
Computer Architecture and Engineering
CS152 Quiz #4
April 11th, 2011

Professor Krste Asanović

 Name: <ANSWER KEY>

This is a closed book, closed notes exam.
80 Minutes
 17 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz. If you have inadvertently been exposed to a quiz prior
to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without
giving explanations if the instruction ask you to explain your choice.

Writing name on each sheet ________ 2 Points
Question 1 ________ 24 Points
Question 2 ________ 22 Points
Question 3 ________ 14 Points
Question 4 ________ 18 Points

TOTAL ________ 80 Points

Name _________(answer key)________

Page 1 of 17

Question 1: Scheduling for VLIW Machines
(24 points)
The following questions concerns the scheduling of floating-point code on a VLIW
machine.

Written in C, the code is as follows (in all questions, you should assume that all arrays do
not overlap in memory):
#define N 1024
double S[N],A[N],B[N],Y[N];

... arrays are initialized ...

for(int i = 0; i < N; i++)
 S[i] = A[i] * B[i] + Y[i];

The code for this problem translates to the following VLIW operations:

 addi $n, $0, 1024
 addi $i, $0, 0
loop:
 ld $a, A($i)
 ld $b, B($i)
 fmul $t, $a, $b
 ld $y, Y($i)
 fadd $s, $t, $y
 st $s, S($i)
 addi $i, $i, 8
 addi $n, $n, -1
 bnez $n, loop

A, B, Y, and S are immediates set by the compiler to point to the beginning of the A, B,
Y, and S arrays. Register $i is used to index the arrays. For this ISA, register $0 is read-
only and always returns the value zero.

This code will run on the VLIW machine that was presented in lecture and used in
PSet #4, shown here:

Figure 1. The VLIW machine

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Addition FP Multiply

Name _________(answer key)________

Page 2 of 17

Our machine has six execution units:
- two ALU units, latency one-cycle (i.e., dependent ALU ops can be issued back-to-

back), also used for branches.
- two memory units, latency three cycles, fully pipelined, each unit can perform either

a load or a store.
- two FPU units, latency four cycles, fully pipelined, one unit can only perform fadd

operations, the other can only perform fmul operations.

Our machine has no interlocks. All register values are read at the start of the instruction
before any writes from the same instruction take effect (i.e., no WAR hazards between
operations within a single VLIW instruction).

The naive scheduling of the above assembly code (one operation per instruction) turns
into the following schedule (another copy of this is provided in Appendix A. Feel free to
remove Appendix A from the test to help in answering Questions Q.1A and Q1.B):

Name _________(answer key)________

Page 3 of 17

Inst Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Add FP Mul
1addi $n,$0,1024 -- -- -- -- --
2addi $i, $0, 0 -- -- -- -- --

loop: 3 -- -- ld $a, A($i) -- -- --
4 -- -- ld $b, B($i) -- -- --
5 -- -- -- -- -- --
6 -- -- -- -- -- --
7 -- -- -- -- -- fmul $t, $a, $b
8 -- -- ld $y, Y($i) -- -- --
9 -- -- -- -- -- --

10 -- -- -- -- -- --
11 -- -- -- -- fadd $s, $t, $y --
12 -- -- -- -- -- --
13 -- -- -- -- -- --
14 -- -- -- -- -- --
15 -- -- st $s, S($i) -- -- --
16 addi $i, $i, 8 -- -- -- -- --
17 addi $n, $n, -1 -- -- -- -- --
18 bnez $n, loop

(Inst. 3)
-- -- -- -- --

Q1.A: Loop Unrolling & General Optimizations
(12 points)

Loop unrolling will enable higher throughput over the naive implementation shown on
the previous page. Unroll the above code once, to get two iterations inflight for every
loop in the VLIW code. You should also consider other performance optimizations to
improve throughput (i.e., re-ordering operations, adding or removing operations, and
packing operations into a single VLIW instruction). However, do not do software
pipelining. That is for the next part. To receive full credit, your code should demonstrate
good throughput.

Note: the array length for this program is statically declared as 1024, which will help you
make simplifying assumptions in the start-up and exit code. You may not need all entries
in the following table. For your convenience, an empty entry will be interpreted as a
NOP.

Hint: when indexing arrays, an operation such as ld $a, A+8($i) is perfectly valid
(remember that $i is a register, and A is the literal set by the compiler to point to the
beginning of the A array).

Extra Hint: For this problem, it is recommended that you name your registers $a0, $a1,
$b0, $b1, etc.

