CS 152
Computer Architecture and Engineering

Lecture 24 – Networks

2005-4-19

John Lazzaro

(www.cs.berkeley.edu/~lazzaro)

TAs: Ted Hong and David Marquardt

www-inst.eecs.berkeley.edu/~cs152/
Last Time: Making Mac Mini

Size fixed by the “form factor” (physical size) of desktop DIMMS. Laptop DRAM is smaller, but too expensive for $499 price.
Why are networks different from buses?

Serial: Data is sent “bit by bit” over one logical wire.

Network. Primary purpose is to connect computers to computers.

USB, FireWire. Primary purpose is to connect devices to a computer.
Today: Networks

Link layers: Using physics to send bits from place to place.

Internet: A network of networks.

Routing: Inside the cloud.
Networking bottom-up: Link two endpoints

Q1. How far away are the endpoints?

Japan-US undersea cable network

Physical media: optical fiber (photonics)

WiFi wireless from hotel bed to access point.

Distance + mobility + bandwidth influences choice of medium.

Physical media: unlicensed radio spectrum.
Networking bottom-up: Link two endpoints

Q2. Initial investment cost for the link.

$1B USD. A ship lays cable on ocean floor.

For expensive media, much of the “price” goes to pay off loans.

The price of the WiFi laptop card + the base station.

“Unlicensed radio” -- no fee to the FCC
Networking bottom-up: Link two endpoints

Q3. How is the link imperfect?

+++ A steady bitstream ("circuit"). No packets to lose.
+++ Only one bit flips per 1,000,000,000,000 sent.

--- Undersea failure is catastrophic

--- Someone walks by and the network stops working - "fading".

Solution: Short packets spaced in time to escape the fade. If lost, do retransmits.
Networking bottom-up: Link two endpoints

Q4. How does link perform?

Latency:

BW: 640 Gb/s (CA-JP cable)

\[
\begin{align*}
\text{% ping irt1-ge1-1.tdc.noc.sony.co.jp} \\
\text{PING irt1-ge1-1.tdc.noc.sony.co.jp (211.125.132.198): 56 data bytes} \\
\text{64 bytes from 211.125.132.198: icmp_seq=0 ttl=242 time=114.571 ms} \\
\text{round-trip.}
\end{align*}
\]

Compare:
Light speed in vacuum, SFO-Tokyo, 63 ms RT.

In general, risky to halve the round-trip time for one-way latency: paths are often different each direction.

BW: In theory, 802.11 b offers 11 Mb/s. Users are lucky to see 3-5 Mb/s in practice.

Latency: If there is no fading, quite good. I’ve measured <2 ms RTT on a short hop.
There are dozens of “link networks” ...

Protocol Complexity

The undersea cable, the hotel WiFi, and many others ... DSL, Ethernet, ...

Diagram Credit: Steve Deering
Web browsers do not know about link nets

Applications

Protocol Complexity

email WWW phone...

App authors do not want to add support for N different network types.

Link networks

The undersea cable, the hotel WiFi, and many others ... DSL, Ethernet, ...

Diagram Credit: Steve Deering
Internet Protocol (IP): An abstraction for applications to target, and for link networks to support. Very simple, very successful.

IP presents link network errors/losses in an abstract way (not a link specific way).

Link layer is not expected to be perfect.

Diagram Credit: Steve Deering
The Internet interconnects “hosts” ...

IP4 number for this computer: 198.211.61.22

Every directly connected host has a unique IP number.

Upper limit of 2^{32} IP4 numbers (some are reserved for other purposes).

Next-generation IP (IP6) limit: 2^{128}.

198.211.61.22 is a user-friendly form of the 32-bit unsigned value 3335732502, which is:

$198 \times 2^{24} + 211 \times 2^{16} + 61 \times 2^8 + 22$
Internet: Sends Packets Between Hosts

IP4, IP6, etc ...

How the destination should interpret the payload data.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| IHL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| |
| |
| Payload data (size implied by Total Length header field) |
| |
| |
| Payload data (size implied by Total Length header field) |
| |
| |

IHL field: # of words in header. The typical header (IHL = 5 words) is shown. Longer headers code add extra fields after the destination address.

From: IP number

Source Address

Note: Could be a lie ...

To: IP number

Destination Address

Bitfield numbers

Header

Data
Link networks transport IP packets

ISO Layer Names:
- IP packet: “Layer 3”
- WiFi and Cable Modem packets: “Layer 2”
- Radio/cable waveforms: “Layer 1”

For this “hop”, IP packet sent “inside” of a wireless 801.11b packet.

For this “hop”, IP packet sent “inside” of a cable modem DOCSIS packet.
Link layers “maximum packet size” vary.

Maximum IP packet size 64K bytes. Maximum Transmission Unit (MTU -- generalized “packet size”) of link networks may be much less – often 2K bytes or less. Efficient uses of IP sense MTU.

Fragment fields: Link layer splits up big IP packets into many link-layer packets, reassembles IP packet on arrival.
IP abstraction of non-ideal link networks:

- A sent packet may never arrive ("lost").
- If packets sent P1/P2/P3, they may arrive P2/P1/P3 ("out of order").

Best Effort: The link networks, and other parts of the "cloud", do their best to meet the ideal. But, no promises.

