
Simics/Niagara
Simple Target Guide

Simics Version 3.0

Revision 1403
Date 2007-10-10

VIRTUTECH CONFIDENTIAL

© 1998–2006 Virtutech AB
Drottningholmsv. 14, SE-112 42 STOCKHOLM, Sweden

Trademarks
Virtutech, the Virtutech logo, Simics, and Hindsight are trademarks or registered trademarks
of Virtutech AB or Virtutech, Inc. in the United States and/or other countries.

The contents herein are Documentation which are a subset of Licensed Software pursuant
to the terms of the Virtutech Simics Software License Agreement (the “Agreement”), and
are being distributed under the Agreement, and use of this Documentation is subject to the
terms the Agreement.

This Publication is provided “as is” without warranty of any kind, either express or implied,
including, but not limited to, the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement.

This Publication could include technical inaccuracies or typographical errors. Changes are
periodically added to the information herein; these changes will be incorporated in new edi-
tions of the Publication. Virtutech may make improvements and/or changes in the product(s)
and/or the program(s) described in this Publication at any time.

The proprietary information contained within this Publication must not be disclosed to others
without the written consent of Virtutech.

VIRTUTECH CONFIDENTIAL

Contents

1 About Simics Documentation 5
1.1 Conventions . 5
1.2 Simics Guides and Manuals . 5

Simics Installation Guide for Unix and for Windows 5
Simics User Guide for Unix and for Windows 6
Simics Eclipse User Guide . 6
Simics Target Guides . 6
Simics Programming Guide . 6
DML Tutorial . 6
DML Reference Manual . 6
Simics Reference Manual . 6
Simics Micro-Architectural Interface . 6
RELEASENOTES and LIMITATIONS files 7
Simics Technical FAQ . 7
Simics Support Forum . 7
Other Interesting Documents . 7

2 Simics/Niagara Overview 8
2.1 Introduction . 8
2.2 Supported Hardware . 8
2.3 Required Files . 8

3 Simulated Machines 10
3.1 niagara-simple-solaris . 10

3.1.1 Niagara-simple Scripts . 10
3.2 Parameters for Machine Scripts . 10

3.2.1 niagara-simple-solaris-common . 10

4 Supported Components 12
4.1 Niagara Simple Components . 12

4.1.1 niagara-simple-system . 12
4.2 Standard Components . 14

4.2.1 std-serial-link . 14
4.2.2 std-text-console . 14
4.2.3 std-server-console . 16

3

VIRTUTECH CONFIDENTIAL

4.3 Base Components . 16
4.3.1 component . 17
4.3.2 top-component . 17

5 Miscellaneous Notes 19
5.1 Notes on Solaris for Niagara . 19
5.2 Changing the Processor Clock Frequency . 19

6 Limitations 20
6.1 Limitations of the Simulated Model . 20
6.2 Other Limitations . 20

Index 21

4

VIRTUTECH CONFIDENTIAL

Chapter 1

About Simics Documentation

1.1 Conventions

Let us take a quick look at the conventions used throughout the Simics documentation.
Scripts, screen dumps and code fragments are presented in a monospace font. In screen
dumps, user input is always presented in bold font, as in:

Welcome to the Simics prompt
simics> this is something that you should type

Sometimes, artificial line breaks may be introduced to prevent the text from being too
wide. When such a break occurs, it is indicated by a small arrow pointing down, showing
that the interrupted text continues on the next line:

This is an artificial
line break that shouldn’t be there.

The directory where Simics is installed is referred to as [simics], for example when
mentioning the [simics]/README file. In the same way, the shortcut [workspace] is
used to point at the user’s workspace directory.

1.2 Simics Guides and Manuals

Simics comes with several guides and manuals, which will be briefly described here. All
documentation can be found in [simics]/doc as Windows Help files (on Windows),
HTML files (on Unix) and PDF files (on both platforms). The new Eclipse-based interface
also includes Simics documentation in its own help system.

Simics Installation Guide for Unix and for Windows

These guides describe how to install Simics and provide a short description of an installed
Simics package. They also cover the additional steps needed for certain features of Simics
to work (connection to real network, building new Simics modules, . . .).

5

VIRTUTECH CONFIDENTIAL 1.2. Simics Guides and Manuals

Simics User Guide for Unix and for Windows

These guides focus on getting a new user up to speed with Simics, providing information on
Simics features such as debugging, profiling, networks, machine configuration and script-
ing.

