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Consider the following circuit for questions 1-2:
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1. Write a Verilog description of the circuit, using continuous assignment wherever possible.

For each of the combinational signals, write down the equation based on the gates in the circuit.
Assigns can be used for all the combinational signals in the circuit. The always@(posedge Clock)
block implements a Clock edge-triggered propagation of N data to S (flipflops). Notice S is a reg
because it is assigned to in an always block, while N is declared as a wire. Synchronous Reset
for the flipflops was intended, but this was not graded since the problem and circuit diagram did
not specify how to use the Reset signal.
module Q u i z C i r c u i t ( Clock , Rese t , In , Out ) ;

input Clock , Rese t , In ;
output Out ;

reg [ 1 : 0 ] S ;
wire [ 1 : 0 ] N;

always @ ( posedge Clock ) begin
i f ( R e s e t ) S <= 2 ’ b00 ;
e l s e S <= N;

end

a s s i g n N[ 1 ] = ( ˜ S [1 ]&˜ In ) | ( S[0]& In ) ;
a s s i g n N[ 0 ] = ˜ ( S [ 0 ] | S [ 1 ] ) ;
a s s i g n Out = S [ 1 ] ˆ S [ 0 ] ;

endmodule
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2. Write a Verilog description of the circuit, using only always blocks. The most straight forward
way is to assign the N and Out signals as above, with the always block syntax. Combinational
logic can be implemented inside of always@* block. Since the three signals N[1], N[0], and Out
do not depend on each other, they can be assigned in the always block in any order safely. Notice
Out and N are reg because they are assigned in an always block.

module Q u i z C i r c u i t ( Clock , Rese t , In , Out ) ;
input Clock , Rese t , In ;
output reg Out ;

reg [ 1 : 0 ] S , N;

always @ ( posedge Clock ) begin
i f ( R e s e t ) S <= 2 ’ b00 ;
e l s e S <= N;

end

always @ ∗ begin
N[ 1 ] = ( ˜ S [1 ]&˜ In ) | ( S[0]& In ) ;
N[ 0 ] = ˜ ( S [ 0 ] | S [ 1 ] ) ;
Out = S [ 1 ] ˆ S [ 0 ] ;

end
endmodule

An alternate implementation is to use a case statement for assigning N, which looks like a state
machine. One way to figure this out is to write the truth table for N[1], N[0].

S[1] S[0] In N[1] N[0]
0 0 0 1 1
0 0 1 0 1
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 0

For each of the four cases for the value of S, assign N based on the input In.

module Q u i z C i r c u i t ( Clock , Rese t , In , Out ) ;
input Clock , Rese t , In ;
output reg Out ;

reg [ 1 : 0 ] S , N;

always @ ( posedge Clock ) begin
i f ( R e s e t ) S <= 2 ’ b00 ;
e l s e S <= N;

end

always @ ∗ begin
Out = S [ 1 ] ˆ S [ 0 ] ;

case ( S )
2 ’ b00 : begin
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i f ( In ) N = 2 ’ b01 ;
e l s e N = 2 ’ b11 ;

end
2 ’ b01 : N = 2 ’ b10 ;
2 ’ b10 : N = 2 ’ b00 ;
2 ’ b11 : begin

i f ( In ) N = 2 ’ b10 ;
e l s e N = 2 ’ b00 ;

end
endcase

end
endmodule

The state-transition diagram is shown below.
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