Performance, Cost, Power

- How do we measure performance? operations/sec? cycles/sec?
- Performance is directly proportional to clock frequency. Although it may not be the entire story:
 Ex: CPU performance
 \[\text{performance} = \# \text{ instructions} \times \text{CPI} \times \text{clock period} \]
Timing Analysis

ARM processor Microarch

Timing Analysis
What is the smallest T that produces correct operation?

<table>
<thead>
<tr>
<th>f</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MHz</td>
<td>1 μs</td>
</tr>
<tr>
<td>10 MHz</td>
<td>100 ns</td>
</tr>
<tr>
<td>100 MHz</td>
<td>10 ns</td>
</tr>
<tr>
<td>1 GHz</td>
<td>1 ns</td>
</tr>
</tbody>
</table>

Timing Analysis and Logic Delay

If $T >$ worst-case delay through CL, does this ensure correct operation?
Limitations on Clock Rate

1 Logic Gate Delay

What are typical delay values?

2 Delays in flip-flops

Both times contribute to limiting the clock period.

• What must happen in one clock cycle for correct operation?
 - All signals connected to FF (or memory) inputs must be ready and “setup” before rising edge of clock.
 - For now we assume perfect clock distribution (all flip-flops see the clock at the same time).

Example

Parallel to serial converter circuit

\[T \geq \text{time}(\text{clk}\to Q) + \text{time}(ext{mux}) + \text{time(setup)} \]
\[T \geq \tau_{\text{clk}\to Q} + \tau_{\text{mux}} + \tau_{\text{setup}} \]
In General ...

For correct operation:

\[T \geq \tau_{\text{clk-to-Q}} + \tau_{\text{CL}} + \tau_{\text{setup}} \]

for all paths.

• How do we enumerate all paths?
 - Any circuit input or register output to any register input or circuit output?

• Note:
 - "setup time" for outputs is a function of what it connects to.
 - "clk-to-q" for circuit inputs depends on where it comes from.

CMOS Delay: Transistors as water valves

If electrons are water molecules, and a capacitor a bucket ...

A “on” p-FET fills up the capacitor with charge.

A “on” n-FET empties the bucket.

This model is often good enough ...
Transistors as Conductors

- Improved Transistor Model: nFET
 - We refer to transistor "strength" as the amount of current that flows for a given V_{ds} and V_{gs}.
 - The strength is linearly proportional to the ratio of W/L.

- pFET

Gate Delay is the Result of Cascading

- Cascaded gates:
 - "transfer curve" for inverter.

In general, prop. delay = sum of individual prop. delays of gates in series.
Delay in Flip-flops

- **Setup time** results from delay through *first* latch.

 ![Diagram of setup time]

- **Clock to Q delay** results from delay through *second* latch.

 ![Diagram of clock to Q delay]

Wire Delay

- Ideally, wires behave as "transmission lines":
 - Signal wave-front moves close to the speed of light
 - ~1ft/ns
 - Time from source to destination is called the "transit time".
 - In ICs most wires are short, and the transit times are relatively short compared to the clock period and can be ignored.
 - Not so on PC boards.
Wire Delay

- Even in those cases where the transmission line effect is negligible:
 - Wires posses distributed resistance and capacitance
 - Time constant associated with distributed RC is proportional to the square of the length

- For short wires on ICs, resistance is insignificant (relative to effective R of transistors), but C is important.
 - Typically around half of C of gate load is in the wires.

- For long wires on ICs:
 - Busses, clock lines, global control signal, etc.
 - Resistance is significant, therefore distributed RC effect dominates.
 - Signals are typically "rebuffered" to reduce delay:

Delay and "Fan-out"

- The delay of a gate is proportional to its output capacitance. Connecting the output of gate to more than one other gate increases it's output capacitance. It takes increasingly longer for the output of a gate to reach the switching threshold of the gates it drives as we add more output connections.