Simics Eclipse User Guide

This is an alternative User Guide describing Simics and its new Eclipse-based graphical user
interface.

Simics Target Guides

These guides provide more specific information on the different architectures simulated by
Simics and the example machines that are provided. They explain how the machine con-
figurations are built and how they can be changed, as well as how to install new operating
systems. They also list potential limitations of the models.

Simics Programming Guide

This guide explains how to extend Simics by creating new devices and new commands. It
gives a broad overview of how to work with modules and how to develop new classes and
objects that fit in the Simics environment. It is only available when the DML add-on package
has been installed.

DML Tutorial

This tutorial will give you a gentle and practical introduction to the Device Modeling Lan-
guage (DML), guiding you through the creation of a simple device. It is only available when
the DML add-on package has been installed.

DML Reference Manual

This manual provides a complete reference of DML used for developing new devices with
Simics. It is only available when the DML add-on package has been installed.

Simics Reference Manual

This manual provides complete information on all commands, modules, classes and haps
implemented by Simics as well as the functions and data types defined in the Simics API.

Simics Micro-Architectural Interface

This guide describes the cycle-accurate extensions of Simics (Micro-Architecture Interface
or MAI) and provides information on how to write your own processor timing models. It is
only available when the DML add-on package has been installed.

6

VIRTUTECH CONFIDENTIAL 1.2. Simics Guides and Manuals

RELEASENOTES and LIMITATIONS files

These files are located in Simics’s main directory (i.e., [simics]). They list limitations,
changes and improvements on a per-version basis. They are the best source of information
on new functionalities and specific bug fixes.

Simics Technical FAQ

This document is available on the Virtutech website at http://www.simics.net/support.
It answers many questions that come up regularly on the support forums.

Simics Support Forum

The Simics Support Forum is the main support tool for Simics. You can access it at http://
www.simics.net.

Other Interesting Documents

Simics uses Python as its main script language. A Python tutorial is available at http://
www.python.org/doc/2.4/tut/tut.html. The complete Python documentation is lo-
cated at http://www.python.org/doc/2.4/.

7

VIRTUTECH CONFIDENTIAL

Chapter 2

Simics/Niagara Overview

2.1 Introduction

Simics/Niagara Simple models the processor and memory of a Sun Fire T2000 server with
an UltraSPARC T1 processor. The processor is running at 5MHz and there are 256 MB of
memory. A single disk image with Solaris is also supported.

Virtutech does not provide any disk images with Solaris for Niagara Simple, due to
licensing issues. No OpenBoot PROM (OBP) image is not provided either. These files can
be downloaded from The OpenSPARC web-site.

2.2 Supported Hardware

The niagara-simple has only support for the SUN4V console and RTC device. There are no
other devices modelled.

A good guide to the Sun Fire T2000 servers can be found in the Sun System Handbook,
available online at: http://sunsolve.sun.com/handbook_pub/

2.3 Required Files

Some files required to run the Niagara Simple system are not included in the Simics distribu-
tion. These files can be found on the opensparc.org web site, bundled with the UltraSPARC
T1 simulator from Sun.

Copy the files in the S10image/ directory of the Sun simulator package to [simics]/
targets/niagara-simple/images/. The files needed are:

• 1up-hv.bin

• 1up-md.bin

• 1g2p-hv.bin

• 1g2p-md.bin

• 1g32p-hv.bin

8

VIRTUTECH CONFIDENTIAL 2.3. Required Files

• 1g32p-md.bin

• disk.s10hw2

• openboot.bin

• q.bin

• reset.bin

9

VIRTUTECH CONFIDENTIAL

Chapter 3

Simulated Machines

Simics scripts for starting Niagara Simple machines are located in the [workspace]/targets/
niagara-simple/ directory, while the actual configuration scripts can be found in [simics]
/targets/niagara-simple/.

3.1 niagara-simple-solaris

The niagara-simple machine is the only configuration distributed. It has an UltraSPARC
T1 processor running at 5 MHz, and 256 MB of memory. One, two or all 32 strands (virtual
processors/hardware threads) can be enabled. The default configuration can be modified as
described in section 3.2. The reason that the memory size, processor frequency and number
of strands cannot be changed is that they are hardcoded in binary files used by the OBP.

3.1.1 Niagara-simple Scripts

niagara-simple-solaris-common.simics
Starts the Niagara-simple machine with the default configuration.

