
Computer Architecture and Engineering
CS152 Quiz #3

March 22nd, 2012
Professor Krste Asanović

    Name:     <ANSWER KEY>    

This is a closed book, closed notes exam.
80 Minutes
 10 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. If you have inadvertently been exposed to a quiz prior to taking 
it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving 
explanations if the instructions ask you to explain your choice.

 

Writing name on each sheet       ________       1 Points
Question 1 ________     30 Points
Question 2 ________     12 Points
Question 3 ________       9 Points
Question 4 ________     28 Points

TOTAL        ________  80 Points

Name __________(answer key)________
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Question 1: Scheduling for Dual Issue, Out-of-order 
Processors (30 points)
The following question concerns the scheduling of floating-point code on a dual issue out-of-
order processor.  For this problem, we will deal with a processor that uses a split instruction 
window/ROB design, as shown in Figure 1.
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Figure 1. Dual Issue, Out-of-order Pipeline with split instruction window and ROB.

The processor contains the following stages:
• Fetch (F), Decode/Rename (D), Issue (I), Regfile Read (R), Execute(X1,X2,...), and 

Regfile Writeback (W)
• The Execute stage takes a variable number of cycles, depending on the instruction: 

- one cycle for ALU and branch operations (denoted as X1) 
- two cycles for memory operations (X1,X2, which includes the time in the ALU)
- three cycles for floating-point add instructions (X1,X2,X3)
- four cycles for floating-point multiply instructions (X1,X2,X3,X4)  

You can assume that:
• All functional units are fully pipelined.
• There is register renaming.
• There are two register domains: a set for integer registers (x1,x2,...) and a set for floating-

point registers (f1, f2, ...).
• The Fetch stage performs perfect branch prediction, and the fetch buffer can hold an 

infinite number of instructions.
• The Issue stage is a buffer of unlimited length that holds instructions waiting to begin 

execution (aka, the instruction window).
• An instruction will only exit the Issue stage if it does not cause any hazards and its 

operands will be ready by Register Read stage.
• Two instructions are fetched at a time.
• Two instructions are decoded and renamed at a time.
• Up to two instructions of any kind can be issued at a time, and if multiple instructions are 

ready, the oldest two will go first.
• An infinite number of instructions may write back to the register file simultaneously.

Name __________(answer key)________
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assumptions continued:
• There is no bypassing between functional units. All operand data is read from the register 

file, but the register file bypasses write values to the read ports.
• Store data is not needed until for address calculation and can be bypassed from the register 

file directly to the end of the (X1) stage.
• For the purposes of this question, treat stores as a single instruction that issues when both 

of its operands are ready (as opposed to the Lab 3 BOOM processor, which breaks stores 
into two separate micro-ops). 

For this problem we will be describing the scheduling of the following RISC-V code:

Loop:
I0: flw    f1, 0(x1)   
I1: flw    f2, 0(x2)   
I2: fadd.s f3, f2, f3  
I3: fmul.s f1, f1, f3  
I4: fsw    f1, 0(x3)   
I5: addi   x1, x1, 4   
I6: addi   x2, x2, 4 
I7: addi   x3, x3, 4
I8: addi   x4, x4, -1
I9: bne    x4, x0, loop

Instructions postfixed (*.s) denote instructions that affect single-precision floating point 
numbers. Assume the arrays accessed in this loop do not overlap. 

Q1.A: Dual Issue Scheduling (28 points) 
Complete Table 1 (found on the following page), indicating which stage each instruction is in for 
each cycle.  Assume all register values are available at the start of the execution of the code and 
that the loop is taken.  

The first three rows have been completed for you, and the fourth row has been started.  It is okay 
if your instructions run off the right side of the table.

Q1.B: Dual Issue CPI (2 points)
For a sufficiently large number of iterations of the above loop, what CPI do you expect to 
achieve? 
Write back on stores occurs on cycle 18 and 23, branches on 12 and 17, so 5 cycles for 10 
instructions comes out to be 0.5 CPI.
0 points for saying “total cycles over total instructions.”

CPI_0.5__

Name __________(answer key)________
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Quite a few times more than 2 instructions want to issue!  Notice that floating point is 
completely removed from critical path, and issue bandwidth is what this machine craves.

17 instructions, 28 points
-2 points for early issue
-2 for issuing 3+ instructions in same cycle
-2 for store not being bypassed (-1 second time mistake was made)
-3 points for store going too early (need to wait for fmul)

(generally, -2 for each incorrect instruction)

Name __________(answer key)________
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Loop:
I0: flw    f1, 0(x1)   
I1: flw    f2, 0(x2)   
I2: fadd.s f3, f2, f3  
I3: fmul.s f1, f1, f3  
I4: fsw    f1, 0(x3)   
I5: addi   x1, x1, 4   
I6: addi   x2, x2, 4 
I7: addi   x3, x3, 4
I8: addi   x4, x4, -1
I9: bne    x4, x0, loop

