
 

 
The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office hours to 
understand the problems. However, each student must turn in his own solution to the problems. 
The problem sets also provide essential background material for the quizzes. The problem sets 
will be graded primarily on an effort basis, but if you do not work through the problem sets you 
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day 
the problem sets are due to give you feedback.  Homework assignments are due at the beginning 
of class on the due date.  Late homework will not be accepted. 
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Problem 1: CISC, RISC, and Stack: Comparing ISAs 
In this problem, your task is to compare three different ISAs.  x86 is an extended accumulator, 
CISC architecture with variable-length instructions.  MIPS64 is a load-store, RISC architecture 
with fixed-length instructions.  We will also look at a simple stack-based ISA. 
 

 
Let us begin by considering the following C code: 
 
int b;  //a global variable 
 
void multiplyByB(int a){ 
  int i, result; 
  for(i = 0; i<b; i++){ 
    result=result+a; 
  } 
} 
 
Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following 
x86 instruction sequence.  (On entry to this code, register %ecx contains i, and register %edx 
contains result, and register %eax contains a.  b is stored in memory at location 0x8049580) 
 

xor    %edx,%edx 
xor    %ecx,%ecx 

 loop:      cmp    0x8049580,%ecx 
   jl     L1  
   jmp    done  
 L1:  add    %eax,%edx 
   inc    %ecx 
   jmp    loop  
 done:    ... 

 
The meanings and instruction lengths of the instructions used above are given in the following 
table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>. 
  

 
 
 
 
 
 
 
 
 

Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status 
flags. Status flags, also known as condition codes, are analogous to the condition register used in 
the MIPS architecture. Status flags are set by the instruction preceding the jump, based on the 
result of the computation. Some instructions, like the cmp instruction, perform a computation and 

Problem 1.A CISC 

Instruction Operation Length 
add RDEST, RSRC RSRC ← <RSRC> + <RDST> 2 bytes 
cmp imm32, RSRC2  Temp ← <RSRC2> - MEM[imm32] 6 bytes 
inc RDEST RDEST ← <RDEST> + 1 1 byte 
jmp label jump to the address specified by label 2 bytes 
jl label if (SF≠OF) 

  jump to the address specified by label 
2 bytes 

xor RDEST, RSRC  RDEST ← RDEST ⊗ RSRC 2 bytes 



set status flags, but do not return any result. The meanings of the status flags are given in the 
following table: 
 

 
How many bytes is the program?  For the above x86 assembly code, how many bytes of 
instructions need to be fetched if b = 10?  Assuming 32-bit data values, how many bytes of data 
memory need to be fetched? Stored? 
 

 
Translate each of the x86 instructions in the following table into one or more MIPS64 
instructions.  Place the L1 and loop labels where appropriate.  You should use the minimum 
number of instructions needed to translate each x86 instruction. Assume that upon entry, R1 
contains b, R2 contains a, R3 contains i.  R4 should receive result. If needed, use R5 as a 
condition register, and R6, R7, etc., for temporaries. You should not need to use any floating-
point registers or instructions in your code.  A description of the MIPS64 instruction set 
architecture can be found in Appendix B of Hennessy & Patterson.   

 
 

Name Purpose Condition Reported 
OF Overflow Result exceeds positive or negative limit of number range 
SF Sign Result is negative (less than zero) 

Problem 1.B RISC 

x86 instruction label MIPS64 instruction sequence 
xor    %edx,%edx 
          

  
 
 

xor    %ecx,%ecx 
          

  
 
 

cmp    0x8049580,%ecx   
 
 

jl     L1  
 

  
 
 

jmp    done   
 
 

add    %eax,%edx   
 
 

inc    %ecx 
 

  
 
 

jmp    loop   
 
 

... done: ... 



How many bytes is the MIPS64 program using your direct translation?  How many bytes of 
MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit 
data values, how many bytes of data memory need to be fetched? Stored? 
 

 
In a stack architecture, all operations occur on top of the stack.  Only push and pop access 
memory, and all other instructions remove their operands from the stack and replace them with 
the result.  The hardware implementation we will assume for this problem set uses stack registers 
for the top two entries; accesses that involve other stack positions (e.g., pushing or popping 
something when the stack has more than two entries) use an extra memory reference.  The table 
below gives a subset of a simple stack-style instruction set.  Assume each opcode is a single 
byte.  Labels, constants, and addresses require two bytes. 
 

