

The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office hours to
understand the problems. However, each student must turn in his own solution to the problems.
The problem sets also provide essential background material for the quizzes. The problem sets
will be graded primarily on an effort basis, but if you do not work through the problem sets you
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day
the problem sets are due to give you feedback. Homework assignments are due at the beginning
of class on the due date. Late homework will not be accepted.

 CS152 Computer Architecture and
Engineering

ISAs, Microprogramming and Pipelining

January 25, 2010

Assigned January 26 Problem Set #1 Due February 11

http://inst.eecs.berkeley.edu/~cs152/sp10

Problem 1: CISC, RISC, and Stack: Comparing ISAs
In this problem, your task is to compare three different ISAs. x86 is an extended accumulator,
CISC architecture with variable-length instructions. MIPS64 is a load-store, RISC architecture
with fixed-length instructions. We will also look at a simple stack-based ISA.

Let us begin by considering the following C code:

int b; //a global variable

void multiplyByB(int a){
 int i, result;
 for(i = 0; i<b; i++){
 result=result+a;
 }
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, and register %edx
contains result, and register %eax contains a. b is stored in memory at location 0x8049580)

xor %edx,%edx
xor %ecx,%ecx

 loop: cmp 0x8049580,%ecx
 jl L1
 jmp done
 L1: add %eax,%edx
 inc %ecx
 jmp loop
 done: ...

The meanings and instruction lengths of the instructions used above are given in the following
table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>.

Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status
flags. Status flags, also known as condition codes, are analogous to the condition register used in
the MIPS architecture. Status flags are set by the instruction preceding the jump, based on the
result of the computation. Some instructions, like the cmp instruction, perform a computation and

Problem 1.A CISC

Instruction Operation Length
add RDEST, RSRC RSRC ← <RSRC> + <RDST> 2 bytes
cmp imm32, RSRC2 Temp ← <RSRC2> - MEM[imm32] 6 bytes
inc RDEST RDEST ← <RDEST> + 1 1 byte
jmp label jump to the address specified by label 2 bytes
jl label if (SF≠OF)

 jump to the address specified by label
2 bytes

xor RDEST, RSRC RDEST ← RDEST ⊗ RSRC 2 bytes

set status flags, but do not return any result. The meanings of the status flags are given in the
following table:

How many bytes is the program? For the above x86 assembly code, how many bytes of
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data
memory need to be fetched? Stored?

Translate each of the x86 instructions in the following table into one or more MIPS64
instructions. Place the L1 and loop labels where appropriate. You should use the minimum
number of instructions needed to translate each x86 instruction. Assume that upon entry, R1
contains b, R2 contains a, R3 contains i. R4 should receive result. If needed, use R5 as a
condition register, and R6, R7, etc., for temporaries. You should not need to use any floating-
point registers or instructions in your code. A description of the MIPS64 instruction set
architecture can be found in Appendix B of Hennessy & Patterson.

Name Purpose Condition Reported
OF Overflow Result exceeds positive or negative limit of number range
SF Sign Result is negative (less than zero)

Problem 1.B RISC

x86 instruction label MIPS64 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x8049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS64 program using your direct translation? How many bytes of
MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit
data values, how many bytes of data memory need to be fetched? Stored?

In a stack architecture, all operations occur on top of the stack. Only push and pop access
memory, and all other instructions remove their operands from the stack and replace them with
the result. The hardware implementation we will assume for this problem set uses stack registers
for the top two entries; accesses that involve other stack positions (e.g., pushing or popping
something when the stack has more than two entries) use an extra memory reference. The table
below gives a subset of a simple stack-style instruction set. Assume each opcode is a single
byte. Labels, constants, and addresses require two bytes.

Translate the multiplyByB loop to the stack ISA. For uniformity, please use the same control
flow as in parts a and b. Assume that when we reach the loop, a is the only thing on the stack.
Assume b is still at address 0x8000 (to fit within a 2 byte address specifier).

How many bytes is your program? Using your stack translations from part (c), how many bytes
of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many
bytes of data memory need to be fetched? Stored? If you could push and pop to/from a four-
entry register file rather than memory (the Java virtual machine does this), what would be the
resulting number of bytes fetched and stored?

Problem 1.C Stack

Example instruction Meaning
PUSH A push M[A] onto stack
POP A pop stack and place popped value in M[A]
ADD pop two values from the stack; ADD them; push result onto stack
SUB pop two values from the stack; SUBtract top value from the 2nd;

push result onto stack
ZERO zeroes out the value at top of stack
INC pop value from top of stack; increments value by one

push new value back on the stack
BEQZ label pop value from stack; if it’s zero, continue at label;

else, continue with next instruction
BNEZ label pop value from stack; if it’s not zero, continue at label;

else, continue with next instruction
GOTO label continue execution at location label

In just a few sentences, compare the three ISAs you have studied with respect to code size,
number of instructions fetched, and data memory traffic.

To get more practice with MIPS64, optimize the code from part B so that it can be expressed in
fewer instructions. There are solutions more efficient than simply translating each individual
x86 instruction as you did in part B. Your solution should contain commented assembly code, a
paragraph that explains your optimizations, and a short analysis of the savings you obtained.

