
Computer Architecture and Engineering
CS152 Quiz #5
April 27th, 2012

Professor Krste Asanović

 Name:

This is a closed book, closed notes exam.
80 Minutes
 22 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not yet

taken the quiz. If you have inadvertently been exposed to a quiz prior to taking
it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving
explanations if the instruction ask you to explain your choice.

Writing name on each sheet ________ 1 Points
Question 1 ________ 12 Points
Question 2 ________ 21 Points
Question 3 ________ 25 Points
Question 4 ________ 21 Points

TOTAL ________ 80 Points

Name ____________________________

Page 1 of 22

Question 1: The Fourth C of Cache Misses (12 points)
In Unit 2 we talked about the three C’s of caches misses: capacity misses, conflict misses, and
compulsory misses. Now in multiprocessors, we can add a fourth C: coherence misses. A
coherence miss is a cache miss due to another core having invalidated the data in your cache.

Mark whether the following modifications to the cache parameters will cause an increase,
decrease, or whether the modification will have no effect on the number of coherence misses.
You can assume the baseline cache is set associative. Explain your reasoning to receive credit.

Assume that in each case the other cache parameters (number of sets, number of ways, number
of bytes/line) and the rest of the machine design remain the same.

Name ____________________________

Page 2 of 22

coherence
misses

increasing
number of bytes

per line

More false sharing, greater # of coherence misses.

(Theoretically, could be less if sharing large objects - fewer misses needed to
transfer data - but in practice false sharing misses are the dominating factor)

increasing
number of sets

No effect to a first order

However can increase slightly as greater probability of holding on to data that causes
a coherence miss.

increasing
number of ways

Same as above

Question 2: Memory Fences
(21 points)
We are interested in implementing a parallel “branch and bound” algorithm, in which each core
attempts to find the shortest path between two nodes in a graph. A critical component of the
algorithm is the bound variable, aka, the “cost” of the best path found so far by any core. If the
current path a thread is exploring costs more than the bound, the current thread knows that the
current path can not be the shortest path, and aborts exploring the path further and instead tries
exploring a new path.

The bound variable is globally visible to all threads. It is read by all threads to compare their
current paths to the bound, but it is only written to when a thread finds a newer, better path.

Conceptually, the code for updating the bound variable is as follows:

Here is an example piece of code that reads the bound variable:

 int volatile bound = 0;
 int volatile lock = 0;

 // updating the bound variable
 acquire_lock(&lock);

 if (new_bound < bound)
 bound = new_bound;

 release_lock(&lock);

if (my_current_bound > bound)
 abort_and_try_a_new_path(); // current_path is too long!
else
 continue_extending_current_path();

Name ____________________________

Page 3 of 22

Q2.A: Shared Variable, Using Atomic Ops (10 points)

Assembly-code implementations of these accesses to the bound variable are shown below. These
run correctly on a processor with sequential consistency, however, they may not be correct when
running on a processor with a fully relaxed memory model, such as the RISC-V Rocket core
from Lab 5.

Insert the appropriate memory fence(s) below to insure correctness on a relaxed memory model
(MEMBARLL, MEMBARLS, MEMBARSL, MEMBARSS). For example, MEMBARSL forces all
stores before the memory barrier to complete and be visible to all cores in the system before
allowing any new loads to be issued. You will be graded both on correctness and efficiency. You
must also note if no memory fences are required in the checkbox.

LOCK and BOUND are memory addresses that point to the respective variables’ locations in
memory. For this part, we are using fetch_and_or (abbreviated as FAO) to access the LOCK
variable.

The first fence is to prevent reading a stale copy of bound (due to the branch predictor running
ahead). The second memory fence is to prevent an other core seeing the lock getting freed
before we have made visible to them the new value of the bound variable.

Update bound.
try:

 ADDI x1, x0, 1

 FAO x2, LOCK, x1

 BNEZ x2, try
 MEMBAR_SL
 LD x3, BOUND

 BGTE new_bound, x3, done

 ST new_bound, BOUND

done:
 MEMBAR_SS
 ST zero, LOCK

Read bound.

