CS 152 Computer Architecture and Engineering

Lecture 16: Graphics Processing Units (GPUs)

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.cs.berkeley.edu/~cs152
Last Time: Vector Computers

- Vectors provide efficient execution of data-parallel loop codes
- Vector ISA provides compact encoding of machine parallelism
- Vector ISA scales to more lanes without changing binary code
- Vector registers provide fast temporary storage to reduce memory bandwidth demands, & simplify dependence checking between vector instructions
- Scatter/gather, masking, compress/expand operations increase set of vectorizable loops
- Requires extensive compiler analysis (or programmer annotation) to be certain that loops can be vectorized
- Full “long” vector support (vector length control, scatter/gather) still only in supercomputers (NEC SX9, Cray X1E); microprocessors have limited packed or subword-SIMD operations
 - Intel x86 MMX/SSE/AVX
 - IBM/Motorola PowerPC VMX/Altivec
Types of Parallelism

• Instruction-Level Parallelism (ILP)
 – Execute independent instructions from one instruction stream in parallel (pipelining, superscalar, VLIW)

• Thread-Level Parallelism (TLP)
 – Execute independent instruction streams in parallel (multithreading, multiple cores)

• Data-Level Parallelism (DLP)
 – Execute multiple operations of the same type in parallel (vector/SIMD execution)

• Which is easiest to program?
• Which is most flexible form of parallelism?
 – i.e., can be used in more situations
• Which is most efficient?
 – i.e., greatest tasks/second/area, lowest energy/task
Resurgence of DLP

- Convergence of application demands and technology constraints drives architecture choice

- New applications, such as graphics, machine vision, speech recognition, machine learning, etc. all require large numerical computations that are often trivially data parallel

- SIMD-based architectures (vector-SIMD, subword-SIMD, SIMT/GPUs) are most efficient way to execute these algorithms
DLP important for conventional CPUs too

- Prediction for x86 processors, from Hennessy & Patterson, upcoming 5th edition
 - Note: Educated guess, not Intel product plans!
- TLP: 2+ cores / 2 years
- DLP: 2x width / 4 years

- DLP will account for more mainstream parallelism growth than TLP in next decade.
 - SIMD – single-instruction multiple-data (DLP)
 - MIMD – multiple-instruction multiple-data (TLP)
Graphics Processing Units (GPUs)

• Original GPUs were dedicated fixed-function devices for generating 3D graphics (mid-late 1990s) including high-performance floating-point units
 – Provide workstation-like graphics for PCs
 – User could configure graphics pipeline, but not really program it

• Over time, more programmability added (2001-2005)
 – E.g., New language Cg for writing small programs run on each vertex or each pixel, also Windows DirectX variants
 – Massively parallel (millions of vertices or pixels per frame) but very constrained programming model

• Some users noticed they could do general-purpose computation by mapping input and output data to images, and computation to vertex and pixel shading computations
 – Incredibly difficult programming model as had to use graphics pipeline model for general computation
General-Purpose GPUs (GP-GPUs)

- In 2006, Nvidia introduced GeForce 8800 GPU supporting a new programming language: CUDA
 - “Compute Unified Device Architecture”
 - Subsequently, broader industry pushing for OpenCL, a vendor-neutral version of same ideas.

- Idea: Take advantage of GPU computational performance and memory bandwidth to accelerate some kernels for general-purpose computing

- Attached processor model: Host CPU issues data-parallel kernels to GP-GPU for execution

- This lecture has a simplified version of Nvidia CUDA-style model and only considers GPU execution for computational kernels, not graphics
 - Would probably need another course to describe graphics processing
Simplified CUDA Programming Model

- Computation performed by a very large number of independent small scalar threads (CUDA threads or microthreads) grouped into thread blocks.

// C version of DAXPY loop.
void daxpy(int n, double a, double*x, double*y)
{ for (int i=0; i<n; i++)
 y[i] = a*x[i] + y[i]; }

// CUDA version.
__host__ // Piece run on host processor.
int nbblocks = (n+255)/256; // 256 CUDA threads/block
void daxpy<ll<nblocks,256>>(n,2.0,x,y);

__device__ // Piece run on GP-GPU.
void daxpy(int n, double a, double*x, double*y)
{ int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i<n) y[i]=a*x[i]+y[i]; }
Create enough blocks to cover input vector

(Nvidia calls this ensemble of blocks a Grid, can be 2-dimensional)

Conditional \((i < n)\) turns off unused threads in last block

blockIdx

\(0\)

\(1\)