   Cycle
Inst

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

flw I0,iter 0 F D I R X1 X2 W
flw I1,iter 0 F D I R X1 X2 W
fadd I2,iter 0 F D I I I R X1 X2 X3 W
fmu I3,iter 0 F D I I I I I I I R X1 X2 X3 X4 W
fsw I4,iter 0 F D I I I I I I I I I I R X1 X2 W
addi I5,iter 0 F D I R X1 W
addi I6,iter 0 F D I R X1 W
addi I7,iter 0 F D I I R X1 W
addi I8,iter 0 F D I R X1 W
bne I9,iter 0 F D I I I R X1 W
flw I0,iter 1 F D I R X1 X2 W
flw I1,iter 1 F D I R X1 X2 W
fadd I2,iter 1 F D I I I R X1 X2 X3 W
fmu I3,iter 1 F D I I I I I I I R X1 X2 X3 X4 W
fsw I4,iter 1 F D I I I I I I I I I I R X1 X2 W
addi I5,iter 1 F D I R X1 W
addi I6,iter 1 F D I R X1 W
addi I7,iter 1 F D I I R X1 W
addi I8,iter 1 F D I R X1 W
bne I9,iter 1 F D I I I R X1 W



Question 2: Out-of-order Machine Design  (12 points)
An out-of-order superscalar processor uses a unified physical register file for register renaming 
and also separates the reorder buffer from the instruction window.  During decode, instructions 
are allocated a slot in the reorder buffer, have their registers renamed, and then are placed in the 
instruction window to await issue into execution.

Each question was worth +4 points.  

Part A) Should the number of reorder buffer entries be greater than, equal to, or less than the 
number of instruction window entries?  Explain.

GREATER THAN

the ROB is tracking all in-flight instructions, whereas the instruction window is holding only 
instructions that have been decoded/renamed but not issued. 

Part B) Should the number of reorder buffer entries be greater than, equal to, or less than the 
number of physical registers?  Explain.

GREATER THAN

the ROB has an entry for all in-flight instructions, but not all instructions write to a destination 
(stores, branches), thus not all entries need a physical register allocated for them, so you can get 
away with having fewer physical registers than ROB entries.

Part C) Should the number of instruction window entries be greater than, equal to, or less than 
the number of physical registers?  Explain.

LESS THAN

Since this is a unified physical register file design, the instruction window is holding instructions 
that have been decoded/renamed but not issued.  However, nearly all instructions moving 
through the machine need a physical register to write to, so you would need fewer IW entries as 
you would need physical registers. 

Name __________(answer key)________
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Question 3: Reclaiming Physical Registers  (9 points)
In class, we stated that for a machine with a unified physical register file, we reclaim a physical 
register when the next writer of the same architectural register commits.

Q3.A: (4 points) 
Describe what could go wrong if we instead reclaimed a physical register as soon as the writer 
commits.  Write a short assembly code sequence and describe the events that would lead to 
incorrect execution.

Basically, the problem is we might reuse the physical register before all of the readers have been 
able to read out the correct value.

There are a couple ways this problem could manifest itself.  Here’s one simple example:

ADD x1, x0, x0                         -> ADD P1, r0, r0
.... < lots of instructions>
SUB x2, x1, x3                          -> SUB P2, P1, ...

or a more exact example:
ADD x1, x0, x0                         -> ADD P1, x0, x0
LW    x3, ....      -> LW P3 (cache misses, add commits before the sub reads P1)
MUL x4, x0, x0     -> MUL P1, x0, x0 (now that P1 has been freed, mul can have 
     P1 allocated to it, and SUB could get the wrong value).
SUB x2, x1, x3                          -> SUB P2, P1, P3

From the above example, we can see that if the Add instruction (which is allocated physical 
register P1) puts P1 back on the free list once the Add commits, any instruction which reads P1 
after the Add has committed could read the wrong value (especially if P1 was given away to a 
new instruction, because it had been added to the Free List).  

Instead, P1 must stay around until the LAST reader commits (usually though, we wait for a new 
instruction to write to that same ISA destination).

Name __________(answer key)________
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Q3.B: (5 points) 
Suppose we invented a scheme where we could reclaim a physical register as soon as the last 
reader of the value in the register was committed.  We can identify the last reader by making a 
change to the ISA and having the compiler mark when a source register is last used.  Would this 
work?  If you answer yes, explain your reasoning.  If you answer no, provide an example with a 
short code sequence to explain why it wouldn't work.

The answer depends on how you argued it: it could either be “yes” or “no” depending on your 
assumptions and point of view.  We were only looking for one reason.

Here is a reason for Yes:

- The soonest you can free a register is after it is last read.  Thus, if the compiler does a smart 
enough job, this scheme will actually work.  

Note that compilers already perform their own register renaming, and already understand 
“liveness” of different registers, even across basic blocks.  Many students tried to argue that a 
compiler wasn’t capable of performing this scheme, but it actually already does!

Here are some reasons for No: 

- On interrupts, we may want to read out the entire machine state, but if a register has been freed, 
we can no longer guarantee its value. Thus, an attempt at looking at the “ISA State” will involve 
many registers being in the “don’t care” state.

