
The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office hours to
understand the problems. However, each student must turn in his own solution to the problems.
The problem sets also provide essential background material for the quizzes. The problem sets
will be graded primarily on an effort basis, but if you do not work through the problem sets you
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day
the problem sets are due to give you feedback. Homework assignments are due at the beginning
of class on the due date. Late homework will not be accepted.

CS152 Computer Architecture and
Engineering

ISAs, Microprogramming and Pipelining
January 26, 2011

Assigned January 26 Problem Set #1 Due February 9

http://inst.eecs.berkeley.edu/~cs152/sp11

http://inst.eecs.berkeley.edu/~cs152/sp11
http://inst.eecs.berkeley.edu/~cs152/sp11

Problem 1: CISC, RISC, and Stack: Comparing ISAs
In this problem, your task is to compare three different ISAs. x86 is an extended accumulator,
CISC architecture with variable-length instructions. MIPS64 is a load-store, RISC architecture
with fixed-length instructions. We will also look at a simple stack-based ISA.

Problem 1.A CISC

Let us begin by considering the following C code:

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i = 0; i<b; i++){
 result=result+a;
 }
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, and register %edx
contains result, and register %eax contains a. b is stored in memory at location 0x8049580)

xor %edx,%edx
xor %ecx,%ecx

 loop: cmp 0x8049580,%ecx
 jl L1
 jmp done
 L1: add %eax,%edx
 inc %ecx
 jmp loop
 done: ...

The meanings and instruction lengths of the instructions used above are given in the following
table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>.

Instruction Operation Length
add RDEST, RSRC RSRC ← <RSRC> + <RDST> 2 bytes

cmp imm32, RSRC2 Temp ← <RSRC2> - MEM[imm32] 6 bytes
inc RDEST RDEST ← <RDEST> + 1 1 byte
jmp label jump to the address specified by label 2 bytes
jl label if (SF≠OF)

 jump to the address specified by label
2 bytes

xor RDEST, RSRC RDEST ← RDEST ⊗ RSRC 2 bytes

2

Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status
flags. Status flags, also known as condition codes, are analogous to the condition register used in
the MIPS architecture. Status flags are set by the instruction preceding the jump, based on the
result of the computation. Some instructions, like the cmp instruction, perform a computation and
set status flags, but do not return any result. The meanings of the status flags are given in the
following table:

Name Purpose Condition Reported
OF Overflow Result exceeds positive or negative limit of number range
SF Sign Result is negative (less than zero)

How many bytes is the program? For the above x86 assembly code, how many bytes of
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data
memory need to be fetched? Stored?

Problem 1.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS64
instructions. Place the L1 and loop labels where appropriate. You should use the minimum
number of instructions needed to translate each x86 instruction. Assume that upon entry, R1
contains b, R2 contains a, R3 contains i. R4 should receive result. If needed, use R5 as a
condition register, and R6, R7, etc., for temporaries. You should not need to use any floating-
point registers or instructions in your code. A description of the MIPS64 instruction set
architecture can be found in Appendix B of Hennessy & Patterson.

3

x86 instruction label MIPS64 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x8049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS64 program using your direct translation? How many bytes of
MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit
data values, how many bytes of data memory need to be fetched? Stored?

4

Problem 1.C Stack

In a stack architecture, all operations occur on top of the stack. Only push and pop access
memory, and all other instructions remove their operands from the stack and replace them with
the result. The hardware implementation we will assume for this problem set uses stack registers
for the top two entries; accesses that involve other stack positions (e.g., pushing or popping
something when the stack has more than two entries) use an extra memory reference. The table
below gives a subset of a simple stack-style instruction set. Assume each opcode is a single byte.
Labels, constants, and addresses require two bytes.

Example instruction Meaning
PUSH A push M[A] onto stack
POP A pop stack and place popped value in M[A]
ADD pop two values from the stack; ADD them; push result onto stack
SUB pop two values from the stack; SUBtract top value from the 2nd;

push result onto stack
ZERO zeroes out the value at top of stack
INC pop value from top of stack; increments value by one

push new value back on the stack
BEQZ label pop value from stack; if it’s zero, continue at label;

else, continue with next instruction
BNEZ label pop value from stack; if it’s not zero, continue at label;

else, continue with next instruction
GOTO label continue execution at location label

Translate the multiplyByB loop to the stack ISA. For uniformity, please use the same control
flow as in parts a and b. Assume that when we reach the loop, a is the only thing on the stack.
Assume b is still at address 0x8000 (to fit within a 2 byte address specifier).

