
4/19/04 ©UCB Spring 2004 CS152 / Kubiatowicz
Lec21.25

How big is the translation (page) table?

° Simplest way to implement “fully associative” lookup
policy is with large lookup table.

° Each entry in table is some number of bytes, say 4

° With 4K pages, 32- bit address space, need:
232/4K = 220 = 1 Meg entries x 4 bytes = 4MB

° With 4K pages, 64-bit address space, need:
264/4K = 252 entries = BIG!

° Can’t keep whole page table in memory!

Virtual Page Number Page Offset

4/19/04 ©UCB Spring 2004 CS152 / Kubiatowicz
Lec21.26

Large Address Spaces

Two-level Page Tables

32-bit address:

P1 index P2 index page offest

4 bytes

4 bytes

4KB

10 10 12

1K
PTEs

° 2 GB virtual address space
° 4 MB of PTE2

– paged, holes
° 4 KB of PTE1

What about a 48-64 bit address space?

4/19/04 ©UCB Spring 2004 CS152 / Kubiatowicz
Lec21.27

Inverted Page Tables

V.Page P. FramehashVirtual
Page

=

IBM System 38 (AS400) implements 64-bit addresses.
48 bits translated
start of object contains a 12-bit tag

=> TLBs or virtually addressed caches are critical

4/19/04 ©UCB Spring 2004 CS152 / Kubiatowicz
Lec21.28

Virtual Address and a Cache: Step backward???

° Virtual memory seems to be really slow:
• Must access memory on load/store -- even cache hits!
• Worse, if translation not completely in memory, may need

to go to disk before hitting in cache!

° Solution: Caching! (surprise!)
• Keep track of most common translations and place them

in a “Translation Lookaside Buffer” (TLB)

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