 
 
Translate the multiplyByB loop to the stack ISA.  For uniformity, please use the same control 
flow as in parts a and b.  Assume that when we reach the loop, a is the only thing on the stack.  
Assume b is still at address 0x8000 (to fit within a 2 byte address specifier). 
 
How many bytes is your program?  Using your stack translations from part (c), how many bytes 
of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many 
bytes of data memory need to be fetched? Stored?  If you could push and pop to/from a four-
entry register file rather than memory (the Java virtual machine does this), what would be the 
resulting number of bytes fetched and stored? 
 
 
 
 
 
 
 

Problem 1.C Stack 

Example instruction Meaning 
PUSH A push M[A] onto stack 
POP A pop stack and place popped value in M[A] 
ADD pop two values from the stack; ADD them; push result onto stack 
SUB pop two values from the stack; SUBtract top value from the 2nd; 

push result onto stack 
ZERO zeroes out the value at top of stack 
INC pop value from top of stack; increments value by one 

push new value back on the stack  
BEQZ label pop value from stack; if it’s zero, continue at label; 

else, continue with next instruction 
BNEZ label pop value from stack; if it’s not zero, continue at label; 

else, continue with next instruction 
GOTO label continue execution at location label 



 
 
 

 
In just a few sentences, compare the three ISAs you have studied with respect to code size, 
number of instructions fetched, and data memory traffic.    
 
 

 
To get more practice with MIPS64, optimize the code from part B so that it can be expressed in 
fewer instructions.  There are solutions more efficient than simply translating each individual 
x86 instruction as you did in part B. Your solution should contain commented assembly code, a 
paragraph that explains your optimizations, and a short analysis of the savings you obtained. 
 
 

Problem 1.D Conclusions 

Problem 1.E Optimization 



Problem 2:  Microprogramming and Bus-Based Architectures  
 
In this problem, we explore microprogramming by writing microcode for the bus-based 
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS 
Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1.  Make sure 
that you understand how different types of data and control transfers are achieved by setting the 
appropriate control signals before attempting this problem. 

In order to further simplify this problem, ignore the busy signal, and assume that the memory is 
as fast as the register file. 
 

The final solution should be elegant and efficient (e.g. number of new states needed, amount of 
new hardware added). 

 

 

For this problem, you are to implement a new memory-memory add operation.  The new 
instruction has the following format: 

ADDm rd, rs, rt 
ADDm performs the following operation: 

M[rd] ← M[rs] + M[rt]   

Fill in Worksheet 2.A with the microcode for ADDm.  Use don’t cares (*) for fields where it is 
safe to use don’t cares.  Study the hardware description well, and make sure all your 
microinstructions are legal. 

Please comment your code clearly. If the pseudo-code for a line does not fit in the space 
provided, or if you have additional comments, you may write in the margins as long as you do it 
neatly.  Your code should exhibit “clean” behavior and not modify any registers (except rd) in the 
course of executing the instruction. 

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch 
to FETCH0 as discussed above). 

Problem 2.A Implementing Memory-to-Memory Add 



 
 

Worksheet 2.A

State PseudoCode ldIR Reg 
Sel 

Reg 
Wr 

en 
Reg 

ldA ldB ALUOp en 
ALU 

ld 
MA 

Mem 
Wr 

en 
Mem 

Ex 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

0 PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N * 

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

ADDM0:                 

                 

                 

                 

                 

                 

                 

                 

                 



 
Problem 2.B Implementing DBNEZ Instruction 

 
DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as 
conditional branch instructions (I-Format) on MIPS: 
 

opcode rs … offset 
6 bits 5 bits 5 bits 16 bits 

 
DBNEZ decrements register rs by 1, writes the result back to rs, and branches to (PC+4)+offset, 
if the result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This 
instruction can be used for efficiently implementing loops. 
 
Your task is to fill out Worksheet 2.B for DBNEZ instruction. You should try to optimize your 
implementation for the minimal number of cycles necessary and for which signals can be set to 
don’t-cares. You do not have to worry about the busy signal. 
 

(Note that the microcode for the fetch stage has changed slightly from the one in the Problem 
2.A, to allow for more efficient implementation of some instructions.)  
 