3.2 Parameters for Machine Scripts

The following parameters can be set before running the niagara-simple-solaris-
common.simics. Other .simics scripts may set some of the parameters unconditionally,
and do not allow the user to override them.

3.2.1 niagara-simple-solaris-common

$do_boot
Set to no to stop at OBP prompt, without booting the OS.

$do_login
Set to no to prevent the script from logging in as root automatically when the operat-
ing system has reached the login prompt.

10

VIRTUTECH CONFIDENTIAL 3.2. Parameters for Machine Scripts

$freq_mhz
The clock frequency in MHz of the processors. This value can currently not be changed
from 5 MHz.

$rtc_time
Date and time of the real-time clock at boot.

$num_cpus
The number of strands (virtual processors) in the machine. The supported values are
currently 1, 2 and 32.

$use_simicsfs
when set to yes (default), a “diff” disk image is added to the default disk image files
from Sun, providing SimicsFS support.

11

VIRTUTECH CONFIDENTIAL

Chapter 4

Supported Components

The following sections list components that are supported for the Niagara Simple architec-
ture. There also exist other components in Simics, such as various PCI devices, that may
work for Niagara Simple but that have not been tested.

The default machines are constructed from components in the -system.include files
in [simics]/targets/niagara-simple/. See the Configuration and Checkpointing
chapter in the Simics User Guide for information on how to define your own machine, or
make modifications to an existing machine.

4.1 Niagara Simple Components

4.1.1 niagara-simple-system

Description
The “niagara-simple-system” component represents a fake Sun Fire T2000 server with
an UltraSPARC T1 processor memory and a single disk image, but with no other de-
vices.It is currently not possible to change the configuration, except for the number of
processors.

Attributes

cpu_frequency
Required attribute; read/write access; type: Integer.
Processor frequency in MHz.

num_cores
Required attribute; read/write access; type: Integer.
Number of processor cores in the system. 1 or 8.

rtc_time
Required attribute; read/write access; type: String.
The date and time of the Real-Time clock.

strands_per_core
Required attribute; read/write access; type: Integer.

12

VIRTUTECH CONFIDENTIAL 4.1. Niagara Simple Components

Number of active processor strands per core in the system. 1, 2 or 4. There are
always 4 strands created.

Commands

create-niagara-simple-system [“name”] cpu_frequency num_cores strands_per_core “rtc_time”

Creates a non-instantiated component of the class “niagara-simple-system”. If
name is not specified, the component will get a class-specific default name. The
other arguments correspond to class attributes.

new-niagara-simple-system [“name”] cpu_frequency num_cores strands_per_core “rtc_time”

Creates an instantiated component of the class “niagara-simple-system”. If name
is not specified, the component will get a class-specific default name. The other
arguments correspond to class attributes.

<niagara-simple-system>.get-prom-env [“variable”]
Prints an OBP variable with its value, or all variables if no argument is spec-
ified. Only variables with string, integer, boolean and enumeration types are
supported.

<niagara-simple-system>.info
Print detailed information about the configuration of the device.

<niagara-simple-system>.set-prom-defaults
Restores all OBP variables to their default values.

<niagara-simple-system>.set-prom-env “variable” (int|“string”)
Sets the value of an OBP variable in the NVRAM. Only variables with string,
integer, boolean and enumeration types are supported.

<niagara-simple-system>.status
Print detailed information about the current status of the device.

Connectors

Name Type Direction
com[1-2] serial down

13

VIRTUTECH CONFIDENTIAL 4.2. Standard Components

4.2 Standard Components

4.2.1 std-serial-link

Description
The “std-serial-link” component represents a standard Serial link.

Commands

create-std-serial-link [“name”]
Creates a non-instantiated component of the class “std-serial-link”. If name is
not specified, the component will get a class-specific default name. The other
arguments correspond to class attributes.

new-std-serial-link [“name”]
Creates an instantiated component of the class “std-serial-link”. If name is not
specified, the component will get a class-specific default name. The other argu-
ments correspond to class attributes.

<std-serial-link>.info
Print detailed information about the configuration of the device.

<std-serial-link>.status
Print detailed information about the current status of the device.

Connectors

Name Type Direction
serial[0-1] serial any

4.2.2 std-text-console

Description
The “std-text-console” component represents a serial text console.

Attributes

bg_color
Optional attribute; read/write access; type: String.
The background color.

fg_color
Optional attribute; read/write access; type: String.
The foreground color.