How many bytes is your program? Using your stack translations from part (c), how many bytes
of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many bytes
of data memory need to be fetched? Stored? If you could push and pop to/from a four-entry
register file rather than memory (the Java virtual machine does this), what would be the resulting
number of bytes fetched and stored?

5

Problem 1.D Conclusions

In just a few sentences, compare the three ISAs you have studied with respect to code size,
number of instructions fetched, and data memory traffic.

Problem 1.E Optimization

To get more practice with MIPS64, optimize the code from part B so that it can be expressed in
fewer instructions. There are solutions more efficient than simply translating each individual
x86 instruction as you did in part B. Your solution should contain commented assembly code, a
paragraph that explains your optimizations, and a short analysis of the savings you obtained.

6

Problem 2: Microprogramming and Bus-Based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS
Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1. Make sure
that you understand how different types of data and control transfers are achieved by setting the
appropriate control signals before attempting this problem.

In order to further simplify this problem, ignore the busy signal, and assume that the memory is
as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of
new hardware added).

Problem 2.A Implementing Memory-to-Memory Add

For this problem, you are to implement a new memory-memory add operation. The new
instruction has the following format:

ADDm rd, rs, rt

ADDm performs the following operation:

M[rd] ← M[rs] + M[rt]

Fill in Worksheet 2.A with the microcode for ADDm. Use don’t cares (*) for fields where it is
safe to use don’t cares. Study the hardware description well, and make sure all your
microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in the
course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch
to FETCH0 as discussed above).

7

8

S
ta

te
P

se
ud

oC
od

e
ld

IR
R

eg S
el

R
eg W
r

en R
eg

ld
A

ld
B

A
LU

O
p

en A
LU

ld M
A

M
em W

r
en M
em

E
x

S
el

en Im
m

µ
B

r
N

ex
t S

ta
te

FE
TC

H
0:

M
A

<-
 P

C
;

A
<-

 P
C

0
P

C
0

1
1

*
*

0
1

*
0

*
0

N
*

IR
 <

- M
em

1
*

*
0

0
*

*
0

0
0

1
*

0
N

*

P
C

 <
- A

+4
0

P
C

1
1

0
*

IN
C

_A
_4

1
*

*
0

*
0

D
*

. .
 . N

O
P

0:
m

ic
ro

br
an

ch
ba

ck
 to

 F
E

TC
H

0
0

*
*

0
*

*
*

0
*

*
0

*
0

J
FE

TC
H

0

A
D

D
M

0:

W
or

ks
he

et
 2

.A

Problem 2.B Implementing MOVN Instruction

MOVN stands for Move Conditional on Not Zero. This instruction uses the same encoding as
the other arithmetic instructions (R-type) on MIPS:

opcode rs rt rd ... funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

The MOVN instruction has the following format:

MOVN rd, rs, rt

And it performs following operation:

rd ← (rt) ? rs : rd

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Your task is to fill out Worksheet 2.B for MOVN instruction. You should try to optimize your
implementation for the minimal number of cycles necessary and for which signals can be set to
don’t-cares. You do not have to worry about the busy signal.

9

10

S
ta

te
P

se
ud

oC
od

e
ld

IR
R

eg S
el

R
eg W
r

en R
eg

ld
A

ld
B

A
LU

O
p

en A
LU

ld M
A

M
em W

r
en M
em

E
x

S
el

en Im
m

µ
B

r
N

ex
t S

ta
te

FE
TC

H
0:

M
A

<-
 P

C
;

A
<-

 P
C

*
P

C
0

1
1

*
*

0
1

*
0

*
0

N
*

IR
 <

- M
em

1
*

*
0

0
*

*
0

*
0

1
*

0
N

*

P
C

 <
- A

+4
;

di
sp

at
ch

0
P

C
1

1
*

*
IN

C
_A

_4
1

*
*

0
*

0
D

*

. .
 . N

O
P

0:
m

ic
ro

br
an

ch
ba

ck
 to

 F
E

TC
H

0
*

*
*

0
*

*
*

0
*

*
0

*
0

J
FE

TC
H

0

M
O

V
N

:

W
or

ks
he

et
 2

.B

Problem 2.C Instruction Execution Times

How many cycles does it take to execute the following instructions in the microcoded MIPS
machine? Use the states and control points from MIPS-Controller-2 in Lecture 2 and assume
Memory will not assert its busy signal.

Instruction Cycles
SUB R3,R2,R1

SUBI R2,R1,#4

SW R1,0(R2)

BEQZ R1,label # (R1 == 0)

BNEZ R1,label # (R1 != 0)

J label

JR R1

JAL label

JALR R1

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to
execute?