\((n+255/256)\)

threadId

0

1

255

blockDim = 256 (programmer can choose)
Hardware Execution Model

- GPU is built from multiple parallel cores, each core contains a multithreaded SIMD processor with multiple lanes but with no scalar processor
- CPU sends whole “grid” over to GPU, which distributes thread blocks among cores (each thread block executes on one core)
 - Programmer unaware of number of cores
“Single Instruction, Multiple Thread”

- GPUs use a SIMT model, where individual scalar instruction streams for each CUDA thread are grouped together for SIMD execution on hardware (Nvidia groups 32 CUDA threads into a *warp*)

```
ld x
mul a
ld y
add
st y
```

<table>
<thead>
<tr>
<th></th>
<th>µT0</th>
<th>µT1</th>
<th>µT2</th>
<th>µT3</th>
<th>µT4</th>
<th>µT5</th>
<th>µT6</th>
<th>µT7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIMD execution across warp
Implications of SIMT Model

• All “vector” loads and stores are scatter-gather, as individual µthreads perform scalar loads and stores
 – GPU adds hardware to dynamically coalesce individual µthread loads and stores to mimic vector loads and stores

• Every µthread has to perform stripmining calculations redundantly (“am I active?”) as there is no scalar processor equivalent
CS152 Administrivia

• Quiz 3 results
Question 1: Register Renaming

![Bar chart showing score distribution for Question 1 with 17 points possible.]

- **Avg**: 12.1 points
- **Stdev**: 3.2 points
Question 2: OoO Scheduling

Question 2 (out of 20 points)

Avg : 12.6 points
Stdev: 5.0 points
Question 3: Branch Prediction

Avg : 9.4 points
Stdev: 2.4 points
Question 4: Iron Law for OoO

Avg : 26.9 points
Stdev: 3.8 points
Quiz 3 Totals

Final Quiz Score (out of 80 points)

<table>
<thead>
<tr>
<th>Score Midpoint</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>4</td>
</tr>
<tr>
<td>67</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>5</td>
</tr>
<tr>
<td>77</td>
<td>1</td>
</tr>
</tbody>
</table>

Avg: 62.0 points
Stdev: 9.8 points
CS152 Administrivia

• Quiz 4, Monday April 11 “VLIW, Multithreading, Vector, and GPUs”
 – Covers lectures L13-L16 and associated readings
 – PS 4 + Lab 4
Conditionals in SIMT model

- Simple if-then-else are compiled into predicated execution, equivalent to vector masking
- More complex control flow compiled into branches
- How to execute a vector of branches?

```
Scalar instruction stream
```

```
tid=threadid
If (tid >= n) skip
Call func1
add
st y
skip:
```

<table>
<thead>
<tr>
<th>µT0</th>
<th>µT1</th>
<th>µT2</th>
<th>µT3</th>
<th>µT4</th>
<th>µT5</th>
<th>µT6</th>
<th>µT7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIMD execution across warp
Branch divergence

- Hardware tracks which µthreads take or don’t take branch
- If all go the same way, then keep going in SIMD fashion
- If not, create mask vector indicating taken/not-taken
- Keep executing not-taken path under mask, push taken branch PC+mask onto a hardware stack and execute later
- When can execution of µthreads in warp reconverge?
Warps are multithreaded on core

- One warp of 32 µthreads is a single thread in the hardware
- Multiple warp threads are interleaved in execution on a single core to hide latencies (memory and functional unit)
- A single thread block can contain multiple warps (up to 512 µT max in CUDA), all mapped to single core
- Can have multiple blocks executing on one core
GPU Memory Hierarchy
SIMT

• Illusion of many independent threads
• But for efficiency, programmer must try and keep µthreads aligned in a SIMD fashion
 – Try and do unit-stride loads and store so memory coalescing kicks in
 – Avoid branch divergence so most instruction slots execute useful work and are not masked off
Nvidia Fermi GF100 GPU

[Nvidia, 2010]
Fermi “Streaming Multiprocessor” Core
Fermi Dual-Issue Warp Scheduler
GPU Future

• High-end desktops have separate GPU chip, but trend towards integrating GPU on same die as CPU (already in laptops, tablets and smartphones)
 – Advantage is shared memory with CPU, no need to transfer data
 – Disadvantage is reduced memory bandwidth compared to dedicated smaller-capacity specialized memory system
 » Graphics DRAM (GDDR) versus regular DRAM (DDR3)

• Will GP-GPU survive? Or will improvements in CPU DLP make GP-GPU redundant?
 – On same die, CPU and GPU should have same memory bandwidth
 – GPU might have more FLOPS as needed for graphics anyway
Acknowledgements

- These slides contain material developed and copyright by:
 - Krste Asanovic (UCB)