Agenda

• Lab Administrivia
• Lab 2
 – Working set
• Problem Solving
 – working set
 – caches
 – write buffers
 – optimizing software
• Lab 1, Question 4.7
 – Iron Law
 – power vs energy

Friday, February 24, 2012
Power 4

- 2001
- dual core
- 170M transistors
- "sun blocking" 400mm²
- 130nm-180nm
- 12 stages
- 8 execution units
 - 2 integer units
 - 2 floating units
 - 2 LD/ST units
 - 1 branch unit
 - 1 cond-eval
- "up to 200 instructions in flight"
Lab Administrivia

- Lab 1
 - Has been handed back!

- Lab 2
 - Each student turns in a single, complete report
 - (group work encouraged, but turn in your own write-up)
 - List your partners!!!
 - Turn in a lab report
 - “sanitize” your data
 - Make graphs, tables
 - Explain what you did
 - Explain why you got what you got

Friday, February 24, 2012
Lab Administrivia

• Lab 2
 – Due this Thursday!
Working Set

Benchmark X (log-linear)

Benchmark X (log-log)

Data Miss Rate

Cache Size (KB)
Why did the miss rate never reach zero?
• Form groups of 4
• Working Set Sizes
• Caches
• Write allocate
 • allocate space in the cache on a write-miss

• write-through
 • writes are immediately sent out to DRAM

• write-back
 • if it’s in the cache, perform write to the cache
 • mark it “dirty”
 • on eviction, write-back to the DRAM
• Form groups of 3-4
• Working Set Sizes
• Caches
• Write buffers
• Optimizing Software
• Power Vs Energy
Power vs Energy (from Lab 1)

- 5 stage processor
- 4 stage processor
 - combined ALU+MEM stage (in parallel, only run one)
 - MEM can’t handle address offsets

- Which is more power-efficient?
- Which is more energy-efficient?
Power vs Energy (from Lab 1)

• 5 stage processor
• 4 stage processor (parallel ALU+MEM)

• Iron Law:
 – instructions per program
 • increases for the 4-stage
 – seconds per cycle
 • ~stays the same!!!
 – cycles per instruction
 • decreases for the 4-stage
 • no load-use delay!
Power vs Energy (from Lab 1)

• 5 stage processor
• 4 stage processor (*parallel* ALU+MEM)

• Overall:
 – 4-stage will probably take more cycles to execute a program
Power vs Energy (from Lab 1)

- 5 stage processor
- 4 stage processor
 - combined ALU+MEM stage (in parallel, only run one)
 - MEM can’t handle address offsets

Which is more power-efficient?
- 4 stage (less area, less bypasses, less register state)
- fewer transistors == less energy burnt per unit time (less power)
Power vs Energy (from Lab 1)

• Which is more energy-efficient?
 – Assume:
 • clock rates the same (seconds/cycle)
 • 4 stage burns 10% less power (10% smaller area)
 • 4 stage executes 30% more instructions for a given program
 • 5 stage stalls 5% of the time due to load-use delays

 – Answer:
 • the 5-stage is more energy efficient!
 • it burns more power, but it finishes faster, so it uses less energy overall!
 • (this is a so called “race to halt” scenario)
Power vs Energy (from Lab 1)

• more power efficient?
 – 4-stage

• more energy-efficient?
 – 5-stage

• Lab 1 Impact:
 – some students tried to justify the 4-stage for “energy reasons” and “despite more instructions” it would be “better”.
 – as we’ve shown, this is incorrect! The 4-stage is both slower and less energy-efficient!
• Final Caveats
 – assumed we’re measuring energy over a single program
 – assumed once finished, can go to a lower energy state
 • example:
 – cellphones can load a webpage, then go back to lower energy state
 • counter-example:
 – servers are always at ~20% load, so there is always work to do!
 No sleep for them!
 – thus power-efficiency ~ energy-efficiency (because the time interval is immaterial)