
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Science

EECS150, Spring 2010

Quiz 2: February 5th

Solution

One possible input/output assignment is shown below:

cout

5LUT A

5LUT B

O6

O5

a

nc

b

cin

nc

nc

A3

A2

A1

A4

A5

A6

6LUT

5LUT

5LUT

O6

O5

a

ALUOp[2]

b

cin

ALUOp[1]

ALUOp[0]

A3

A2

A1

A4

A5

A6

6LUT

nc
F7

CLB

Result

FMUX

Your answers go in the boxes

e
tc

 .
..

Many others exist as well. The important part to notice is that this circuit cannot be packed into
2× 5-LUTs. First, in order to build the 6-input function, you need to (at least) cascade the 2× 5-LUTs
together and use the MUX between them. In addition, however, you have to ensure that 5 of the 6 inputs
are shared between the 2× 5-LUTs and that the right output comes out of each of the two output ports
(one for the Result and one for the cout) for every possible function. As it turns out, you cannot create
a correct assignment with this CLB and ALUOp encoding.

Rationale: The rationale will be in two parts. The first part will explain why you have to use a bit
of the ALUOp as the select bit into the MUX between the 2× 5-LUTs. The second part will show why
the assignment (even with one of the three ALUOp bits as the select bit) still doesn’t work out.

1



To derive the correct result in all cases, you need to account for the Result regardless of the ALUOp
value, and the cout for when the ALUOp is addition or subtraction. In all cases, you must get the cout

from the LUT whose output only conditionally goes through the MUX (we will call this the 5-LUT B -
see the top 6-LUT in the diagram for which 5-LUT is which). This is because you can always determine
the cout through only knowing a, b, and cin (three inputs). Result, on the other hand, depends on the
ALUOp as well (which is why it must be determined from the output of the MUX between the two
5-LUTs.

Now, given that cout must come from the 5-LUT B, we must make sure that it is always generated
correctly and that it does not conflict with the Result. If the select bit into the MUX is one of a, b, or
cin, then 5-LUT B and 5-LUT A generate these functions (respectively) during an addition operation:

1. Sum when a = 0, Sum when a = 1

2. Sum when b = 0, Sum when b = 1

3. Sum when cin = 0, Sum when cin = 1

Likewise for subtraction. Unfortunately, one of the two 5-LUTs must be generating the cout. Since
both are busy generating variants of the sum, we can’t get a cout using any of these encodings.

Thus, an ALUOp bit must instead be used as the MUX select bit. With this scheme, 5-LUT B can
generate the cout and 5-LUT A can generate the result. Now, we have to check to see if we always get
the correct answer (for both the Result and cout) when we use one of the ALUOp bits as the MUX
select bit.

We will start with ALUOp[0] first. If we use ALUOp[0], then 5-LUT B generates the +, &, ⊗, and
passthrough functions (the rest are generated by 5-LUT A, or visa-versa depending on which input to
the MUX corresponds to the select bit being high and low). Notice that with this encoding (if + does
indeed come out of 5-LUT B), − must come out of 5-LUT A. But this means that the cout and Result
come out of different outputs, depending on the function, which can’t ever work! Thus, ALUOp[0] will
not yield the correct result in all cases.

We look to ALUOp[1] next. Consider only the +, −, &, and | operations. If we use ALUOp[1] as
the select bit, + and − must come from 5-LUT A and the other two operations must come from 5-LUT
B. This is because while we computing + and −, 5-LUT B must generate the cout. But now we have a
problem: the ALUOp encoding for those four operations (if you remove ALUOp[1]) is ambiguous. See
below:

000 +
001 -
010 &
011 |

becomes (if we remove ALUOp[1]):

0 0 +
0 1 -
0 0 &
0 1 |

2



We said that 5-LUT A generates the sum/difference and that 5-LUT B generates the cout. Because
of the ambiguity, however, 5-LUT B still generates the cout when we really want it to generate the &
and |. So, this encoding won’t work either.

Finally, we turn our focus to ALUOp[2]. With this bit as the select into the MUX, we have the same
type of problem as we had with ALUOp[1] (consider the +, −, ⊗ and ∼ operations this time around).

Thus, we can’t pack this circuit into a single 6-LUT and must instead use 2× 6-LUTs.

3


