
63

6 Instructions

Instructions are accessed by the processor from memory and are executed, annulled, or

trapped. Instructions are encoded in four major formats and partitioned into eleven general

categories.

6.1 Instruction Execution

The instruction at the memory location specified by the program counter is fetched and

then executed. Instruction execution may change program-visible processor and/or mem-

ory state. As a side-effect of its execution, new values are assigned to the program counter

(PC) and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it

impossible to complete normal execution. Such an exception may in turn generate a pre-

cise trap. Other events may also cause traps: an exception caused by a previous instruction

(a deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request

(a reset trap). If a trap occurs, control is vectored into a trap table. See Chapter 7, “Traps,”

for a detailed description of exception and trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program

counter (nPC) is copied into the PC and the nPC is incremented by 4 (ignoring overflow, if

any). If the instruction is a control-transfer instruction, the next program counter (nPC) is

copied into the PC and the target address is written to nPC. Thus, the two program

counters provide for a delayed-branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address

space identifier, or ASI, to the 64-bit memory address. Load/store alternate instructions

(see 6.3.1.3, “Address Space Identifiers (ASIs),”) can provide an arbitrary ASI with their

data addresses, or use the ASI value currently contained in the ASI register.

Implementation Note:

The time required to execute an instruction is implementation-dependent, as is the degree of execu-

tion concurrency. In the absence of traps, an implementation should cause the same program-visi-

ble register and memory state changes as if a program had executed according to the sequential

model implied in this document. See Chapter 7, “Traps,” for a definition of architectural compli-

ance in the presence of traps.

6.2 Instruction Formats

Instructions are encoded in four major 32-bit formats and several minor formats, as shown

in figures 33 and 34.

64 6 Instructions

Figure 33—Summary of Instruction Formats: Formats 1, 2, and 3

op3rdop rs1 i=1 mmask

31 030 29

disp30op

Format 1 (op = 1): CALL

Format 2 (op = 0): SETHI & Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Load, and Store

31 141924 18 13 12 5 4 02530 29

31 2224 21 02530 29

disp22op2condop a

op3rdop —rs1 i=0 rs2

op3rdop rs1 i=1 simm13

disp19op2condop a

d16loop2rcondop a

20 19 1828

0

cc1cc0 p

pd16hi

14 13

rs1

op3rdop rcondrs1 i=0 rs2

op3rdop rs1 i=1 simm10

10 9

rcond

—

—

op3rdop rs1 i=0 rs2—

op3—op —rs1 i=0 rs2

op3—op rs1 i=1 simm13

2627

imm22op2rdop

67

cmask

3

op rd op3 rs1 i=0 imm_asi rs2

op3impl-depop impl-dep

Henry Cook

6.2 Instruction Formats 65

op3rdop rs1 i=0 rs2

op3rdop rs1 i=1 sw_trap#

cc1cc0 —

cc1cc0

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op3rdop rs1 i=1 simm11

31 141924 18 13 12 5 4 02530 29 11 10 9

cc1cc0

7 6

—

op rd op3 cond opf_cc opf_low rs2

op rd op3 0 rcond opf_low rs2rs1

0

17

Format 3 (op = 2 or 3): Continued

31 24 02530 29 19 18

rdop op3 —

14 13 12 5 4

rs1 rs2i=0 x

rdop op3 —rs1 shcnt32i=1 x=0

rdop op3 —rs1 shcnt64i=1 x=1

6

op fcn op3 —

11

op3rdop rs1 —

rdop op3 —cond rs2i=0

rdop op3 cond simm11i=1

cc2

cc2

cc1

cc1

cc0

cc0

op3rdop —

op3rdop rs2opf—

op3rdop rs1 rs2opf

op op3 rs2000 rs1 opfcc1 cc0

273

E Opcode Maps

E.1 Overview

This appendix contains the SPARC-V9 instruction opcode maps.

Opcodes marked with a dash ‘—’ are reserved; an attempt to execute a reserved opcode

shall cause a trap, unless it is an implementation-specific extension to the instruction set.

See 6.3.11, “Reserved Opcodes and Instruction Fields,” for more information.

