line
engine is ready to receive new x0, x1, y0, y1, and color values. The coordinate values are all 10-bit
values and color is 16-bits.

The operation of the line engine is as follows:

1. On system reset, the line engine will set the Ready bit.

2. When the CPU is ready to draw a line, it will poll the Ready bit.

3. Since the Ready bit was high, the CPU will write x0, x1, y0, y1, and color into their appropriate
locations.

(a) Writing to 0x8040 004{0,4,8,c} and color (corresponding to Non-trigger registers for coor-
dinates and the color register, respectively) will simply tell the line engine about that value.

(b) Writing to 0x8040 005{0,4,8,c} (corresponding to the Trigger registers for coordinates) will
tell the line engine about that value and tell the line engine to start drawing the line.

4. The line engine will clear Ready while it is drawing the line (the CPU must be sure to not modify
any of the line engine’s memory map locations during this time).

5. When the line engine is finished, it will set Ready again and the CPU will be able to write more
coordinates.

This scheme enables some optimizations on the software side. If you want to draw multiple lines that
share everything but a single x or y value, simply write to the corresponding trigger register multiple
times in a row without writing to other registers. (Obviously, many other combinations of trigger/non-
trigger registers are possible.) Try to come up with some interesting algorithms for drawing unique
pictures!

2

Program 1 Bresenham Line Drawing Algorithm in C.

#define SWAP(x , y) (x ˆ= y ˆ= x ˆ= y)
#define ABS(x) (((x)<0) ? −(x) : (x))

void l i n e (int x0 , int y0 , int x1 , int y1) {
char s t eep = (ABS(y1 − y0) > ABS(x1 − x0)) ? 1 : 0 ;
i f (s t eep) {

SWAP(x0 , y0) ;
SWAP(x1 , y1) ;

}
i f (x0 > x1) {

SWAP(x0 , x1) ;
SWAP(y0 , y1) ;

}
int de l tax = x1 − x0 ;
int de l tay = ABS(y1 − y0) ;
int e r r o r = de l tax / 2 ;
int ystep ;
int y = y0
int x ;
ystep = (y0 < y1) ? 1 : −1;
for (x = x0 ; x <= x1 ; x++) {

i f (s t eep)
p l o t (y , x) ;

else
p lo t (x , y) ;

e r r o r = e r r o r − de l tay ;
i f (e r r o r < 0) {

y += ystep ;
e r r o r += de l tax ;

}
}

}

Table 1 Map of the line engine address space.

Addresses Read/Write Composed of . . .
Control register 0x8040 0064 R Ready
Color register 0x8040 0060 W color

Trigger registers

0x8040 005c W y1

0x8040 0058 W x1

0x8040 0054 W y0

0x8040 0050 W x0

Non-trigger registers

0x8040 004c W y1

0x8040 0048 W x1

0x8040 0044 W y0

0x8040 0040 W x0

3

4 Architectural Concerns

Your goal after implementing the line drawing algorithm shown in Program 1 is to write one new pixel
to the frame buffer every cycle. Contrast this performance with that which you would be able to obtain
from the MIPS150 processor running the algorithm in pure software. Know that in order to meet timing,
you may have to pipeline your implementation.

One of the last things to consider is the fact that the Line Engine is not the only thing trying to
access the SRAM. There will be times when the Line Engine is attempting to write during a cycle when
the SRAM arbiter is not able to accept a write from the Line Engine. To support flexibility in memory
arbitration, your Line Engine must also support the ability to stall. It should accept a signal, stall,
that, whenever high, halts the operation of your Line Engine’s pipeline. Line coordinates that are not
able to be written must not be lost. The Line Engine should commit writes whenever it can.

Rev. Name Date Description
C Kyle Wecker 4/17/2010 Modified to be consistent with the Spring 2010 project specifi-

cation.

B Chris Fletcher 4/21/2009 Clarified how the line engine starts an operation (added in-

formation about the difference between writing to address

0x8040 0040 and address 0x8040 0044.

A Chris Fletcher

Ilia Lebedev

3/26/2009 Wrote new Document

4

mailto:wecker@berkeley.edu
http://cwfletcher.net/
http://cwfletcher.net/
http://ilebedev.net/

	Time Table
	Overview
	Checkpoint Components
	Architectural Concerns