- Relative timing of packet stream not necessarily preserved ("late" packets).
- IP **payload** bits received may not match payload bits sent. IP **header** protected by checksum (almost always correct).
How do apps deal with this abstraction?

“Computing” apps use the TCP (Transmission Control Protocol).

TCP lets host A send a reliable byte stream to host B. TCP works by retransmitting lost IP packets. Timing is uncertain.

Retransmission is bad for IP telephony: resent packets arrive too late.

IP telephony uses packets, not TCP. Parity codes, audio tricks used for lost packets.

Diagram Credit: Steve Deering
This Friday: Memory System Checkoff

Run your test vector suite on the Calinx board, display results on LEDs
Routing
Undersea cables meet in Hawaii ...
In Makaha, a router takes each Layer 2 packet off the San Luis Obispo (CA) cable, examines the IP packet destination field, and forwards to Japan cable, Fiji cable, or to Kahe Point (and onto big island cables).
Example: \textit{berkeley.edu} to \textit{sony.co.jp}

\textbf{Passes through 21 routers ...}

\begin{verbatim}
% traceroute irt1-gel-1.tdc.noc.sony.co.jp
tracert to irt1-gel-1.tdc.noc.sony.co.jp (211.125.132.198), 30 hops max, 40 byte packets
1 soda3a-gw.eecs.berkeley.edu (128.32.34.1) 20.581 ms 0.875 ms 1.381 ms
2 soda-cr-1-1-soda-br-6-2.eecs.berkeley.edu (169.229.59.225) 1.354 ms 3.097 ms 1.028 ms
3 vlan242.inr-202-doecev.berkeley.edu (128.32.255.169) 1.753 ms 1.454 ms 1.138 ms
4 ge-1-3-0.inr-001-eva.berkeley.edu (128.32.0.34) 1.746 ms 1.174 ms 2.224 ms
5 svl-dc1--ucb-egm.cenic.net (137.164.23.65) 2.653 ms 2.722 ms 12.031 ms
6 dc-svl-dc2--svl-dc1-df-iconn-2.cenic.net (137.164.22.209) 2.478 ms 2.451 ms 4.347 ms
7 dc-sol-dc1--svl-dc1-pos.cenic.net (137.164.22.28) 4.509 ms 95.013 ms 7.774 ms
8 dc-sol-dc2--sol-dc1-df-iconn-1.cenic.net (137.164.22.211) 18.319 ms 4.324 ms 7.973 ms
9 dc-slo-dc1--sol-dc2-pos.cenic.net (137.164.22.26) 19.403 ms 10.077 ms 13.232 ms
10 dc-slo-dc2--dcl-df-iconn-1.cenic.net (137.164.22.123) 8.049 ms 20.653 ms 8.993 ms
11 dc-lax-dc1--slo-dc2-pos.cenic.net (137.164.22.24) 94.579 ms 14.52 ms 21.745 ms
12 rtrisi.ultradns.net (198.32.146.38) 25.48 ms 12.432 ms 17.837 ms
13 lax001bb00.lij.net (216.98.96.176) 11.623 ms 25.698 ms 11.382 ms
14 tky002bb01.lij.net (216.98.178) 168.082 ms 196.26 ms 121.914 ms
15 tky002bb00.lij.net (202.232.0.149) 144.592 ms 208.622 ms 121.801 ms
16 tky001bb01.lij.net (202.232.0.70) 153.757 ms 110.29 ms 184.985 ms
17 tky001ip30.lij.net (210.130.130.100) 114.234 ms 110.095 ms 169.692 ms
18 210.138.131.198 (210.138.131.198) 113.893 ms 113.665 ms 114.22 ms
19 ert1-gel-000.tdc.noc.ssd.ad.jp (211.125.132.69) 114.758 ms 138.327 ms 113.956 ms
20 211.125.133.86 (211.125.133.86) 113.956 ms 113.73 ms 113.965 ms
21 irt1-gel-1.tdc.noc.sony.co.jp (211.125.132.198) 145.247 ms * 136.884 ms
\end{verbatim}

Cross ocean in 1 hop - link about 175 ms round-trip
Left on Internet Initiative Japan (IIJ) in LA

lax001bb00.iij.net (216.98.96.176)
Arrived IIJ in Ariake (perhaps ...)

tky002bb01.iij.net (216.98.96.178)

Either map is out of date, DNS name above is misleading, or traceroute is incorrect!
A→B packet path may differ from B→A

Different paths: Different network properties (latency, bandwidth, etc)

“Blue” ISP

“Red” ISP

Diagram Credit: Van Jacobsen

Economics: A and B use different network carriers ... carriers route data onto their networks ASAP.
A 50-Gb/s IP Router

Craig Partridge, Senior Member, IEEE, Philip P. Carvey, Member, IEEE, Ed Burgess, Isidro Castineyra, Tom Clarke, Lise Graham, Michael Hathaway, Phil Herman, Allen King, Steve Kohalmi, Tracy Ma, John Mcallen, Trevor Mendez, Walter C. Milliken, Member, IEEE, Ronald Pettyjohn, Member, IEEE, John Rokosz, Member, IEEE, Joshua Seeger, Michael Sollins, Steve Storch, Benjamin Tober, Gregory D. Troxel, David Waitzman, and Scott Winterble

Next Time: How to design a router

Remainder of today: Homework Review

CS 152 L24: Networks

UC Regents Spring 2005 © UCB