Counters

• Special sequential circuits (FSMs) that repeatedly sequence through a set of outputs.
• Examples:
 - binary counter: 000, 001, 010, 011, 100, 101, 110, 111, 000,
 - gray code counter:
 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, ...
 - one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, ...
 - BCD counter: 0000, 0001, 0010, ..., 1001, 0000, 0001
 - pseudo-random sequence generators: 10, 01, 00, 11, 10, 01, 00, ...
• Moore machines with “ring” structure in State Transition Diagram:
What are they used?

- Counters are commonly used in hardware designs because most (if not all) computations that we put into hardware include iteration (looping). Examples:
 - Shift-and-add multiplication scheme.
 - Bit serial communication circuits (must count one “words worth” of serial bits).
- Other uses for counter:
 - Clock divider circuits
 - Systematic inspection of data-structures
 - Example: Network packet parser/filter control.
- Counters simplify “controller” design by:
 - providing a specific number of cycles of action,
 - sometimes used with a decoder to generate a sequence of timed control signals.
 - Consider using a counter when many FSM states with few branches.

Controller using Counters

Example, Bit-serial multiplier (n^2 cycles, one bit of result per n cycles):

```
repeat n cycles {  // outer (i) loop
  repeat n cycles {  // inner (j) loop
    shiftA, selectSum, shiftHI
  }
  shiftB, shiftHI, shiftLOW, reset
}
```

Note: The occurrence of a control signal x means $x=1$. The absence of x means $x=0$.

![Diagram of controller using counters](image-url)
Controller using Counters

- **State Transition Diagram:**
 - Assume presence of two binary counters. An "i" counter for the outer loop and "j" counter for inner loop.

 TC is asserted when the counter reaches its maximum count value.
 CE is "count enable". The counter increments its value on the rising edge of the clock if CE is asserted.

- **Controller circuit implementation:**

 ![Controller Circuit Diagram]

 - Outputs:
 - \(CE_i = q_2 \)
 - \(CE_j = q_1 \)
 - \(RST_i = q_0 \)
 - \(RST_j = q_2 \)
 - \(shiftA = q_1 \)
 - \(shiftB = q_2 \)
 - \(shiftLOW = q_2 \)
 - \(shiftHI = q_1 + q_2 \)
 - \(reset = q_2 \)
 - \(selectSUM = q_1 \)
How do we design counters?

- For binary counters (most common case) incrementer circuit would work:

![Incrementer Circuit Diagram](image)

- In Verilog, a counter is specified as: \(x = x+1; \)
 - This does not imply an adder
 - An incrementer is simpler than an adder
 - And a counter might be simpler yet.

- In general, the best way to understand counter design is to think of them as FSMs, and follow general procedure, however some special cases can be optimized.

Synchronous Counters

All outputs change with clock edge.

- Binary Counter Design:
 Start with 3-bit version and generalize:

\[
\begin{array}{ccc|ccc|c}
 a & b & c & c'b' & a' & c' = ab' + a'b' + abc \\
 0 & 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0 & 1 & 0 \\
 0 & 1 & 1 & 1 & 0 & 0 \\
 1 & 0 & 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 & 1 & 0 \\
 1 & 1 & 0 & 1 & 1 & 1 \\
 1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{align*}
a^+ &= a' \\
b^+ &= a \oplus b \\
c^+ &= abc' + a'b'c + ab'c + a'bc \\
&= a'c + abc' + b'c \\
&= c(a' + b') + c'(ab) \\
&= c(ab) + c'(ab) \\
&= c \oplus ab
\end{align*}
\]
Synchronous Counters

- How do we extend to n-bits?
- Extrapolate \(c^+ : d^+ = d \oplus abc, \ e^+ = e \oplus abcd \)

- Has difficulty scaling (AND gate inputs grow with \(n \))

- CE is "count enable", allows external control of counting,
- TC is "terminal count", is asserted on highest value, allows cascading, external sensing of occurrence of max value.

Synchronous Counters

- How does this one scale?
 - Delay grows \(\alpha n \)
- Generation of TC signals very similar to generation of carry signals in adder.
 - “Parallel Prefix” circuit reduces delay:
Odd Counts

- Extra combinational logic can be added to terminate count before max value is reached:
- Example: count to 12

Alternative:

reset

4-bit binary counter

= 11 ?

4

load

4-bit binary counter

TC
Ring Counters

- "one-hot" counters
 0001, 0010, 0100, 1000, 0001, ...

 "Self-starting" version:

 What are these good for?