 LD x1, MY_BOUND

 LD x2, BOUND

 BGT x1, x2, return

 JMP CONTINUE_PATH_FUNC

 return:

 # start a new path

Name ____________________________

Page 4 of 22

√ no memory fences required

no memory fences required

Q2.B: Shared Variable, Using Dekker’s Algorithm (11 points)

Now, let us remove the atomic fetch_and_or instruction, and instead use Dekker’s Algorithm to
implement the lock using regular loads and stores (we are only considering a dual-core system).

In C, the code for updating the bound variable for Core 0 is as follows:

// On Core 0
lock0 = 1;
turn = core_id;

 while (lock1 & (turn == core_id))
 {
 ;//do nothing
 }
 	
 if (new_bound < bound)
 bound = new_bound;

 lock0 = 0;

“core_id” is a register that holds the core’s ID number (either 0 or 1).

Name ____________________________

Page 5 of 22

Below we show code for both core 0 and core 1 when updating the bound variable (the code for
each differs slightly). However, we only show one copy of the code for reading the bound
variable. Again, add in the appropriate memory fence(s) (MEMBARLL, MEMBARLS,
MEMBARSL, MEMBARSS) to ensure correct performance on a processor using a relaxed
memory model. You will be graded both on correctness and efficiency.

Core 0
updating the bounds
variable

 ADDI x1, x0, 1

 ST x1, LOCK0
 MEMBAR_SS
 ST core_id, TURN

try:

 LD x2, LOCK1

 LD x3, TURN

 BNE x3, core_id, try

 BNEZ x2, try
 MEMBAR_LL
 LD x3, BOUND

 BGTE new_bound, x3, done

 ST new_bound, BOUND

done:
 MEMBAR_SS
 ST zero, LOCK0

Core 1
updating the bounds
variable

 ADDI x1, x0, 1

 ST x1, LOCK1
 MEMBAR_SS
 ST core_id, TURN

try:

 LD x2, LOCK0

 LD x3, TURN

 BNE x3, core_id, try

 BNEZ x2, try
 MEMBAR_LL
 LD x3, BOUND

 BGTE new_bound, x3, done

 ST new_bound, BOUND

done:
 MEMBAR_SS
 st zero, LOCK1

Name ____________________________

Page 6 of 22

no memory fences required

no memory fences required

Insert the appropriate memory fence(s) below for when either core reads the bound variable.

Reading the bound doesn’t need any fences (again).

Once again, we need a fence before freeing the lock (so the updated value is made visible to
everybody first), and we need a fence after the spin/try loop to make sure we don’t get a stale
copy.

There is a new fence needed: a MEMBAR_SS to enforce the ordering of writing to the lock and
turn variables. If the turn update is made visible before lock* update, then it is possible for both
cores to enter the critical section!

Also, there is an unfortunate bug in the assembly for the while loop: as written, it behaves as an
OR condition that short circuits, instead of an AND condition.

Read bound.

 LD x1, MY_BOUND

 LD x2, BOUND

 BGT x1, x2, abort

 JMP CONTINUE_PATH_FUNC

 abort:

 # start a new path
 JMP START_NEW_PATH_FUNC

Name ____________________________

Page 7 of 22

√ no memory fences required

Question 3: Scaling Directory Protocols (25 points)

In this question we will discuss implementing cache-coherence protocols that scale well to
thousands of cores.

Q3.A: Motivation (3 points)
As discussed in class, directory protocols scale to higher core counts better than snoopy
protocols. Why?

Snoopy protocols rely on cheap, global broadcasts to all cores.

Q3.B: Full-map Directory Overhead (4 points)
The directory protocol discussed in Lecture 19 (and found in Appendix A) describes a “full-map”
directory protocol, in which the directory contains a pointer to every cache. For a 1024-core
processor, and where each cache line is 64 bytes, how many directory state bits are required to
track which caches are sharing a given line of memory? What is the ratio of directory state bits
to data bits?

A bit-vector will do for tracking which cores are in the sharers list (only one bit required for
“does this cache have it or not?”).