14

VIRTUTECH CONFIDENTIAL 4.2. Standard Components

height
Optional attribute; read/write access; type: Integer.
The height of the console window.

title
Optional attribute; read/write access; type: String.
The Window title.

width
Optional attribute; read/write access; type: Integer.
The width of the console window.

win32_font
Optional attribute; read/write access; type: String.
Font to use in the console on Windows host.

x11_font
Optional attribute; read/write access; type: String.
Font to use in the console when using X11 (Linux/Solaris host).

Commands

create-std-text-console [“name”] [“title”] [“bg_color”] [“fg_color”] [“x11_font”] [“win32_font”] [width] [height]

Creates a non-instantiated component of the class “std-text-console”. If name is
not specified, the component will get a class-specific default name. The other
arguments correspond to class attributes.

new-std-text-console [“name”] [“title”] [“bg_color”] [“fg_color”] [“x11_font”] [“win32_font”] [width] [height]

Creates an instantiated component of the class “std-text-console”. If name is not
specified, the component will get a class-specific default name. The other argu-
ments correspond to class attributes.

<std-text-console>.info
Print detailed information about the configuration of the device.

<std-text-console>.status
Print detailed information about the current status of the device.

Connectors

Name Type Direction
serial serial up

15

VIRTUTECH CONFIDENTIAL 4.3. Base Components

4.2.3 std-server-console

Description
The “std-server-console” component represents a serial console accessible from the
host using telnet.

Attributes

telnet_port
Required attribute; read/write access; type: Integer.
TCP/IP port to connect the telnet service of the console to.

Commands

create-std-server-console [“name”] telnet_port
Creates a non-instantiated component of the class “std-server-console”. If name
is not specified, the component will get a class-specific default name. The other
arguments correspond to class attributes.

new-std-server-console [“name”] telnet_port
Creates an instantiated component of the class “std-server-console”. If name is
not specified, the component will get a class-specific default name. The other
arguments correspond to class attributes.

<std-server-console>.info
Print detailed information about the configuration of the device.

<std-server-console>.status
Print detailed information about the current status of the device.

Connectors

Name Type Direction
serial serial up

4.3 Base Components

The base components are abstract classes that contain generic component attributes and
commands available for all components.

16

VIRTUTECH CONFIDENTIAL 4.3. Base Components

4.3.1 component

Description
Base component class, should not be instantiated.

Attributes

connections
Optional attribute; read/write access; type: [[sos]∗].
List of connections for the component. The format is a list of lists, each contain-
ing the name of the connector, the connected component, and the name of the
connector on the other component.

connectors
Pseudo class attribute; read-only access; type: D.
Dictionary of dictionaries with connectors defined by this component class, in-
dexed by name. Each connector contains the name of the connector “type”, a
“direction” (“up”, “down” or “any”), a flag indicating if the connector can be
“empty”, another flag that is set if the connector is “hotplug” capable, and finally
a flag that is TRUE if muliple connections to this connector is allowed.

instantiated
Optional attribute; read/write access; type: b.
Set to TRUE if the component has been instantiated.

object_list
Optional attribute; read/write access; type: D.
Dictionary with objects that the component consists of.

object_prefix
Optional attribute; read/write access; type: String.
Object prefix string used by the component. The prefix is typically set by the
set-component-prefix command before the component is created.

top_component
Optional attribute; read/write access; type: Object.
The top level component. Attribute is not valid until the component has been
instantiated.

top_level
Optional attribute; read/write access; type: b.
Set to TRUE for top-level components, i.e. the root of a hierarchy.

4.3.2 top-component

Description
Base top-level component class, should not be instantiated.

17

VIRTUTECH CONFIDENTIAL 4.3. Base Components

Attributes

components
Optional attribute; read/write access; type: [o∗].
List of components below the the top-level component. This attribute is not valid
until the object has been instantiated.

cpu_list
Optional attribute; read/write access; type: [o∗].
List of all processors below the the top-level component. This attribute is not
valid until the object has been instantiated.

18

VIRTUTECH CONFIDENTIAL

Chapter 5

Miscellaneous Notes

5.1 Notes on Solaris for Niagara

• For information about system administration of Solaris, see the http://docs.sun.
com web site.

5.2 Changing the Processor Clock Frequency

The clock frequency of a simulated processor can be set arbitrarily in Simics. This will not
affect the actual speed of simulation, but it will affect the number of instructions that need to
be executed for a certain amount of simulated time to pass. If your execution only depends
on executing a certain number of instructions, increasing the clock frequency will take the
same amount of host time (but a shorter amount of target time). However, if there are time
based delays of some kind in the simulation, these will take longer to execute.

