Overview of Physical Implementations

The stuff out of which we make systems.

- Integrated Circuits (ICs)
 - Combinational logic circuits, memory elements, analog interfaces.
- Printed Circuits (PC) boards
 - Substrate for ICs and interconnection, distribution of CLK, Vdd, and GND signals, heat dissipation.
- Power Supplies
 - Converts line AC voltage to regulated DC low voltage levels.
- Chassis (rack, card case, ...)
 - Holds boards, power supply, fans, provides physical interface to user or other systems.
- Connectors and Cables.
Printed Circuit Boards

- fiberglass or ceramic
- 1-25 conductive layers
- ~1-20in on a side
- IC packages are soldered down.

Multichip Modules (MCMs)

- Multiple chips directly connected to a substrate. (silicon, ceramic, plastic, fiberglass) without chip packages.

Integrated Circuits

- Primarily Crystalline Silicon
- 1mm - 25mm on a side
- 100 - 1000M transistors
- [25 - 250M "logic gates"]
- 3 - 10 conductive layers
- 2012 - feature size ~ 28nm = 0.028 x 10^6 m
- "CMOS" most common - complementary metal oxide semiconductor

Chip in Package

- Package provides:
 - spreading of chip-level signal paths to board-level
 - heat dissipation.
- Ceramic or plastic with gold wires.
Integrated Circuits

- Moore’s Law has fueled innovation for the last 3 decades.

- "Number of transistors on a die doubles every 18 months."

- What are the consequences of Moore’s law?

Chip-level Function Implementation Alternatives

- **Full-custom**: All circuits/transistor layouts optimized for application.
- **Standard-cell**: Arrays of small function blocks (gates, FFs) automatically placed and routed.
- **Gate-array**: Partially prefabricated wafers customized with metal layers.
- **FPGA**: Prefabricated chips customized with switches and wires.
- **Microprocessor**: Instruction set interpreter customized through software.
- **Domain Specific Processor**: (DSP, NP, GPU).

What are the important metrics of comparison?
Why FPGAs?

A tradeoff exists between NRE* cost and manufacturing costs:

The ASIC approach is only viable for products with very high volume (where NRE could be amortized), and which were not time to market (TTM) sensitive. Cross-over point has moved to the right (favoring FPGA) implementation as ASIC NREs have increased.

*Non-recurring Engineering Costs

CMOS Devices

- MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

Top View

The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation, the device acts like a switch.

- nFET \(V_{gs} = '0' \)
- pFET \(V_{gs} = '1' \)
Transistor-level Logic Circuits

Inverter (NOT gate):

NAND gate:

How about AND gate?

Note:

- out = 0 iff a AND b =1 therefore out = (ab)'
- pFET network and nFET networks are duals of one another.

Transistor-level Logic Circuits

Simple rule for wiring up MOSFETs:

nFET is used only to pass logic zero.
pFET is used only to pass logic one.

For example, consider the NAND gate:

Note: This rule is sometimes violated by expert designers under special conditions.
Transistor-level Logic Circuits

NOR gate:

Note:
• out = 0 iff a OR b = 1 therefore out = (a+b)'
• Again pFET network and nFET networks are duals of one another.

Other more complex functions are possible. Ex: out = (a+bc)'

CMOS Logic Gates in General

Pull-up network conducts under conditions to generate a logic 1 output

Pull-down network conducts for logic 0 output

Conductance must be mutually exclusive - else, short circuit!

Pull-up and pull-down networks are "topological duals"
Transmission Gate

- Transmission gates are the way to build “switches” in CMOS.
- In general, both transistor types are needed:
 - nFET to pass zeros.
 - pFET to pass ones.
- The transmission gate is bi-directional (unlike logic gates).

- Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Transmission-gate Multiplexor

2-to-multiplexor:
\[C = s_0a + s'b \]

Switches simplify the implementation:

Compare the cost to logic gate implementation.
4-to-1 Transmission-gate Mux

- The series connection of pass-transistors in each branch effectively forms the AND of s1 and s0 (or their complement).

- Compare cost to logic gate implementation

Alternative 4-to-1 Multiplexor

- This version has less delay from in to out.

- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).
Tri-state Buffers

Tri-state Buffers are used when multiple circuits all connect to a common wire. Only one circuit at a time is allowed to drive the bus. All others “disconnect” their outputs, but can “listen”.

Tri-state Buffers enable “bidirectional” connections.

Variations:

Tri-state Buffer:

<table>
<thead>
<tr>
<th>CE</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

“high impedance” (output disconnected)

Inverting buffer

Inverted enable
Tri-state Based Multiplexor

If \(s = 1 \) then \(c = a \) else \(c = b \)

Transistor Circuit for inverting multiplexor:

Latches and Flip-flops

Positive level-sensitive latch:

Positive Edge-triggered flip-flop

built from two level-sensitive latches:

Latch Implementation: