
CS152 Homework I, Fall 2005

Name:

Homework I is due in class on Thursday September 29 at 11:10 AM.

This class is the Mid-term I review session.

Late homeworks are NOT accepted. Thus, if you will not be attending

the review session, you MUST make arrangements to hand off the

homework to the instructor before classtime.

Homework will be graded on effort (did you make an honest attempt to

solve each problem?), not correctness. We will distribute the correct

answers for the homework in the review session, but we will probably

not return the homework you hand in until after the exam. So, you may

wish to make a copy for reference before you hand it in.

This homework will count for approximately 1% of your final grade.

The homework is based on the Mid-term I exam from Spring 05.

You may discuss the homework problems with fellow students and the

TAs, but what you write down must be your own work (no copying the

answers from someone else!s homework). Good luck! John Lazzaro

SSID:

1 Logic Design (5 points)

We wish to use pipeline registers with a write enable control line in our design.
However, our component library does not include registers with write enable,
and our CAD system does not offer access to the clock input of sequential logic
(thus, no manual clock gating).

Using a register and one other “standard” combinational component, design
the write-enabled register. Show the schematic below.

2 Single Cycle Design (10 points)

Below, we show a single-cycle datapath for R-format and I-format ALU instruc-
tions, which we derived in class.

UC Regents Spring 2005 © UCBCS 152 L8: Pipelining I

32

rd1

RegFile

32
rd2

WE32

wd

5
rs1

5
rs2

5
ws

32A

L

U

32

32

op

opcode rs rt rd functshamt

CS 152 L06 Single Cycle 1 (6) UC Regents Fall 2004 © UCB

Step 1a: The MIPS-lite Subset for today

° ADD and SUB
• addU rd, rs, rt
• subU rd, rs, rt

° OR Immediate:
• ori rt, rs, imm16

° LOAD and STORE Word
• lw rt, rs, imm16
• sw rt, rs, imm16

° BRANCH:
• beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

RegDest

ALUsrc

Ext

ExtOp

ALUctr

CS 152 L06 Single Cycle 1 (6) UC Regents Fall 2004 © UCB

Step 1a: The MIPS-lite Subset for today

° ADD and SUB
• addU rd, rs, rt
• subU rd, rs, rt

° OR Immediate:
• ori rt, rs, imm16

° LOAD and STORE Word
• lw rt, rs, imm16
• sw rt, rs, imm16

° BRANCH:
• beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

This datapath implements the MIPS register semantics: the rs field always
code the first source operand of an instruction, but the role of the second and
third operands (source or destination) depends on whether the ALU instruction
is R-format or I-format.

Imagine an alternative register semantics for MIPS. In this semantics, the
rs field is always the destination register, the rt field is always the first source
operand.

Question 2a (5 points). Redraw the datapath to implement the new se-
mantics, adding wires and elements to the skeleton below. As in the original
datapath, your revised datapath only needs to implement R-format and I-format
ALU instructions (NOT branches, memory instructions, etc). Add the minimal
number of elements needed to implement the new semantics.

UC Regents Spring 2005 © UCBCS 152 L8: Pipelining I

32

rd1

RegFile

32
rd2

WE32

wd

5
rs1

5
rs2

5
ws

32A

L

U

32

32

op

opcode rs rt rd functshamt

CS 152 L06 Single Cycle 1 (6) UC Regents Fall 2004 © UCB

Step 1a: The MIPS-lite Subset for today

° ADD and SUB
• addU rd, rs, rt
• subU rd, rs, rt

° OR Immediate:
• ori rt, rs, imm16

° LOAD and STORE Word
• lw rt, rs, imm16
• sw rt, rs, imm16

° BRANCH:
• beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

ALUsrc

Ext

ExtOp

ALUctr

CS 152 L06 Single Cycle 1 (6) UC Regents Fall 2004 © UCB

Step 1a: The MIPS-lite Subset for today

° ADD and SUB
• addU rd, rs, rt
• subU rd, rs, rt

° OR Immediate:
• ori rt, rs, imm16

° LOAD and STORE Word
• lw rt, rs, imm16
• sw rt, rs, imm16

° BRANCH:
• beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Question 2b (5 points). Is the critical path (CP) for the new datapath the
same speed as the old datapath? Is it faster? Is it slower? Circle one of the
answers below, then justify your answer in 15 words or less. To compare critical
paths, only consider fan-out (wires that drive more gates are slower) and gate
delay (adding an extra gate in a path slows it down). Assume the control signals
for datapath elements (such as the RegDest, ExtOp, ALUsrc, ALUctr, and WE
signals) DO NOT affect the critical path. Think carefully about this question -
it is tricky.

Circle one: New CP faster New CP slower Same speed.

Write justification below:

3 MIPS ISA and Pipelining (20 points)

Consider a MIPS implementation whose only memory instructions are LW and
SW. Assume the ISA semantics are ”no load-delay slot”. Recall the instruction
format of LW and SW instructions:

UC Regents Spring 2005 © UCBCS 152 L1: The MIPS ISA

6 bits 5 bits 5 bits 5 bits 5 bits 6 bitsFieldsize:

opcode rs rt rd functshamtBitfield:

“R-Format”

“I-Format”

opcode rs rt offset

6 bits 5 bits 5 bits 16 bitsFieldsize:

Bitfield:

Consider an implementation that only permits the index registers of LW and
SW to be R0. Thus:

LW $1, 4($0)
SW $1, 4($0)

Would be legal instructions, but

LW $1, 4($2)
SW $1, 4($2)

would not. The questions below all refer to this implementation.

Question 3a (2 points). Is it possible for programs in this machine to load
and store values for all 232 memory locations to/from registers?

Circle one: Yes No

UC Regents Spring 2005 © UCBCS 152 L8: Pipelining I

rd1

RegFile

rd2

WE
wd

rs1

rs2

ws

D

PC

Q

+

0x4

Addr Data

Instr

Mem

Ext

IR IR

B

A

M

Instr Fetch

“IF” Stage “ID/RF” Stage

Decode & Reg Fetch

1 2

“EX” Stage

Execution

32A

L

U

32

32

op

IR

Y

M

3

IR

Dout

Data Memory

WE

Din

Addr

MemToReg

R

“MEM” Stage

Memory

4

WB
5

Write

Back

Mux,Logic

Question 3b (6 points). When the datapath above runs this code:

LW $1, 4($0)
ADD $3 $1 $1

it is necessary to stall the ADD in order to let the (no-load-delay) LW write
the register file. If only R0 may serve as the LW index register, it is possible to
modify the datapath to eliminate the stall. Describe, in 25 words or less, how
to change the datapath to eliminate the LW stall.

Do not discuss datapath changes for other stalls (branches, etc). Just the
stall triggered by the code above. Write your answer below:

Question 3c (6 points). We wish to hand-compile this C function to run on
the implementation:

int a[1024]; /* global array, ints are 32 bit */

int total(int k) {

int i = k;
int sum = 0;

if ((k < 0) || (k > 1008)) return 0;

while (i < k + 16)
sum += a[i++];

return sum;
}

Assume there is no way for running programs to write the contents of in-
struction memory (a TFTP-like mechanism loads in the program once)

At the time of hand-compilation, you do NOT know the value k that will
be passed in, and you do NOT know the values stored in a[]. As part of hand
compilation, you ARE able to place a[] anywhere in memory you wish.

Is it possible to create this program, given that only R0 may be used as the
index register for loads and stores? If not, explain why not. If so, describe how
the hand-compiled program would get around the restriction. Use 35 words or
less, plus one annotated figure (if you wish).

Question 3d (6 points). Reconsider Question 3c, but permit running pro-
grams to write the contents of instruction memory. Is is now possible to hand-
compile this C function? If not, explain why not. If so, describe words how
s program that took advantage of “self-modifying code” would work. Use 35
words or less, plus one annotated figure (if you wish).