1024 bits -> 128 bytes of overhead
128 B : 64 B, or 2:1

Directory Bits: __1024__
Overhead Ratio: __ 2:1__

Name ____________________________

Page 8 of 22

Q3.C: Limited-map Directory Overhead (4 points)
As you have shown in the previous question Q3.B, a full-map directory can require a large
amount of state to track every potential sharer. Instead, let us consider using a “limited-map”
directory, in which only a limited number n cores may cache a given memory line. Our proposal
is to allow up to 8 cores to cache a given line. If a 9th core wants to read the line, the directory
must first invalidate one of the 8 sharers to make room for the new request.

How many bits are required for the directory to track up to 8 sharers in a 1024-core processor?
What is the ratio of directory bits to memory bits when the memory line is 64 bytes in size?

It takes log(1024) bits, or 10 bits, to hold the ID number of a given cache, and an 11th bit to
mark whether or not that cache is a sharer (if the directory state is in the “shared” state, how do
you know which subset of the cache pointers are actually valid?).

11 bits * 8 sharers = 88 bits.

-1/2 point for “80 bits” and “5:32”, since one could argue over the ambiguity of “directory bits”
only referring to the bits required to track which caches are sharers, but in reality, you need the
valid bits to distinguish who really is a sharer.

88 bits is 11 bytes, so 11:64 ratio.

(it is also possible to come up with schemes that use less than 1 valid bit per sharer, but the
answer is strictly greater than 80 bits).

Directory Bits: __88__
Overhead Ratio: __11:64__

Name ____________________________

Page 9 of 22

Q3.D: Performance: Many Readers (4 points)
Now we will compare the performance of the different directory schemes.
How many invalidations must a full-map and a limited-map (with 8 max sharers) perform after
all 1024 cores have read the same shared variable into their cache? The corresponding memory
line is initially in R(ε) state in the directory.

 # each core
 LD x1, SHARED_VARIABLE

Put your answers in Table 3-1 below, and explain your reasoning.

protocol Number of Invalidations
full-map 0

limited-map (8 max) 1016
Table 3-1: Many Readers

Name ____________________________

Page 10 of 22

Q3.E: Performance: Many Readers, One Writer (4 points)
How many invalidations must the two protocols perform when all 1024 cores load the same
shared variable into their cache, and then one core writes to the shared variable?

 # each core
 LD x1, SHARED_VARIABLE

 ... passage of time ...

 # one core
 BNE zero, core_id, done
 ST x2, SHARED_VARIABLE

Put your answers in Table 3-2 below, and explain your reasoning.

protocol Number of Invalidations
full-map 1023

limited-map (8 max) 1016 + 7 = 1023
Table 3-2: Many Readers, One Writer

Full credit given for ‘full-map: 1024 invalidations”, since one could argue based on our broken
protocol in Appendix A that the requesting core (which is already in the shared state) must send
out his own invalidation, to then move up to c-none to c-exclusive (since there is no c-shared ->
c-exclusive line in the protocol!). In a more perfect world, only 1023 invalidations are required.

Name ____________________________

Page 11 of 22

A Third Protocol

In your answers to the previous questions, you have shown that full-map protocols may be
infeasible due to their large overhead, but that limited directories may require too many
invalidations for certain use-cases.

We will now describe a third directory protocol: a limited-map directory with a “globally
shared” bit, called the limited-map broadcast protocol. If more than 8 sharers are sharing a
memory line, the “globally shared” bit is set. If the directory needs to send an invalidate to the
sharers, it must broadcast invalidations to every core in the system if the “globally shared” bit is
set (as there is no way to know exactly which cores have the data). If the “globally shared” bit is
not set, then it needs to only send invalidations to the sharers in its directory. Thus, we gain the
benefit of having a low overhead protocol and can allow many caches to share a single cache
line simultaneously.

Q3.F: Choose the Best Protocol: Part 1 (3 points)

Given the option of selecting between a full-map directory, the limited-map directory, and the
limited-map broadcast directory, which protocol would you recommend for the following use
cases? Circle your answer below, and explain your choices.

Your TA Chris wants to run Blackscholes, a financial derivatives modeling algorithm. Each core
is given a different data point to calculate, independent of all other data (i.e., it is embarrassingly
parallel). There are no explicitly shared data structures. However, the model involves calls to
math functions exp() and pow(), which are implemented using look-up tables. Thus, a core
executing a pow() function must read a table for the result. These tables are located in a
statically allocated memory data structure that is visible to all cores.