What is the resulting throughput of the code, in "floating point operations per cycle"?
Only consider the steady-state operation of the loop.

4 FLOPS / 13 cycles in the loop =

Throughput (FLOPS/cycle) ___4/13__

Name _________(answer key)________

Page 4 of 17

Table Q1.A (Loop unrolling)

-1/2 points for incrementing $i by 8 (instead of 16)
-1/2 points for decrementing $n by 1 (instead of -2)
-1/2 points for each error in immediates
-1 point for issuing an operation too early
-1/2 points for suboptimal scheduling of an instruction/operation
-1 points for getting throughput calculation incorrect
-3 points for not condensing the two iterations together

Note that some ops, such as “ld $y, Y($i)” and “addi $i, $i, 8” are not on the critical path, and can
be correctly placed in many of the instructions (so long as immediates, etc. are handled correctly).

Name _________(answer key)________

Page 5 of 17

Inst Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Add FP Mul

1 addi $n,$0,1024 addi $i, $0, 0

loop: 2 ld $a0, A($i) ld $b0, B($i)

3 ld $a1, A+8($i) ld $b1, B+8($i)

4
5 fmul $t0, $a0, $b0

6 ld $y0, Y($i) fmul $t1, $a1, $b1

7 ld $1y, Y+8($i)

8
9 fadd $s0, $t0, $y0

10 fadd $s1, $t1, $y1

11
12
13 addi $n, $n, -2 st $s0, S($i)

14 addi $i, $i, 16 bnez $n, loop
(Inst. 2)

st $s1, S+8($i)

15
16
17
18
19

20

21

22

Q1.B: Software Pipelining (12 points)

An other optimization technique is software pipelining. Rewrite the assembly code to
leverage software pipelining (do not also use loop unrolling). You should show the loop
prologue and epilogue to initiate and drain the software pipeline. You may not need all
entries in the following table. However, it is okay if you run out of entries writing the
epilog code.

Note: the array for this program is statically allocated to 1024 elements, which allows the
compiler (i.e., you) to make simplifying assumptions about the prologue and epilog code.

What is the resulting throughput of the code, in "floating point operations per cycle"?
Only consider the steady-state operation of the loop.

Depends on the student’s implementation. For the following table:

2 FLOPS / 4 cycles in the loop =

Throughput (FLOPS/cycle) ___1/2__

Name _________(answer key)________

Page 6 of 17

Note this assumes that you can’t read from a register after an instruction has been issued that writes to that same
register (RAW) until the write has finished. If this constraint is relaxed, a more optimal solution can be used.
-1/2 points: $n is initialized to 1021, because we need to leave the loop early and let the epilogue finish the last three
iterations as the loop drains.
-1/2 points: for each wrong immediate
-1 for throughput calculation
-3 points for epilogue
-3 for prologue
-5 for loop
-2 for missing an important operation something
-3-5 points for being very suboptimal

“ld $y” is tricky, because the load can happen very early, but we have to be careful for it not to be overwritten by later
“$ld y”’s before $y is used.

Name _________(answer key)________

Page 7 of 17

Inst Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Add FP Mul

1 addi $n,$0,1021 addi $i, $0, 0

prologue: 2 ld $a, A($i) ld $b, B($i)

3
4
5 addi $i, $i, 8 ld $y, Y($i) fmul $t, $a, $b

6 ld $a, A($i) ld $b, B($i)

7
8
9 addi $I, $i, 8 ld $y, Y($i) fadd $s, $t, $y fmul $t, $a, $b

10 ld $a, A($i) ld $b, B($i)

11
12

loop: 13 addi $i, $i, 8 ld $y, Y($i) st $s, S-16($i) fadd $s, $t, $y fmul $t, $a, $b

14 ld $a, A($i) ld $b, B($i)

15 addi $n, $n, -1

16 bnez $n, loop

epilogue: 17 ld $y, Y($i) st $s, S-16($i) fadd $s, $t, $y fmul $t, $a, $b

18
19
20
21 st $s, S-8($i) fadd $s, $t, $y

23/24/25

25 st $s, S($i)
(cycle 25)

Question 2: Vector Processors
(22 points)
We will now look at three different code segments. For each, comment on whether it can
be vectorized, and then write the strip-mined vector assembly code if it can be vectorized.

Use (mtc1 vlr, RI) to set the machine’s vector length to RI. However, this will
throw an exception if RI is greater than the machine’s maximum vector length. Note
that the machine’s maximum vector length is held in a register called VLENMAX.