Johnson Counter

(a) Four-stage switch-tail ring counter

(b) Count sequence and required decoding
Asynchronous “Ripple” counters

Each stage is $\times 2$ of previous.

Look at output waveforms:

Often called “asynchronous” counters.

A “T” flip-flop is a “toggle” flip-flop. Flips it state on cycles when $T=1$.

Linear Feedback Shift Registers (LFSRs)

These are n-bit counters exhibiting *pseudo-random* behavior.

Built from simple shift-registers with a small number of xor gates.

Used for:
- random number generation
- counters
- error checking and correction

Advantages:
- very little hardware
- high speed operation

Example 4-bit LFSR:
4-bit LFSR

- Circuit counts through $2^4 - 1$ different non-zero bit patterns.
- Leftmost bit decides whether the “10011” xor pattern is used to compute the next value or if the register just shifts left.
- Can build a similar circuit with any number of FFs, may need more xor gates.
- In general, with n flip-flops, $2^n - 1$ different non-zero bit patterns.
- (Intuitively, this is a counter that wraps around many times and in a strange way.)

Applications of LFSRs

- Performance:
 - In general, xors are only ever 2-input and never connect in series.
 - Therefore the minimum clock period for these circuits is:
 \[T > T_{2\text{-input-xor}} + \text{clock overhead} \]
 - Very little latency, and independent of n!
- This can be used as a fast counter, if the particular sequence of count values is not important.
 - Example: micro-code micro-pc
- Can be used as a random number generator.
 - Sequence is a pseudo-random sequence:
 - numbers appear in a random sequence
 - repeats every $2^n - 1$ patterns
 - Random numbers useful in:
 - computer graphics
 - cryptography
 - automatic testing
- Used for error detection and correction
 - CRC (cyclic redundancy codes)
 - ethernet uses them
Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a field.
- A field is defined as a set with the following:
 - two operations defined on it:
 - “addition” and “multiplication”
 - closed under these operations
 - associative and distributive laws hold
 - additive and multiplicative identity elements
 - additive inverse for every element
 - multiplicative inverse for every non-zero element

Example fields:
- set of rational numbers
- set of real numbers
- set of integers is *not* a field (why?)

Finite fields are called Galois fields.

Example:
- Binary numbers 0,1 with XOR as “addition” and AND as “multiplication”.
- Called GF(2).

Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^n is either present or absent.
- Examples: 0, 1, x, x^2, and $x^7 + x^6 + 1$

\[
= 1 \cdot x^7 + 1 \cdot x^6 + 0 \cdot x^5 + 0 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2 + 0 \cdot x + 1 \cdot x^0
\]

- With addition and multiplication these form a field:
- “Add”: XOR each element individually with no carry:

\[
\begin{array}{c}
\frac{x^4 + x^3 + x + 1}{x^3 + x^2 + x + 1}
\end{array}
\]

- “Multiply”: multiplying by x^n is like shifting to the left.

\[
\begin{array}{c}
\frac{x^2 + x + 1}{x^3 + x^2 + x + 1}
\end{array}
\]

\[
\begin{array}{c}
\frac{x + 1}{x^2 + x + 1}
\end{array}
\]
Galois Fields - The theory behind LFSRs

- These polynomials form a Galois (finite) field if we take the results of this multiplication modulo a prime polynomial \(p(x) \).
 - A prime polynomial is one that cannot be written as the product of two non-trivial polynomials \(q(x)r(x) \).
 - Perform modulo operation by subtracting a (polynomial) multiple of \(p(x) \) from the result. If the multiple is 1, this corresponds to XOR-ing the result with \(p(x) \).
- For any degree, there exists at least one prime polynomial.
- With it we can form \(GF(2^n) \).

Additionally, …
- Every Galois field has a primitive element, \(\alpha \), such that all non-zero elements of the field can be expressed as a power of \(\alpha \). By raising \(\alpha \) to powers (modulo \(p(x) \)), all non-zero field elements can be formed.
- Certain choices of \(p(x) \) make the simple polynomial \(x \) the primitive element. These polynomials are called primitive, and one exists for every degree.
- For example, \(x^4 + x + 1 \) is primitive. So \(\alpha = x \) is a primitive element and successive powers of \(\alpha \) will generate all non-zero elements of \(GF(16) \). Example on next slide.

