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Problem 1: CISC, RISC, and Stack: Comparing ISAs
In this problem, your task is to compare three different ISAs.  x86 is an extended accumulator, 
CISC architecture with variable-length instructions.  MIPS64 is a load-store, RISC architecture 
with fixed-length instructions.  We will also look at a simple stack-based ISA.

Problem 1.A CISC

Let us begin by considering the following C code:

int b;  //a global variable

void multiplyByB(int a){
  int i, result;
  for(i = 0; i<b; i++){
    result=result+a;
  }
}

Using gcc and objdump on a Pentium III, we see that  the above loop compiles to the following 
x86 instruction sequence.  (On entry to this code, register %ecx contains i, and register %edx 
contains result, and register %eax contains a.  b is stored in memory at location 0x8049580)

xor    %edx,%edx
xor    %ecx,%ecx

 loop:      cmp    0x8049580,%ecx
   jl     L1 
   jmp    done 
 L1:  add    %eax,%edx
   inc    %ecx
   jmp    loop 
 done:    ...

The meanings and instruction lengths of the instructions used above are given in the following 
table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>.

Instruction Operation Length
add RDEST, RSRC RSRC ← <RSRC> + <RDST> 2 bytes

cmp imm32, RSRC2 Temp ← <RSRC2> - MEM[imm32] 6 bytes
inc RDEST RDEST ← <RDEST> + 1 1 byte
jmp label jump to the address specified by label 2 bytes
jl label if (SF≠OF)

  jump to the address specified by label
2 bytes

xor RDEST, RSRC RDEST ← RDEST ⊗ RSRC 2 bytes
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Notice that  the jump instruction jl (jump if less than) depends on SF and OF, which are status 
flags. Status flags, also known as condition codes, are analogous to the condition register used in 
the MIPS architecture. Status flags are set by  the instruction preceding the jump, based on the 
result of the computation. Some instructions, like the cmp instruction, perform a computation and 
set status flags, but do not return any result. The meanings of the status flags are given in the 
following table:

Name Purpose Condition Reported
OF Overflow Result exceeds positive or negative limit of number range
SF Sign Result is negative (less than zero)

How many bytes is the program?  For the above x86 assembly code, how many bytes of 
instructions need to be fetched if b = 10?  Assuming 32-bit data values, how many bytes of data 
memory need to be fetched? Stored?

Problem 1.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS64 
instructions.  Place the L1 and loop labels where appropriate.  You should use the minimum 
number of instructions needed to translate each x86 instruction. Assume that  upon entry, R1 
contains b, R2 contains a, R3 contains i.  R4 should receive result. If needed, use R5 as a 
condition register, and R6, R7, etc., for temporaries. You should not need to use any floating-
point registers or instructions in your code.  A description of the MIPS64 instruction set 
architecture can be found in Appendix B of Hennessy & Patterson.  
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x86 instruction label MIPS64 instruction sequence
xor    %edx,%edx
         

xor    %ecx,%ecx
         

cmp    0x8049580,%ecx

jl     L1 

jmp    done

add    %eax,%edx

inc    %ecx

jmp    loop

... done: ...

How many bytes is the MIPS64 program using your direct translation?  How many bytes of 
MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit 
data values, how many bytes of data memory need to be fetched? Stored?
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Problem 1.C Stack

In a stack architecture, all operations occur on top of the stack.  Only push and pop access 
memory, and all other instructions remove their operands from the stack and replace them with 
the result.  The hardware implementation we will assume for this problem set uses stack registers 
for the top two entries; accesses that involve other stack positions (e.g., pushing or popping 
something when the stack has more than two entries) use an extra memory reference.  The table 
below gives a subset of a simple stack-style instruction set.  Assume each opcode is a single byte.  
Labels, constants, and addresses require two bytes.

Example instruction Meaning
PUSH A push M[A] onto stack
POP A pop stack and place popped value in M[A]
ADD pop two values from the stack; ADD them; push result onto stack
SUB pop two values from the stack; SUBtract top value from the 2nd;

push result onto stack
ZERO zeroes out the value at top of stack
INC pop value from top of stack; increments value by one

push new value back on the stack 
BEQZ label pop value from stack; if it’s zero, continue at label;

else, continue with next instruction
BNEZ label pop value from stack; if it’s not zero, continue at label;

else, continue with next instruction
GOTO label continue execution at location label

Translate the multiplyByB loop to the stack ISA.  For uniformity, please use the same control 
flow as in parts a and b.  Assume that when we reach the loop, a is the only thing on the stack.  
Assume b is still at address 0x8000 (to fit within a 2 byte address specifier).