Q2.A: (8 points)

Written in C, the first code piece is as follows:
// N is the array size
double A[N],B[N];

... arrays are initialized ...

for(int i = 0; i < N; i++)
 A[i] = A[i] + B[i];

The initial conditions are shown above, along with some example vector assembly code
to describe the code found in the inner-most loop (lacking the strip-mining).

Can this code be vectorized? Explain why or why not. If it can be vectorized, write the
vector assembly code. Make sure to add a strip-mine loop to deal with the case where N
is greater than the machine’s vector length. However, you can assume that N will be a
multiple of the vector length.

(Write your answer on the following page).

Name _________(answer key)________

Page 8 of 17

; initial conditions
; RA <= A[0]
; RB <= B[0]
; RN <= N
; VLENMAX <= max vlen

; inner-most loop
 LV VA, RA
 LV VA, RB
 ADDV VA, VA, VB
 SV VA, RA

Q2.A continued ...
for(int i = 0; i < N; i++)
 A[i] = A[i] + B[i];

YES.

 BEQZ RN, DONE ; handle N == 0 case
LOOP:
 MTC1 vlr, VLENMAX ; set vector length

 LV VA, RA
 LV VB, RB
 ADDV VA, VA, VB
 SV VA, RA

 SLLI RK, RI, 3 ; convert # of elements to # of bytes
 ADD RA, RA, RK ; RA = &(A[RA+RI])
 ADD RB, RB, RK ; RB = &(B[RB+RI])
 SUB RN, RN, VLENMAX
 BNEZ RN, LOOP
DONE:

Because we made the assumption that N will be a multiple of VLENMAX, you can just directly
set vlr to VLENMAX.

Also, no points were taken off for not checking for the N==0 corner case.

- 3 points for not updating memory addresses (RA, RB).

-2 points for not incrementing addresses correctly (-1 for each mistake)
-1 point for not updating RN correctly
-1 for not setting mtc1 vlr

-6 for only saying yes, but providing no code

Name _________(answer key)________

Page 9 of 17

; initial conditions
; RA = &(A[0])
; RB = &(B[0])
; RN = N
; VLENMAX = max vlen

Q2.B: (7 points)

Written in C, the second code piece is as follows:
// N is the array size
double A[N+1],B[N];

... arrays are initialized ...

for(int i = 0; i < N; i++)
 A[i] = A[i+1] + B[i];

Can this code be vectorized? Explain why or why not. If it can be vectorized, write the
vector assembly code. Make sure to add a strip-mine loop to deal with the case where N
is greater than the machine’s vector length. However, you can assume that N will be a
multiple of the vector length.

YES. While there is an interdependency between iterations, it is still possible to
vectorize.

LOOP:
 OR RI, N, VLENMAX ; set vlen = n % vlenmax
 MTC1 vlr, RI

 ADD RC, RA, 8 ; RC = &(A[i+1]), if you will

 LV VC, RC
 LV VB, RB
 ADDV VA, VC, VB
 SV VA, RA

 SLLI RK, RI, 3 ; convert # of elements to # of bytes
 ADD RA, RA, RK ; RA = &(A[RA+RI])
 ADD RB, RB, RK ; RB = &(B[RB+RI])
 ADDI RN, RN, -1
 BNEZ RN, LOOP

-1 for VC/RC being +1, and not +8

Name _________(answer key)________

Page 10 of 17

Q2.C: (7 points)

Written in C, the third code piece is as follows:
// N is the array size
double A[N+1],B[N+1];

... arrays are initialized ...

for(int i = 1; i < N+1; i++)
 A[i] = A[i-1] + B[i];

Can this code be vectorized? Explain why or why not. If it can be vectorized, write the
vector assembly code. Make sure to add a strip-mine loop to deal with the case where N
is greater than the machine’s vector length. However, you can assume that N will be a
multiple of the vector length.

-7 for saying ‘yes’

NO. Computing A[i] in iteration “i” requires using the previously computed A[i-1] from
iteration “i-1”, which forces a serialization (you must compute the elements one at a time,
and in-order).

Notice that the following code will get the wrong answer:

ADD RC, RA, -8 ; RC = &(A[i-1]), if you will

LV VC, RC
LV VB, RB
ADDV VA, VC, VB ; A[i] = A[i-1] + B[i] ????
SV VA, RA

Again, the above vector assembly gets the wrong answer. Consider the following arrays:

A = {0, 1, 2, 3, 4, 5};
B = {0, 0, 0, 0, 0, 0};

Running the above C code, the correct and final solution is
A = {0, 0, 0, 0, 0, 0}
(because A[0] = 0, and A[i] = A[i-1] starting from iteration “i=1”).

