University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science

EECS150, Spring 2010

Quiz 2: February 5th

In this problem, you will map the ALU BitSlice that you built in this week's lab into a simplified Virtex-5 CLB (shown in Figure 1). This CLB is composed of two ordinary Virtex-5 6LUTs and an FMUX between them. The ALU BitSlice must support the following inputs and outputs:

a, input, 1 bit : The first operand.

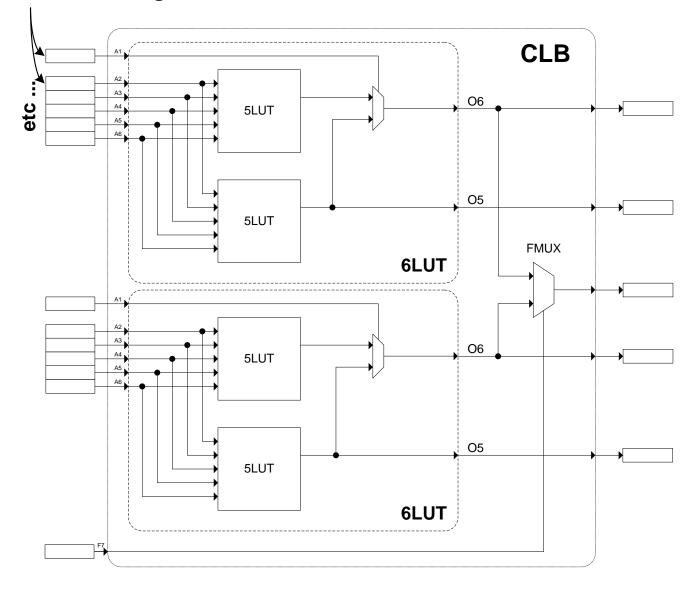
b, input, 1 bit : The second operand.

 c_{in} , input, 1 bit : The carry-in.

Result, output, 1 bit : The result of the operation.

*c*_{out}, output, 1 bit : The carry-out.

ALUOp, input, 3 bits : The ALUOp.


This is exactly the same port specification as the ALU BitSlice in Lab 2. In case you don't remember, the *ALUOp* encoding from the lab is shown in Table 1. To answer the question, fill in the boxes con-

Binary Code	Operation
000	Result = a + b
001	Result = a - b
010	Result = a & b (bit-wise and)
011	<i>Result</i> = $a \mid b$ (bit-wise <i>or</i>)
100	<i>Result</i> = $a \otimes b$ (bit-wise <i>xor</i>)
101	<i>Result</i> = $\sim a$ (bit-wise <i>not</i>)
110	Result = a (passthrough)
111	unused

Table 1: *ALUOp* operation encoding

nected to each SLICEL input/output pin in Figure 1. You may fill each box in with one of the ALU BitSlice's inputs/outputs (a or c_{out} , for example), a constant logic 1/0, or label the input/output "nc" (not connected). You may or may not need all of the SLICEL logic provided.

Use as little logic as you can!

Your answers go in the boxes

Figure 1: Simplified CLB.