11

Problem 3: 6-Stage Pipeline

In this problem, we consider a modification to the fully bypassed 5-stage MIPS processor
pipeline presented in Lecture 4. Our new processor has a data cache with a two-cycle latency.
To accommodate this cache, the memory stage is pipelined into two stages, M1 and M2, as
shown in Figure 1-A. Additional bypasses are added to keep the pipeline fully bypassed.

Suppose we are implementing this 6-stage pipeline in a technology in which register file ports
are inexpensive but bypasses are costly. We wish to reduce cost by removing some of the bypass
paths, but without increasing CPI. The proposal is for all integer arithmetic instructions to write
their results to the register file at the end of the Execute stage, rather than waiting until the
Writeback stage. A second register file write port is added for this purpose. Remember that
register file writes occur on each rising clock edge, and values can be read in the next clock
cycle. The proposed change is shown in Figure 1-B.

In this problem, assume that the only exceptions that can occur in this pipeline are illegal
opcodes (detected in the Decode stage) and invalid memory address (detected at the start of the
M2 stage). Additionally assume that the control logic is optimized to stall only when necessary.
You may ignore branch and jump instructions in this problem.

Figure 1-A. 6-stage pipeline. For clarity, bypass paths are not shown.

Figure 1-B. 6-stage pipeline with proposed additional write port.

12

Problem 3.A Hazards: Second Write Port

The second write port allows some bypass paths to be removed without adding stalls in the
decode stage. Explain how the second write port improves performance by eliminating such
stalls and give a short code sequence that would have required an interlock to execute correctly
with only a single write port and with the same bypass paths removed.

Problem 3.B Hazards: Bypasses Removed

After the second write port is added, which bypass paths can be removed in this new pipeline
without introducing additional stalls? List each removed bypass individually.

13

Problem 3.C Precise Exceptions

Without further modifications, this pipeline may not support precise exceptions. Briefly explain
why, and provide a minimal code sequence that will result in an imprecise exception.

Problem 3.D Precise Exceptions: Implemented using a Interlock

Describe how precise exceptions can be implemented by adding a new interlock. Provide a
minimal code sequence that would engage this interlock. Qualitatively, what is the performance
impact of this solution?

Problem 3.E Precise Exceptions: Implemented using an Extra Read Port

Suppose you are additionally given the budget to add a new register file read port. Propose an
alternative solution to implement precise exceptions in this pipeline without requiring any new
interlocks.

14

Problem 4: CISC vs RISC

For each of the following questions, circle either CISC or RISC, depending on which ISA you
feel would be best suited for the situation described. Also, briefly explain your reasoning.

Problem 4.A Lack of Good Compilers I

Assume that compiler technology is poor, and therefore your users are far more apt to write all of
their code in assembly. A _____ ISA would be best appreciated by these programmers.

CISC RISC

Problem 4.B Lack of Good Compilers II

You desire to make compilers better at targeting your yet-to-be-designed machine. Therefore,
you choose a _____ ISA, as it would be easiest for a compiler to target, thus allowing your users
to write code in higher-level languages like C and Fortran and raise their productivity.

CISC RISC

15

Problem 4.C Fast Logic, Slow Memory

Assume that CPU logic is fast, very fast, while instruction fetch accesses are at least 10x slower
(say, you’re the lead architect of the “709”). Which ISA style do you choose as a best match for
the hardware’s limitations?

CISC RISC

Problem 4.D Higher Performance(?)

Starting with a clean slate in the year 2011 (area/logic/memory is cheap), you think that a _____
ISA that would lend itself best to a very high performance processor (e.g., high frequency, highly
pipelined).

CISC RISC

16

Problem 5: Iron Law of Processor Performance

Mark whether the following modifications will cause each of the first three categories to
increase, decrease, or whether the modification will have no effect. Explain your reasoning.

For the final column “Overall Performance”, mark whether the following modifications
increase, decrease, have no effect, or whether the modification will have an ambiguous effect.
Explain your reasoning. If the modification has an ambiguous effect, describe the tradeoff in
which it would be a beneficial modification or in which it would a detrimental modification (i.e.,
as an engineer would you suggest using the modification or not and why?).

Instructions /
Program

Cycles /
Instruction

Seconds / Cycle Overall
Performance

a)
Adding a branch
delay slot

b) Adding a complex
instruction

c)
Reduce number of
registers in the ISA

d) Improving memory
access speed

17

e)

Adding 16-bit
versions of the most
common instructions
in MIPS (normally
32-bits in length) to
the ISA (i.e., make
MIPS a variable
length ISA)

f)

For a given CISC
ISA, changing the
implementation of
the micro-
architecture from a
microcoded engine
to a RISC pipeline
(with a CISC-to-
RISC decoder on the
front-end)

18