\[
\begin{align*}
\alpha^0 &= 1 \\
\alpha^1 &= x \\
\alpha^2 &= x^2 \\
\alpha^3 &= x^3 \\
\alpha^4 &= x + 1 \\
\alpha^5 &= x^2 + x \\
\alpha^6 &= x^3 + x^2 \\
\alpha^7 &= x^3 + x + 1 \\
\alpha^8 &= x^2 + 1 \\
\alpha^9 &= x^3 + x \\
\alpha^{10} &= x^2 + x + 1 \\
\alpha^{11} &= x^3 + x^2 + x \\
\alpha^{12} &= x^3 + x^2 + x + 1 \\
\alpha^{13} &= x^3 + x^2 + 1 \\
\alpha^{14} &= x^3 + 1 \\
\alpha^{15} &= 1
\end{align*}
\]

- Note this pattern of coefficients matches the bits from our 4-bit LFSR example.

\[
\alpha^4 = x^4 \mod x^4 + x + 1 \\
= x^4 \text{xor } x^4 + x + 1 \\
= x + 1
\]

- In general finding primitive polynomials is difficult. Most people just look them up in a table, such as:

Primitive Polynomials

\[
\begin{align*}
x^2 + x + 1 & \quad x^{12} + x^6 + x^4 + x + 1 & \quad x^{22} + x + 1 \\
x^3 + x + 1 & \quad x^{13} + x^4 + x^3 + x + 1 & \quad x^{23} + x^5 + 1 \\
x^4 + x + 1 & \quad x^{14} + x^{10} + x^6 + x + 1 & \quad x^{24} + x^7 + x^2 + x + 1 \\
x^5 + x^2 + 1 & \quad x^{15} + x + 1 & \quad x^{25} + x^3 + 1 \\
x^6 + x + 1 & \quad x^{16} + x^{12} + x^3 + x + 1 & \quad x^{26} + x^6 + x^2 + x + 1 \\
x^7 + x^3 + 1 & \quad x^{17} + x^3 + 1 & \quad x^{27} + x^5 + x^2 + x + 1 \\
x^8 + x^4 + x^3 + x^2 + 1 & \quad x^{18} + x^7 + 1 & \quad x^{28} + x^3 + 1 \\
x^9 + x^4 + 1 & \quad x^{19} + x^5 + x^2 + x + 1 & \quad x^{29} + x + 1 \\
x^{10} + x^3 + 1 & \quad x^{20} + x^3 + 1 & \quad x^{30} + x^6 + x^4 + x + 1 \\
x^{11} + x^2 + 1 & \quad x^{21} + x^2 + 1 & \quad x^{31} + x^3 + 1 \\
\end{align*}
\]

Galois Field

<table>
<thead>
<tr>
<th>Multiplication by x</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Leftrightarrow shift left</td>
<td>\Leftrightarrow XOR-ing with the coefficients of $p(x)$ when the most significant coefficient is 1.</td>
</tr>
</tbody>
</table>

Taking the result mod $p(x)$ \Leftrightarrow Shifting and XOR-ing 2^{n-1} times.

Obtaining all $2^n - 1$ non-zero elements by evaluating x^k for $k = 1, \ldots, 2^n - 1$

Building an LFSR from a Primitive Polynomial

- For k-bit LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form $x^k + \ldots + 1$.
- The $x^i = 1$ term corresponds to connecting the feedback directly to the D input of FF 1.
- Each term of the form x^n corresponds to connecting an xor between FF n and $n + 1$.
- 4-bit example, uses $x^4 + x + 1$
 - $x^4 \Leftrightarrow$ FF4’s Q output
 - $x \Leftrightarrow$ xor between FF1 and FF2
 - $1 \Leftrightarrow$ FF1’s D input
- To build an 8-bit LFSR, use the primitive polynomial $x^8 + x^4 + x^3 + x^2 + 1$ and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.
Error Correction with LFSRs

- XOR Q4 with incoming bit sequence. Now values of shift-register don’t follow a fixed pattern. Dependent on input sequence.
- Look at the value of the register after 15 cycles: “1010”
- Note the length of the input sequence is $2^4 - 1 = 15$ (same as the number of different nonzero patterns for the original LFSR)
- Binary message occupies only 11 bits, the remaining 4 bits are “0000”.
 - They would be replaced by the final result of our LFSR: “1010”
 - If we run the sequence back through the LFSR with the replaced bits, we would get “0000” for the final result.
 - 4 parity bits “neutralize” the sequence with respect to the LFSR.
- If parity bits not all zero, an error occurred in transmission.
- If number of parity bits = log total number of bits, then single bit errors can be corrected.
- Using more parity bits allows more errors to be detected.
- Ethernet uses 32 parity bits per frame (packet) with 16-bit LFSR.