CS 152, Spring 2011
Section 10

Christopher Celio

University of California, Berkeley
Agenda

- Stuff (Quiz 4 Prep)

Intel Core 2 Duo (Penryn) Vs. NVidia GTX 280

- Intel Core 2 Duo (Penryn)
 - dual-core
 - 2007+
 - 45nm
 - 410 million transistors
 - ~2GHz
 - 3 or 6MB of cache
 - 10-35 Watts
 - 107mm²
 - each core is 22mm²
 - L2 SRAM is 6mm²/MB

- NVidia GTX 280
 - 10 core(?) (240 “stream” processors)
 - 2008
 - 65nm
 - 1.4 Billion transistors
 - 576mm²
 - 602 MHz(core clock)
 - 236 Watts !!!

Friday, April 8, 2011
Quiz 4

- VLIW
 - (for real this time)
 - able to write assembly for VLIW
- software
 - instruction re-ordering
 - loop unrolling
 - software pipelining
 - how code will get scheduled on different pipelines
 - conditional execution (for VLIW, vector, and GPU)
 - types of parallelism (ILP, TLP, DLP)
- Vector processors
 - able to write vector assembly (including how to strip-mine loops!)
 - chaining
- Multithreading
 - fine-grain, course-grain, SMT
- GPUs/SIMT model
 - how do they handle conditional execution/branches?
 - (spoiler alert: branch divergence)
VLIW: Very Long Instruction Word

- Multiple operations packed into one instruction
- Each operation slot is for a fixed function
- Constant operation latencies are specified
- Architecture requires guarantee of:
 - Parallelism within an instruction => no cross-operation RAW check
 - No data use before data ready => no data interlocks

Note: Iron Law questions about CPI are about counting the *instructions*, not the individual ops
Loop Unrolling

for (i=0; i<N; i++)

Unroll inner loop to perform 4 iterations at once

for (i=0; i<N; i+=4)
{
}

Need to handle values of N that are not multiples of unrolling factor with final cleanup loop
Software Pipelining
Loop Execution

for (i=0; i<N; i++)

How many FP ops/cycle?

1 fadd / 8 cycles = 0.125
Software Pipelining

```c
for (i=0; i<N; i++)

loop:  ld f1, 0(r1)
       add r1, 8
       fadd f2, f0, f1
       sd f2, 0(r2)
       add r2, 8
       bne r1, r3, loop
```

How does one do software pipelining?

Let’s run through an example that does software pipelining WITHOUT loop unrolling.
Software Pipelining

for (i=0; i<N; i++)

Compile

loop: ld f1, 0(r1)
 add r1, 8
 fadd f2, f0, f1
 sd f2, 0(r2)
 add r2, 8
 bne r1, r3, loop

March 14, 2011 CS152, Spring 2011
Software Pipelining

for (i=0; i<N; i++)

Compile

loop: ld f1, 0(r1)
 add r1, 8
 fadd f2, f0, f1
 sd f2, 0(r2)
 add r2, 8
 bne r1, r3, loop

How many FLOPS/cycle?
1 fadds / 4 cycles = 0.25

<table>
<thead>
<tr>
<th>Int1</th>
<th>Int 2</th>
<th>M1</th>
<th>M2</th>
<th>FP+</th>
<th>FPx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

March 14, 2011

CS152, Spring 2011
Pset 4, Question 4 (Vector Processors)
Problem 2: Vector
Vector machines often have a lot of memory bandwidth (SX-9 has 256GB/s!). Why do they need it and why do current superscalars not provide as much?