In this appendix and in Appendix A, “Instruction Definitions,” certain opcodes are marked

with mnemonic superscripts. These superscripts and their meanings are defined in table 21

on page 133. For deprecated opcodes, see the appropriate instruction pages in Appendix

A, “Instruction Definitions,” for preferred substitute instructions.

E.2 Tables

†rd = 0, imm22 = 0

Table 30—op[1:0]

op [1:0]

0 1 2 3

Branches & SETHI

See table 31

CALL Arithmetic & Misc.

See table 32

Loads/Stores

See table 33

Table 31—op2[2:0] (op = 0)

op2 [2:0]

0 1 2 3 4 5 6 7

ILLTRAP
BPcc

See table 36

BiccD

See table 36

BPr

See table 37

SETHI

NOP†

FBPfcc

See table 36

FBfccD

See table 36
—

274 E Opcode Maps

Table 32—op3[5:0] (op = 2)

op3 [5:4]

0 1 2 3

op3

[3:0]

0 ADD ADDcc TADDcc

WRYD (rd = 0)

— (rd= 1)

WRCCR (rd=2)

WRASI (rd=3)

WRASRPASR (see A.63)

WRFPRS (rd=6)

SIR (rd=15, rs1=0, i=1)

1 AND ANDcc TSUBcc
SAVEDP (fcn = 0),

RESTOREDP (fcn = 1)

2 OR ORcc TADDccTVD WRPRP

3 XOR XORcc TSUBccTVD —

4 SUB SUBcc MULSccD FPop1

See table 34

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1)
FPop2

See table 35

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1

7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2

8 ADDC ADDCcc

RDYD (rs1 = 0)

— (rs1= 1)

RDCCR (rs1= 2)

RDASI (rs1= 3)

RDTICKPNPT (rs1= 4)

RDPC (rs1= 5)

RDFPRS (rs1=6)

RDASRPASR (see A.44)

MEMBAR (rs1 = 15,rd=0,i = 1)

STBARD (rs1 = 15,rd=0,i = 0)

JMPL

9 MULX — — RETURN

A UMULD UMULccD RDPRP Tcc

See table 36

B SMULD SMULccD FLUSHW FLUSH

C SUBC SUBCcc MOVcc SAVE

D UDIVX — SDIVX RESTORE

E UDIVD UDIVccD POPC (rs1 = 0)

— (rs1>0)

DONEP (fcn = 0)

RETRYP (fcn = 1)

F SDIVD SDIVccD MOVr

See table 37
—

E.2 Tables 275

Table 33—op3[5:0] (op = 3)

op3 [5:4]

0 1 2 3

op3

[3:0]

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR —

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDDD LDDAD, PASI LDDF LDDFAPASI

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR —

6 STH STHAPASI STQF STQFAPASI

7 STDD STDAPASI STDF STDFAPASI

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —

Henry Cook

2
7
6

E
O

p
c
o

d
e
 M

a
p

s

Table 34—opf[8:0] (op = 2,op3 = 3416 = FPop1)

opf[3:0]

opf

[8:4]
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq — FABSs FABSd FABSq — — — —

01 — — — — — — — — — — — — — — — —

02 — — — — — — — — — FSQRTs FSQRTd FSQRTq — — — —

03 — — — — — — — — — — — — — — — —

04 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

05 — — — — — — — — — — — — — — — —

06 — — — — — — — — — FsMULd — — — — FdMULq —

07 — — — — — — — — — — — — — — — —

08 — FsTOx FdTOx FqTOx FxTOs — — — FxTOd — — — FxTOq — — —

09 — — — — — — — — — — — — — — — —

0A — — — — — — — — — — — — — — — —

0B — — — — — — — — — — — — — — — —

0C — — — — FiTOs — FdTOs FqTOs FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

0D — FsTOi FdTOi FqTOi — — — — — — — — — — — —

0E..1F — — — — — — — — — — — — — — — —

E
.2

T
a
b

le
s

2
7
7† Undefined variation of FMOVR

Table 35—opf[8:0] (op = 2, op3 = 3516 = FPop2)

opf[3:0]

opf

[8:4]
0 1 2 3 4 5 6 7 8..F

00 — FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0) — † † † —

01 — — — — — — — — —

02 — — — — — FMOVRsZ FMOVRdZ FMOVRqZ —

03 — — — — — — — — —

04 — FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1) — FMOVRsLEZ FMOVRdLEZ FMOVRqLEZ —