How many bytes is your program?  Using your stack translations from part (c), how many bytes 
of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many  bytes 
of data memory need to be fetched? Stored?  If you could push and pop to/from a four-entry 
register file rather than memory (the Java virtual machine does this), what would be the resulting 
number of bytes fetched and stored?
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Problem 1.D Conclusions

In just a few sentences, compare the three ISAs you have studied with respect to code size, 
number of instructions fetched, and data memory traffic.   

Problem 1.E Optimization

To get more practice with MIPS64, optimize the code from part B so that it  can be expressed in 
fewer instructions.  There are solutions more efficient than simply translating each individual 
x86 instruction as you did in part  B. Your solution should contain commented assembly  code, a 
paragraph that explains your optimizations, and a short analysis of the savings you obtained.
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Problem 2:  Microprogramming and Bus-Based Architectures 

In this problem, we explore microprogramming by writing microcode for the bus-based 
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS 
Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1.  Make sure 
that you understand how different types of data and control transfers are achieved by setting the 
appropriate control signals before attempting this problem.

In order to further simplify  this problem, ignore the busy signal, and assume that the memory is 
as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of 
new hardware added).

Problem 2.A Implementing Memory-to-Memory Add

For this problem, you are to implement a new memory-memory add operation.  The new 
instruction has the following format:

ADDm rd, rs, rt

ADDm performs the following operation:

M[rd] ← M[rs] + M[rt]  

Fill in Worksheet 2.A with the microcode for ADDm.  Use don’t cares (*) for fields where it is 
safe to use don’t cares.  Study the hardware description well, and make sure all your 
microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space 
provided, or if you have additional comments, you may write in the margins as long as you do it 
neatly.  Your code should exhibit “clean” behavior and not modify any registers (except rd) in the 
course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch 
to FETCH0 as discussed above).
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Problem 2.B Implementing MOVN Instruction

MOVN stands for Move Conditional on Not Zero. This instruction uses the same encoding as  
the other arithmetic instructions (R-type) on MIPS:

opcode rs rt rd ... funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

The MOVN instruction has the following format:

MOVN rd, rs, rt

And it performs following operation:

rd ← (rt) ? rs : rd 

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Your task is to fill out Worksheet 2.B for MOVN instruction. You should try to optimize your 
implementation for the minimal number of cycles necessary and for which signals can be set  to 
don’t-cares. You do not have to worry about the busy signal.
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Problem 2.C Instruction Execution Times

How many cycles does it take to execute the following instructions in the microcoded MIPS 
machine?  Use the states and control points from MIPS-Controller-2 in Lecture 2 and assume 
Memory will not assert its busy signal.

Instruction Cycles
SUB  R3,R2,R1

SUBI R2,R1,#4

SW   R1,0(R2)

BEQZ R1,label  # (R1 == 0)

BNEZ R1,label  # (R1 != 0)

J    label

JR   R1

JAL  label

JALR R1

Which instruction takes the most cycles to execute?  Which instruction takes the fewest cycles to 
execute?
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Problem 3: 6-Stage Pipeline

In this problem, we consider a modification to the fully  bypassed 5-stage MIPS processor 
pipeline presented in Lecture 4.   Our new processor has a data cache with a two-cycle latency.  
To accommodate this cache, the memory stage is pipelined into two stages, M1 and M2, as 
shown in Figure 1-A. Additional bypasses are added to keep the pipeline fully bypassed.

Suppose we are implementing this 6-stage pipeline in a technology in which register file ports 
are inexpensive but bypasses are costly. We wish to reduce cost by removing some of the bypass 
paths, but without increasing CPI. The proposal is for all integer arithmetic instructions to write 
their results to the register file at the end of the Execute stage, rather than waiting until the 
Writeback stage.  A second register file write port is added for this purpose.  Remember that 
register file writes occur on each rising clock edge, and values can be read in the next clock 
cycle.  The proposed change is shown in Figure 1-B.