- Malicious code could degrade the system by not having any “free” instructions in it. Or a 
compiler bug could hose the system by not performing a “free” in the right place.  The ISA 
architect should “architect defensively” to make sure his processor isn’t dead-on-arrival if a 
virus-writer wants to exploit an ISA design decision.  

 

Name __________(answer key)________
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Question 4: Pipeline Widths  (28 points)
We repeat the pipeline figure from lecture 11 below, which shows the major components of an 
out-of-order processor.

Because the major sections of the design (fetch, decode, execute, commit) are separated by 
buffers, we can independently change the peak instructions/cycle throughput of each section.  In 
the following questions, we will increase the throughput of one section while keeping the others 
constant.  Explain in each case a scenario where this might be advantageous, or where it might 
hurt performance if any? Assume the buffers between stages are large enough to not impact 
performance. Hint: remember to consider that some stages may have to stall while waiting for 
resources to free up. 

I-cache Decode/
Rename

Issue 
Buffer

Functional
Units

Results
Buffer

Fetch 
Buffer

Decode Execute

PC

Commit Architectural
State

CommitFetch

Figure 2. The major components of an out-of-order pipeline.

Yes, this question actually has 32 points allocated to it... so consider 4 points as extra credit!

Q4.A: Wider Fetch Stage Advantages (4 points) 
If we double the fetch bandwidth relative to other sections (i.e., the pipeline can fetch twice as 
many instructions per cycle as it can decode), in what execution scenario might this be 
advantageous?

If branches were perfectly predicted and exceptions are rare and there are no I-cache misses, 
there would be little benefit to increasing fetch bandwidth as decode would be the bottleneck.  

However, after an I-cache, branch mispredict or exception, we need to refill the fetch buffer and 
we can run ahead to prefetch I-cache misses, even if the decode stage is stalled. 

So one scenario is an I-cache miss or branch mispredict, where the target code causes an I-cache 
miss. 

+2 for “look ahead” without explanation or wrong explanation.
+2 for “fetch both sides of branch” - this requires more drastic changes than just widening fetch!

Name __________(answer key)________

Page 8 of 10



Q4.B: Wider Fetch Stage Disadvantages (4 points)
Describe a case where doubling the fetch bandwidth might make performance worse, or explain 
why it can never make performance worse?

If control flow is perfectly predicted, then no disadvantage (but then also no advantage!).

If control flow is mispredicted, then we could fetch ahead on the wrong path or cause I-cache 
misses that evict correct path instructions or cause bandwidth congestion in the memory system!

+2 if got something with branch mispredicts but not good explanation why.

Q4.C: Wider Decode Stage Advantages (4 points) 
If we double the decode stage bandwidth compared to the fetch, execute, and commit stages, is 
there any execution scenario where this could improve performance?  Explain.

Generally, the decode stage throughput will be constrained by either the fetch bandwidth or by 
the rate at which instructions commit and free up resources. 

Even after a branch mispredict, decode will be constrained by fetch bandwidth along the correct 
path. 

Wider decode would only help performance if fetch buffer had filled up because decode was 
previously stalled waiting for resources in the instruction window, ROB, or LDQ. But these are 
freed up only at the rate set by the Execute or Commit stages, so wider decode doesn’t help!

Q4.D: Wider Decode Stage Disadvantages (4 points)  
Is there any execution scenario where this might reduce performance?  Explain.

As it cannot improve performance, it also cannot make matters worse by moving down a wrong 
path faster.

Q4.E: Wider Execute Stage Advantages (4 points) 
If we double the execute stage bandwidth relative to the other stages is there any execution 
scenario where this could improve performance?  Explain?

Yes, if we have many instructions waiting on one instruction, then a wider execute can help the 
machine move faster through sections with higher degrees of ILP. 

Name __________(answer key)________
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Q4.F: Wider Execute Stage Disadvantages (4 points) 
Is there any execution scenario where this might reduce performance?  Explain.

By executing some code farther, it might allow further speculation down an incorrect path, so it 
could cause extra wrong path cache misses and hence slow overall code performance down.

Q4.G: Wider Commit Stage Advantages (4 points) 
If we double the commit stage bandwidth relative to the other stages is there any execution 
scenario where this could improve performance?  Explain?

Yes, can free up resources faster after a critical instruction to allow the front-end to run ahead, 
especially code with a bursty commit pattern. 

Also, different instructions use different resources (LSQ entries, branch tags, etc.), so the front-
end might be blocked waiting on something like a memory re-order slot.

Example ROB 
is entry busy? (0 = busy, 1 = not busy)
0 <- long latency memory  <<--- commit point is stuck here until load data comes back
1
1       (a bunch of ready to commit instructions)
1
1    
0 <- long latency memory      <<--- decode is stalled waiting for this memory slot to free up
1
1
1

+4 if talked about needing to commit stores without load bypassing, even if this isn’t a typical 
design point (Lab 3‘s BOOM is atypical, in this regard!).

Q4.H: Wider Commit Stage Disadvantages (4 points) 
Is there any execution scenario where this might reduce performance?  Explain.

If it allows faster progress down the wrong path, overall code performance could be slower! (like 
Q4.F). 

END OF QUIZ

Name __________(answer key)________
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