05 — FCMPs FCMPd FCMPq — FCMPEs FCMPEd FCMPEq —

06 — — — — — FMOVRsLZ FMOVRdLZ FMOVRqLZ —

07 — — — — — — — — —

08 — FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2) — † † † —

09 — — — — — — — — —

0A — — — — — FMOVRsNZ FMOVRdNZ FMOVRqNZ —

0B — — — — — — — — —

0C — FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3) — FMOVRsGZ FMOVRdGZ FMOVRqGZ —

0D — — — — — — — — —

0E — — — — — FMOVRsGEZ FMOVRdGEZ FMOVRqGEZ —

0F — — — — — — — — —

10 — FMOVs (icc) FMOVd (icc) FMOVq (icc) — — — — —

11..17 — — — — — — — — —

18 — FMOVs (xcc) FMOVd (xcc) FMOVq (xcc) — — — — —

19..1F — — — — — — — — —

278 E Opcode Maps

Table 36—cond[3:0]

BPcc BiccD FBPfcc FBfccD Tcc

op = 0

op2 = 1

op = 0

op2 = 2

op = 0

op2 = 5

op = 0

op2 = 6

op = 2

op3 = 3A16

cond

[3:0]

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

Table 37—Encoding of rcond[2:0] Instruction Field

BPr MOVr FMOVr

op = 0

op2 = 3

op = 2

op3 = 2F16

op = 2

op3 = 3516

rcond

[2:0]

0 — — —

1 BRZ MOVRZ FMOVZ

2 BRLEZ MOVRLEZ FMOVLEZ

3 BRLZ MOVRLZ FMOVLZ

4 — — —

5 BRNZ MOVRNZ FMOVNZ

6 BRGZ MOVRGZ FMOVGZ

7 BRGEZ MOVRGEZ FMOVGEZ

E.2 Tables 279

Table 38—cc/opf_cc Fields (MOVcc and FMOVcc)

opf_cc Condition
code selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —

Table 39—cc Fields (FBPfcc, FCMP and FCMPE)

cc1 cc0
Condition

code selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

Table 40—cc Fields (BPcc and Tcc)

cc1 cc0
Condition

code selected

0 0 icc

0 1 —

1 0 xcc

1 1 —

178 A Instruction Definitions

A.27 Load Integer

Format (3):

Description:

The load integer instructions copy a byte, a halfword, a word, an extended word, or a dou-

bleword from memory. All except LDD copy the fetched value into r[rd]. A fetched byte,

halfword, or word is right-justified in the destination register r[rd]; it is either sign-

extended or zero-filled on the left, depending on whether the opcode specifies a signed or

unsigned operation, respectively.

The load doubleword integer instructions (LDD) copy a doubleword from memory into an

r-register pair. The word at the effective memory address is copied into the even r register.

The word at the effective memory address + 4 is copied into the following odd-numbered r

Opcode op3 Operation

LDSB 00 1001 Load Signed Byte

LDSH 00 1010 Load Signed Halfword

LDSW 00 1000 Load Signed Word

LDUB 00 0001 Load Unsigned Byte

LDUH 00 0010 Load Unsigned Halfword

LDUW 00 0000 Load Unsigned Word

LDX 00 1011 Load Extended Word

LDDD 00 0011 Load Doubleword

Suggested Assembly Language Syntax

ldsb [address], regrd

ldsh [address], regrd

ldsw [address], regrd

ldub [address], regrd

lduh [address], regrd

lduw [address], regrd (synonym: ld)

ldx [address], regrd

ldd [address], regrd

The LDD instruction is deprecated; it is provided only for compatibility with previ-

ous versions of the architecture. It should not be used in new SPARC-V9 software.