But running the above vector assembly, for a VLEN of 6, we incorrectly get:
A = {0, 0, 1, 2, 3, 4};

Name _________(answer key)________

Page 11 of 17

Question 3: Multithreading
(14 points)
For this problem, we are interested in evaluating the effectiveness of multithreading using
the following numerical code.

#define N 1024
double S[N],A[N],B[N],Y[N];

... arrays are initialized ...

for(int i = 0; i < N; i++)
 S[i] = A[N] * B[N] + Y[N];

Using the disassembler we obtain:

 addi $n, $0, 1024
 addi $i, $0, 0
loop:
 ld $a, A($i)
 ld $b, B($i)
 fmul $t, $a, $b
 ld $y, Y($i)
 fadd $s, $t, $y
 st $s, S($i)
 addi $i, $i, 8
 addi $n, $n, -1
 bnez $n, loop

Assume the following:
- Our system does not have a cache.
- Each memory operation directly accesses main memory and takes 50 CPU cycles.
- The load/store unit is fully pipelined.
- After the processor issues a memory operation, it can continue executing instructions

until it reaches an instruction that is dependent on an outstanding memory operation.
- The fmul and fadd instructions both have a use-delay of 5 cycles.

Name _________(answer key)________

Page 12 of 17

Q3.A: In-order Single-threaded Processor (4 points)

How many cycles does it take to execute one iteration of the loop in steady-state for a
single-threaded processor? Do not re-order the assembly code.

loop: start / end
 ld $a, A($i) 1 / 50
 ld $b, B($i) 2 / 51
 fmul $t, $a, $b 52 / 57
 ld $y, Y($i) 53 / 102
 fadd $s, $t, $y 103 / 108
 st $s, S($i) 109
 addi $i, $i, 8 110 / 110
 addi $n, $n, -1 111 / 111
 bnez $n, loop 112 / 112
 LD $a, A($i) 113

112 cycles. (113 - 1).

Notice because this is an in-order pipeline, the “ld $y” must wait for the FMUL to be
executed first before we can start the load.

A lot of students had “off by one” errors. Memory operations were stated as “takes 50
CPU cycles”. This means that a LD that starts in cycle 1 will end in cycle 50 (think about
an ALU instruction that takes 1 CPU cycle. If it starts in cycle 1, it will end in cycle 1.
Likewise, an instruction that takes 2 CPU cycles that starts in cycle 1 will end in cycle 2,
etc.).

On the other hand, FADD/FMUL both have a “use-delay of 5 cycles”. This means an
FADD that starts in cycle 103 will end in cycle 108, and the dependent ST can begin in
cycle 109 (e.g., for the standard 5-stage pipeline LD instructions have a use-delay of 1
cycle, which means if a LD started in cycle 1, it finished* in cycle 2, and a dependent
ADD could start in cycle 3).

*I say “finished” because it still has to be committed/written-back, but from the point of
view of when the LD value can be used, it finishes in cycle 2.

- 0 points for saying 4 versus 5 should be accepted as correct (fadd -> st)
-1/2 points for each off-by-one error (ld->fadd, ld->fmul)
-3 points for waiting for the store to finish for the store to complete
-3 points for counting latency of store, instead of steady-state of loop (throughput)

Name _________(answer key)________

Page 13 of 17

Q3.B: In-order Multi-threaded Processor (5 points)

Now consider multithreading the pipeline. Threads are switched every cycle using a
fixed round-robin schedule. If the thread is not ready to run on its turn, a bubble is
inserted into the pipeline.

Each thread executes the above code, and is calculating its own independent piece of the
S array (i.e., there is no communication required between threads). Assuming an infinite
number of registers, what is the minimum number of threads we need to fully utilize the
processor? You are free to re-schedule the assembly as necessary to minimize the
number of threads required.

loop:
 ld $a, A($i) ; 1
 ld $b, B($i) ; N + 1
 ld $y, Y($i) ; 2N + 1
 addi $i, $i, 8 ; 3N + 1
 addi $n, $n, -1 ; 4N + 1
 fmul $t, $a, $b ; 5N + 1
 fadd $s, $t, $y ; 6N + 1
 st $s, S-8($i) ; 7N + 1
 bnez $n, loop ; 8N + 1

critical path: is either LD $y -> FADD, or LD $b -> FMUL (so long as N is greater than 5
to hide the FMUL latency).