Problem 1.D Conclusions

Problem 1.E Optimization

Problem 2: Microprogramming and Bus-Based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS
Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1. Make sure
that you understand how different types of data and control transfers are achieved by setting the
appropriate control signals before attempting this problem.

In order to further simplify this problem, ignore the busy signal, and assume that the memory is
as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of
new hardware added).

For this problem, you are to implement a new memory-memory add operation. The new
instruction has the following format:

ADDm rd, rs, rt
ADDm performs the following operation:

M[rd] ← M[rs] + M[rt]

Fill in Worksheet 2.A with the microcode for ADDm. Use don’t cares (*) for fields where it is
safe to use don’t cares. Study the hardware description well, and make sure all your
microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in the
course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch
to FETCH0 as discussed above).

Problem 2.A Implementing Memory-to-Memory Add

Worksheet 2.A

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Ex
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDM0:

Problem 2.B Implementing DBNEZ Instruction

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as
conditional branch instructions (I-Format) on MIPS:

opcode rs … offset
6 bits 5 bits 5 bits 16 bits

DBNEZ decrements register rs by 1, writes the result back to rs, and branches to (PC+4)+offset,
if the result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This
instruction can be used for efficiently implementing loops.

Your task is to fill out Worksheet 2.B for DBNEZ instruction. You should try to optimize your
implementation for the minimal number of cycles necessary and for which signals can be set to
don’t-cares. You do not have to worry about the busy signal.

(Note that the microcode for the fetch stage has changed slightly from the one in the Problem
2.A, to allow for more efficient implementation of some instructions.)

Problem 2.C Instruction Execution Times
How many cycles does it take to execute the following instructions in the microcoded MIPS
machine? Use the states and control points from MIPS-Controller-2 in Lecture 4 and assume
Memory will not assert its busy signal.

Instruction Cycles
SUB R3,R2,R1
SUBI R2,R1,#4
SW R1,0(R2)
BEQZ R1,label # (R1 == 0)
BNEZ R1,label # (R1 != 0)
J label
JR R1
JAL label
JALR R1

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to
execute?

Worksheet 2.B

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Ex
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

DBNEZ:

Problem 3: Mem-ALU Pipeline

In this problem, we consider further modifications to the fully bypassed 5-stage MIPS processor
pipeline presented in Lecture 4. We will re-order the stages so the Execute (ALU) stage comes
after the Memory stage. After this change we will only support register-indirect addressing. This
change will let us use the contents of memory as one of the operands for arithmetic operations.
For example, something like the CAdd instruction could be implemented:

CAdd rd, rs0, rs1
CAdd performs the following operation:

rd ← M[rs0] + rs1

In this problem, assume that the control logic is optimized to stall only when necessary, and that
the pipeline is fully bypassed. Ignore control-transfer instructions (jumps and branches).

Besides enabling the CAdd instruction, this pipeline modification will change which hazards
exist in the pipeline. We want to compare the pipeline from lecture (old) to this modified
pipeline with the ALU after memory (new). Assume both the old and new pipelines are fully
bypassed with correct control logic. For each problem below, give a sample instruction sequence
to clarify your explanation.

Problem 3.A Elimination of a Hazard

Give a minimal sequence of MIPS instructions that would cause a pipeline bubble in the original
datapath, but not in the new datapath.

Problem 3.B New Hazard

Give a minimal sequence of MIPS instructions that would cause a pipeline bubble in the new
datapath, but not in the original datapath.

Problem 3.C Comparison

Compare the advantages and disadvantages of the new datapath. Which one would you
recommend? Justify your choice.

Problem 3.D Memory Addressing Modes

As an architect you desire full compatibility with the old ISA, including support for
register-immediate indirect addressing (e.g., LW r2, 8(r3)). How would you modify the
new pipeline (and associated control logic) to support this efficiently?

Problem 3.E Precise Exceptions

Describe a problem that might arise when implementing precise exceptions and propose a
simple solution.

Problem 4: ISA Visibility

The following questions describe two variants of a processor that are otherwise identical.
In each case, state whether or not the difference is visible to software written in the ISA.
Briefly explain your reasoning. Ignore differences in performance.

Problem 4.A Pipeline Depth

Pipelined processor A has more stages than pipelined Processor B, but both have full
bypassing.

Problem 4.B Control Type

Processor A uses microcoded control while Processor B uses hardwired control.

Problem 4.C CISC/RISC

Processor A is considered to be a CISC machine while Processor B is a RISC machine.

Problem 4.D Microcode Type

Machine A has very vertical microcode while machine B has a more horizontal
microcode.

Problem 4.E Stack Depth

Stack machine A has more physical registers to implement its stack than stack machine
B.

Problem 4.F Delay Slot

Processor A has a branch delay slot, while Processor B does not.

Problem 5: Iron Law of Processor Performance

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will
have no effect. Explain your reasoning.
 Instructions / Program Cycles / Instruction Seconds / Cycle

Dividing up a
pipeline stage into
two stages

Adding a complex
instruction

Reducing the
number of bypass
paths

Improving memory
access speed