It is recommended that the LDX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

A.27 Load Integer 179

register. The upper 32 bits of both the even-numbered and odd-numbered r registers are

zero-filled. Note that a load doubleword with rd = 0 modifies only r[1]. The least signifi-

cant bit of the rd field in an LDD instruction is unused and should be set to zero by soft-

ware. An attempt to execute a load doubleword instruction that refers to a misaligned

(odd-numbered) destination register causes an illegal_instruction exception.

IMPL. DEP. #107(1): It is implementation-dependent whether LDD is implemented in hardware. If

not, an attempt to execute it will cause an unimplemented_ldd exception.

Load integer instructions access the primary address space (ASI = 8016). The effective

address is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates

atomically.

LDUH and LDSH cause a mem_address_not_aligned exception if the address is not half-

word-aligned. LDUW and LDSW cause a mem_address_not_aligned exception if the effec-

tive address is not word-aligned. LDX and LDD cause a mem_address_not_aligned

exception if the address is not doubleword-aligned.

Programming Note:

LDD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9

machines because of data path and register-access difficulties. In some systems it may trap to emu-

lation code. It is suggested that programmers and compilers avoid using these instructions.

If LDD is emulated in software, an LDX instruction should be used for the memory access in order

to preserve atomicity.

Compatibility Note:

The SPARC-V8 LD instruction has been renamed LDUW in SPARC-V9. The LDSW instruction is

new in SPARC-V9.

Exceptions:

async_data_error

unimplemented_LDD (LDD only (impl. dep. #107))

illegal_instruction (LDD with odd rd)

mem_address_not_aligned (all except LDSB, LDUB)
data_access_exception
data_access_protection
data_access_MMU_miss
data_access_error

A.54 Store Integer 229

A.54 Store Integer

Format (3):

Description:

The store integer instructions (except store doubleword) copy the whole extended (64-bit)

integer, the less-significant word, the least significant halfword, or the least significant

byte of r[rd] into memory.

The store doubleword integer instruction (STD) copies two words from an r register pair

into memory. The least significant 32 bits of the even-numbered r register are written into

memory at the effective address, and the least significant 32 bits of the following odd-

numbered r register are written into memory at the “effective address + 4.” The least sig-

nificant bit of the rd field of a store doubleword instruction is unused and should always be

set to zero by software. An attempt to execute a store doubleword instruction that refers to

a misaligned (odd-numbered) rd causes an illegal_instruction exception.

IMPL. DEP. #108(1): IT is implementation-dependent whether STD is implemented in hardware. if

not, an attempt to execute it will cause an unimplemented_STD exception.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_

ext(simm13)” if i = 1.

Opcode op3 Operation

STB 00 0101 Store Byte

STH 00 0110 Store Halfword

STW 00 0100 Store Word

STX 00 1110 Store Extended Word

STDD 00 0111 Store Doubleword

Suggested Assembly Language Syntax

stb regrd, [address] (synonyms: stub, stsb)

sth regrd, [address] (synonyms: stuh, stsh)

stw regrd, [address] (synonyms: st, stuw, stsw)

stx regrd, [address]

std regrd, [address]

The STD instruction isdeprecated; it is provided only for compatibility with previ-

ous versions of the architecture. It should not be used in new SPARC-V9 software.

It is recommended that the STX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

230 A Instruction Definitions

A successful store (notably, store extended and store doubleword) instruction operates

atomically.

STH causes a mem_address_not_aligned exception if the effective address is not halfword-

aligned. STW causes a mem_address_not_aligned exception if the effective address is not

word-aligned. STX and STD causes a mem_address_not_aligned exception if the effective

address is not doubleword-aligned.

Programming Note:

STD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines

because of data path and register-access difficulties. In some SPARC-V9 systems it may cause a

trap to emulation code; therefore, STD should be avoided.

If STD is emulated in software, STX should be used in order to preserve atomicity.

Compatibility Note:

The SPARC-V8 ST instruction has been renamed STW in SPARC-V9.

Exceptions:

async_data_error

unimplemented_STD (STD only) (impl. dep. #108)

illegal_instruction (STD with odd rd)

mem_address_not_aligned (all except STB)
data_access_exception
data_access_error
data_access_protection
data_access_MMU_miss