In this problem, assume that the only exceptions that can occur in this pipeline are illegal 
opcodes (detected in the Decode stage) and invalid memory address (detected at the start  of the 
M2 stage).  Additionally  assume that the control logic is optimized to stall only when necessary.  
You may ignore branch and jump instructions in this problem.

Figure 1-A.  6-stage pipeline.  For clarity, bypass paths are not shown.

Figure 1-B.  6-stage pipeline with proposed additional write port.
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Problem 3.A Hazards: Second Write Port

The second write port allows some bypass paths to be removed without adding stalls in the 
decode stage.  Explain how the second write port improves performance by eliminating such 
stalls and give a short code sequence that would have required an interlock to execute correctly 
with only a single write port and with the same bypass paths removed.

Problem 3.B Hazards: Bypasses Removed

After the second write port is added, which bypass paths can be removed in this new pipeline 
without introducing additional stalls?  List each removed bypass individually.
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Problem 3.C Precise Exceptions

Without  further modifications, this pipeline may not support precise exceptions.  Briefly explain 
why, and provide a minimal code sequence that will result in an imprecise exception.  

Problem 3.D Precise Exceptions: Implemented using a Interlock

Describe how precise exceptions can be implemented by  adding a new interlock.  Provide a 
minimal code sequence that  would engage this interlock.  Qualitatively, what is the performance 
impact of this solution?

Problem 3.E Precise Exceptions: Implemented using an Extra Read Port

Suppose you are additionally given the budget to add a new register file read port.  Propose an 
alternative solution to implement precise exceptions in this pipeline without requiring any new 
interlocks.
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Problem 4: CISC vs RISC

For each of the following questions, circle either CISC or RISC, depending on which ISA you 
feel would be best suited for the situation described.  Also, briefly explain your reasoning. 

Problem 4.A Lack of Good Compilers I

Assume that compiler technology is poor, and therefore your users are far more apt to write all of 
their code in assembly.  A _____ ISA would be best appreciated by these programmers.

CISC                                                 RISC

Problem 4.B Lack of Good Compilers II

You desire to make compilers better at targeting your yet-to-be-designed machine. Therefore, 
you choose a _____ ISA, as it would be easiest for a compiler to target, thus allowing your users 
to write code in higher-level languages like C and Fortran and raise their productivity.

CISC                                                 RISC
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Problem 4.C Fast Logic, Slow Memory

Assume that CPU logic is fast, very fast, while instruction fetch accesses are at least 10x slower 
(say, you’re the lead architect of the “709”).  Which ISA style do you choose as a best match for 
the hardware’s limitations?

CISC                                                 RISC

Problem 4.D Higher Performance(?)

Starting with a clean slate in the year 2011 (area/logic/memory is cheap), you think that a _____ 
ISA that would lend itself best to a very high performance processor (e.g., high frequency, highly 
pipelined).

CISC                                                 RISC
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Problem 5: Iron Law of Processor Performance

Mark whether the following modifications will cause each of the first three categories to 
increase, decrease, or whether the modification will have no effect.  Explain your reasoning.

For the final column “Overall Performance”, mark whether the following modifications 
increase, decrease, have no effect, or whether the modification will have an ambiguous effect. 
Explain your reasoning.  If the modification has an ambiguous effect, describe the tradeoff in 
which it would be a beneficial modification or in which it  would a detrimental modification (i.e., 
as an engineer would you suggest using the modification or not and why?).

Instructions / 
Program

Cycles / 
Instruction

Seconds / Cycle Overall 
Performance

a)
Adding a branch 
delay slot

b) Adding a complex 
instruction

c)
Reduce number of 
registers in the ISA

d) Improving memory 
access speed

17



e)

Adding 16-bit 
versions of the most 
common instructions 
in MIPS (normally 
32-bits in length) to 
the ISA (i.e., make 
MIPS a variable 
length ISA)

f)

For a given CISC 
ISA, changing the 
implementation of 
the micro-
architecture from a 
microcoded engine 
to a RISC pipeline 
(with a CISC-to-
RISC decoder on the 
front-end)
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