For LD $y -> FADD:
(6N+1) - (2N+1) >= 50 cycles

4N = 50, N = 12.5

So 13 threads will keep the machine fully utilized.

-1.5 points for correct analysis, not ideal (answers 25 threads by moving LD Y)
-2.5 for not rescheduling at all (answers 50 threads) between LD Y -> FADD
-3 points for wrong analysis, optimal rescheduling
-5 for getting non-optimal scheduling, wrong analysis

-3 for not using round-robin

Name _________(answer key)________

Page 14 of 17

Q3.C: Out-of-Order SMT Processor (5 points)

Now consider a four-wide, out-of-order SMT (simultaneous multithreading) processor. It
can issue any ready instruction from any thread.

Assume all resources have infinite size (i.e., physical registers, ROB, instruction-
window). There is still no cache (50 cycles to access memory) and the use-delay on
floating-point arithmetic is still 5 cycles. A maximum of four instructions can be issued
in a given cycle.

How many threads are required to saturate this machine, if every thread is running the
above code?

This is actually a trick question. If an OoO processor has infinite resources, because each
iteration of the loop is independent, the processor will dynamically unroll the loop in
hardware and use instruction-level-parallelism to saturate the machine and hide the 50
cycle memory latency.

Thus, only one thread is required to saturate the machine.

Name _________(answer key)________

Page 15 of 17

Question 4: Iron Law
(18 points)

Describe how you expect switching to each of the following architectures will affect
instructions/program and cycles/instruction (CPI) relative to a baseline 5-stage, in-order
processor.

Mark whether the following modifications will cause instruction/program and CPI to
increase, decrease, or whether the change will have no effect. Explain your reasoning
to receive credit.

Q4.A: VLIW (6 points)

How do instructions/program and CPI change when moving from a 5-stage-pipeline in-
order processor to a traditional VLIW processor.

Inst/Program: DECREASES. The same number of operations need to be executed,
but some of these operations can now be combined and scheduled to run in a single
instruction, therefore, I/P goes down (however, if very few instructions could be
scheduled together, and lots of NOP instructions had to be added to hide latencies in
software, then Inst/Program could go up, but then you’ve done something horribly wrong
by switching to VLIW).

Of course, the number of operations will increase, because NOPs will have to be added to
to hide latencies and for when some operations couldn’t be scheduled for a given
functional unit. Thus, the static instruction bytes / program will likely increase.

Cycles/Instruction:

Depends on your answer to inst/program.

If the student said that inst/program decreases, then CPI must be the same or increase, as
the machine is more likely to see a stall.

If the student said that inst/program increases because of added NOP-only instructions,
then CPI decreases as it will now stall less.

-1 point if student said that inst/program decreases and CPI decreases

Name _________(answer key)________

Page 16 of 17

Q4.B: Vector Processors (6 points)

How do instructions/program and CPI change when moving from a 5-stage-pipeline in-
order processor to a single-lane vector processor.

Inst/Program: DECREASES. Instructions will decrease because many operations can
now be expressed in a single instruction. Also, a vector processor can express a number
of loop iterations in small number of vector instructions, eliminating the loop-overhead
expended every iteration (versus once per vector).

Cycles/Instruction: INCREASES. Vector instructions take multiple cycles to
execute, though chaining can help overlap execution of multiple vector instructions to
mitigate this issue.

Q4.C: Multithreaded Processor (6 points)

How do instructions/program and CPI change when moving from a 5-stage-pipeline in-
order processor to a multithreaded processor?

Assume that the new processor is still an in-order, 5-stage-pipeline processor, but that it
has been modified to switch between two threads every clock cycle (fine-grain
multithreading). If a thread is not ready to be issued (e.g., a cache miss), a bubble is
inserted in the pipeline.

Inst/Program: UNCHANGED. The ISA needs not change to enable multithreading.

Cycles/Instruction:

The answer depends on your point of view.

From the POV of one thread, CPI increases, as multithreading adds contention of
pipeline resources, and thus structural hazards can now occur that will stall the thread that
is otherwise ready to execute.

From the POV of multiple threads, the aggregate CPI decreases, as they are less likely to
encounter a stall since independent instructions can be interleaved.

END OF QUIZ

Name _________(answer key)________

Page 17 of 17