At a simulated 1 MHz, one million target instructions will correspond to a simulated
second (assuming the simple default timing of one cycle per instruction). At 100 MHz, on
the other hand, it will take 100 million target instructions to complete a simulated second.
So with a higher clock frequency, less simulated target time is going to pass for a certain
period of host execution time.

If Simics is used to emulate an interactive system (especially one with a graphical user
interface) it is a good idea to set the clock frequency quite low. Keyboard and mouse inputs
events are handled by periodic interrupts in most operating systems, using a higher clock
frequency will result in longer delays between invocations of periodic interrupts. Thus,
the simulated system will feel slower in its user response, and update the mouse cursor
position etc. less frequently. If this is a problem, the best technique for running experiments
at a high clock frequency is to first complete the configuration of the machine using a low
clock frequency. Save all configuration changes to a disk diff (like when installing operating
systems). Then change the configuration to use a higher a clock frequency and reboot the
target machine.

Note that for a lightly-loaded machine (for example, working at an interactive prompt
on a serial console to an embedded Linux system), Simics will often execute quickly enough
at the real target clock frequency that there is no need to artifically lower it.

19

VIRTUTECH CONFIDENTIAL

Chapter 6

Limitations

6.1 Limitations of the Simulated Model

• Not all error registers in the processor are implemented.

• Performance control registers, and counters are not implemented

• Modular Arithmetic is not implemented.

• Changing the processor frequency nad memory size is not yet supported.

6.2 Other Limitations

• The Solaris version of SimicsFS does not support truncating files.

20

VIRTUTECH CONFIDENTIAL

Index

Symbols
[simics], 5
[workspace], 5

C
component, 17
configuration

tips, 19
create-niagara-simple-system, 13
create-std-serial-link, 14
create-std-server-console, 16
create-std-text-console, 15

G
get-prom-env

namespace command
niagara-simple-system, 13

I
info

namespace command
niagara-simple-system, 13
std-serial-link, 14
std-server-console, 16
std-text-console, 15

interactive use of simulated machines, 19

N
new-niagara-simple-system, 13
new-std-serial-link, 14
new-std-server-console, 16
new-std-text-console, 15
niagara-simple-system, 12

P
processor clock frequency, 19

S
set-prom-defaults

namespace command
niagara-simple-system, 13

set-prom-env
namespace command

niagara-simple-system, 13
status

namespace command
niagara-simple-system, 13
std-serial-link, 14
std-server-console, 16
std-text-console, 15

std-serial-link, 14
std-server-console, 16
std-text-console, 14

T
top-component, 17

21

Virtutech, Inc.

1740 Technology Dr., suite 460
San Jose, CA 95110

USA

Phone +1 408-392-9150
Fax +1 408-608-0430

http://www.virtutech.com

	Simics/Niagara Simple Target Guide
	Contents
	1 About Simics Documentation
	1.1 Conventions
	1.2 Simics Guides and Manuals
	 Simics Installation Guide for Unix and for Windows
	 Simics User Guide for Unix and for Windows
	 Simics Eclipse User Guide
	 Simics Target Guides
	 Simics Programming Guide
	 DML Tutorial
	 DML Reference Manual
	 Simics Reference Manual
	 Simics Micro-Architectural Interface
	 RELEASENOTES and LIMITATIONS files
	 Simics Technical FAQ
	 Simics Support Forum
	 Other Interesting Documents

	2 Simics/Niagara Overview
	2.1 Introduction
	2.2 Supported Hardware
	2.3 Required Files

	3 Simulated Machines
	3.1 niagara-simple-solaris
	3.1.1 Niagara-simple Scripts

	3.2 Parameters for Machine Scripts
	3.2.1 niagara-simple-solaris-common

	4 Supported Components
	4.1 Niagara Simple Components
	4.1.1 niagara-simple-system

	4.2 Standard Components
	4.2.1 std-serial-link
	4.2.2 std-text-console
	4.2.3 std-server-console

	4.3 Base Components
	4.3.1 component
	4.3.2 top-component

	5 Miscellaneous Notes
	5.1 Notes on Solaris for Niagara
	5.2 Changing the Processor Clock Frequency

	6 Limitations
	6.1 Limitations of the Simulated Model
	6.2 Other Limitations

	Index
	Symbols
	C
	G
	I
	N
	P
	S
	T