 

Problem 2.C Instruction Execution Times 
How many cycles does it take to execute the following instructions in the microcoded MIPS 
machine?  Use the states and control points from MIPS-Controller-2 in Lecture 4 and assume 
Memory will not assert its busy signal. 
 

Instruction Cycles 
SUB  R3,R2,R1  
SUBI R2,R1,#4  
SW   R1,0(R2)  
BEQZ R1,label  # (R1 == 0)  
BNEZ R1,label  # (R1 != 0)  
J    label  
JR   R1  
JAL  label  
JALR R1  

 
Which instruction takes the most cycles to execute?  Which instruction takes the fewest cycles to 
execute? 



 
Worksheet 2.B 

State PseudoCode ldIR Reg 
Sel 

Reg 
Wr 

en 
Reg 

ldA ldB ALUOp en 
ALU 

ld 
MA 

Mem 
Wr 

en 
Mem 

Ex 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

DBNEZ:                 

                 

                 

                 

                 

                 

                 

                 

                 



Problem 3: Mem-ALU Pipeline 
 
In this problem, we consider further modifications to the fully bypassed 5-stage MIPS processor 
pipeline presented in Lecture 4. We will re-order the stages so the Execute (ALU) stage comes 
after the Memory stage. After this change we will only support register-indirect addressing. This 
change will let us use the contents of memory as one of the operands for arithmetic operations. 
For example, something like the CAdd instruction could be implemented: 

CAdd  rd, rs0, rs1 
CAdd performs the following operation: 

rd ← M[rs0] + rs1 

In this problem, assume that the control logic is optimized to stall only when necessary, and that 
the pipeline is fully bypassed. Ignore control-transfer instructions (jumps and branches). 
 
Besides enabling the CAdd instruction, this pipeline modification will change which hazards 
exist in the pipeline. We want to compare the pipeline from lecture (old) to this modified 
pipeline with the ALU after memory (new). Assume both the old and new pipelines are fully 
bypassed with correct control logic. For each problem below, give a sample instruction sequence 
to clarify your explanation. 
 
 
 
Problem 3.A Elimination of a Hazard 

 
Give a minimal sequence of MIPS instructions that would cause a pipeline bubble in the original 
datapath, but not in the new datapath.   
 
Problem 3.B New Hazard           

 
Give a minimal sequence of MIPS instructions that would cause a pipeline bubble in the new 
datapath, but not in the original datapath. 
 
Problem 3.C Comparison           

 
Compare the advantages and disadvantages of the new datapath. Which one would you 
recommend? Justify your choice.



 
Problem 3.D Memory Addressing Modes 

 
As an architect you desire full compatibility with the old ISA, including support for 
register-immediate indirect addressing (e.g., LW r2, 8(r3)). How would you modify the 
new pipeline (and associated control logic) to support this efficiently? 
 
Problem 3.E Precise Exceptions 

 
Describe a problem that might arise when implementing precise exceptions and propose a 
simple solution. 



Problem 4: ISA Visibility 
 
The following questions describe two variants of a processor that are otherwise identical.  
In each case, state whether or not the difference is visible to software written in the ISA.  
Briefly explain your reasoning.  Ignore differences in performance. 
 
Problem 4.A Pipeline Depth 

 
Pipelined processor A has more stages than pipelined Processor B, but both have full 
bypassing.   
 
Problem 4.B Control Type           

 
Processor A uses microcoded control while Processor B uses hardwired control.  
 
Problem 4.C CISC/RISC           

 
Processor A is considered to be a CISC machine while Processor B is a RISC machine. 
 
Problem 4.D Microcode Type 

 
Machine A has very vertical microcode while machine B has a more horizontal 
microcode.  
 
Problem 4.E Stack Depth 

 
Stack machine A has more physical registers to implement its stack than stack machine 
B. 
 
Problem 4.F Delay Slot 

 
Processor A has a branch delay slot, while Processor B does not.



Problem 5: Iron Law of Processor Performance 
 
Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will 
have no effect.  Explain your reasoning. 
 Instructions / Program Cycles / Instruction Seconds / Cycle 
 
 
Dividing up a 
pipeline stage into 
two stages 
 
 

   

 
 
Adding a complex 
instruction 
 

   

 
 
Reducing the 
number of bypass 
paths 
 

   

 
 
Improving memory 
access speed 
 

   

 