- Driving wires also contributes to fan-out delay.

- What can be done to remedy this problem in large fan-out situations?
"Critical" Path

- **Critical Path**: the path in the entire design with the maximum delay.
 - This could be from state element to state element, or from input to state element, or state element to output, or from input to output (unregistered paths).
- For example, what is the critical path in this circuit?

![Circuit Diagram]

- Why do we care about the *critical path*?

Components of Path Delay

- # of levels of logic
- Internal cell delay
- Wire delay
- Cell input capacitance
- Cell fanout
- Cell output drive strength
Who controls the delay?

<table>
<thead>
<tr>
<th></th>
<th>Silicon foundary engineer</th>
<th>Cell Library Developer, FPGA-chip designer</th>
<th>CAD Tools (logic synthesis, place and route)</th>
<th>Designer (you)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. # of levels</td>
<td></td>
<td>synthesis</td>
<td>RTL</td>
<td></td>
</tr>
<tr>
<td>2. Internal cell delay</td>
<td>physical parameters</td>
<td>cell topology, trans sizing</td>
<td>cell selection</td>
<td></td>
</tr>
<tr>
<td>3. Wire delay</td>
<td>physical parameters</td>
<td>place & route</td>
<td>layout generator</td>
<td></td>
</tr>
<tr>
<td>4. Cell input capacitance</td>
<td>physical parameters</td>
<td>cell topology, trans sizing</td>
<td>cell selection</td>
<td></td>
</tr>
<tr>
<td>5. Cell fanout</td>
<td></td>
<td>synthesis</td>
<td>RTL</td>
<td></td>
</tr>
<tr>
<td>6. Cell drive strength</td>
<td>physical parameters</td>
<td>transistor sizing</td>
<td>cell selection</td>
<td>instantiation (ASIC)</td>
</tr>
</tbody>
</table>

Spring 2013

EECS150 - Lec16-timing1

Page 17

Searching for processor critical path

Must consider all connected register pairs, paths from input to register, register to output. Don't forget the controller.

- Design tools help in the search.
- **Synthesis tools** report delays on paths,
- Special **static timing analyzers** accept a design netlist and report path delays,
- and, of course, **simulators** can be used to determine timing performance.

Tools that are expected to **do something** about the timing behavior (such as synthesizers), also include provisions for specifying input arrival times (relative to the clock), and output requirements (set-up times of next stage).
Real Stuff: Timing Analysis

Most paths have hundreds of picoseconds to spare.

Spring 2013 EECS150 - Lec:16-timing1 Page 19

Clock Skew

- Unequal delay in distribution of the clock signal to various parts of a circuit:
 - if not accounted for, can lead to erroneous behavior.
 - Comes about if:
 - clock wires have different delay,
 - circuit is designed with a different number of clock buffers from the clock source to the various clock loads, or
 - buffers have unequal delay.
 - All synchronous circuits experience some clock skew:
 - more of an issue for high-performance designs operating with very little extra time per clock cycle.
Clock Skew (cont.)

• If clock period $T = T_{\text{CL}} + T_{\text{setup}} + T_{\text{clk} \rightarrow Q}$, circuit will fail.

• Therefore:
 1. Control clock skew
 a) Careful clock distribution. Equalize path delay from clock source to all clock loads by controlling wires delay and buffer delay.
 b) don’t “gate” clocks in a non-uniform way.
 2. $T \geq T_{\text{CL}} + T_{\text{setup}} + T_{\text{clk} \rightarrow Q} + \text{worst case skew}$.

• Most modern large high-performance chips (microprocessors) control end to end clock skew to a small fraction of the clock period.

Clock Skew (cont.)

• Note reversed buffer.

• In this case, clock skew actually provides *extra time* (adds to the effective clock period).

• This effect has been used to help run circuits as higher clock rates. Risky business!
Real Stuff: Floorplanning Intel XScale 80200
Clock Tree Delays, IBM Power