There will be many readers (everybody) but no writers, so we want a protocol that allows lots of
sharers, and we do not care about the overhead of invalidations caused by write requests.

0 points for limited-map
1 point for full-map, which is correct, but hugely inefficient.

Full-map Limited-map Limited-map
 Broadcast

Name ____________________________

Page 12 of 22

Q3.G: Choose the Best Protocol: Part 2 (3 points)

Your TA Chris now wants to compute the shortest distance between two nodes on a map (e.g.,
computing driving directions). This is accomplished through an algorithm in which each core
picks its own path to try out. Work is put into a central “work queue” data structure (in this case,
paths that haven’t been completed yet). When a core is not busy, it reads the work queue and
pulls a task off of it. When it is finished with its task, it will write more work to the work queue.
Cores are constantly adding new work to the work queue, and removing work from the work
queue (aka, lots of reads and writes to the same memory locations). Circle which protocol you
think best matches this application, and explain your answer.

Because we expect writes to occur often, we can expect that few readers will be required in
between writes (actually, only one person will probably read the data structure before writing to
it!). Thus, we do not mind having a protocol that can only handle having a few sharers.

From this point of view, the intended answer is “limited-map”, but limited-map broadcast is also
valid, as it will share the same performance characteristics as limited-map when there are very
few readers.

1 point for full-map, because it would be hugely inefficient.

Full-map Limited-map Limited-map
 Broadcast

Name ____________________________

Page 13 of 22

Question 4: Implementing Load-reserve, Store-
conditional In a Snoopy Processor (21 points)
For this question, we will try to implement the instructions load-reserve and store-conditional.
Described in Lecture 17, the load-reserve loads a value from memory into the cache, and also
holds a reservation flag. When performing the store-conditional, the store completes
successfully if the core still holds the reservation flag. The store-conditional then invalidates all
other reservation flags in the system. If the store-conditional is executed and the core no longer
holds its reservation, the store is not performed and a status flag is set noting failure. At least,
that is the conceptual description. But for this question, we will propose an actual
implementation!

For this entire question, the base-line processor is using the MOESI cache coherence protocol, as
shown in Appendix B (a copy of the Handout #7 used for PSet #5). Also, the cache is direct
mapped.

The processor in this question uses a logical bus, meaning that while the cores and memory are
connected together and all actions are broadcast to all agents on the bus, it is physically
implemented a bit differently.

(This is the same set-up as the dual-core Rocket processor from Lab 5).

On a store memory operation, the core first checks the cache to see if it has the line in the OE or
CE state. If not, the cache must then send out a CRI or CI message to request exclusive access.
The coherence hub will broadcast the CRI or CI message to all of the other caches (called a
“probe”). The caches will acknowledge back that they either do not have the line or that they
have now invalidated the line. The coherence hub will now send the request to memory. Some
time later, memory will respond with the data and give the requesting core the exclusive access it
had requested.

This behaves exactly like the bus as described in lecture: the only difference is that, unlike the
bus, operations through the hub are not atomic.

Main Memory

Core

cache

Coherence
Hub

Core

cache

Name ____________________________

Page 14 of 22

Q4:A: The First Proposal (5 points)
Our first proposal is the following:

 Load-reserve is performed just like a regular load, except that it demands exclusive
access instead of shared access. If the load misses in the cache, the cache issues a
coherent read & invalidate (CRI) of the line (requests write permission), and brings the
data into its cache in the clean exclusive (CE) state (or if the load hits in the cache, but
only has shared access, it sends out a coherent invalidate (CI) to get exclusive access).

 Store-conditional first checks the cache to see if we have the data in the clean exclusive
(CE) state or the owned exclusive (OE) state. If we do, the store is performed and returns
a success status. If the data is in any other state, then the store is not performed and a
failure status is returned.

Note that we are not explicitly storing any reservation flags anywhere under this implementation;
we are relying on the existing cache coherence infrastructure to help us detect if a store-
conditional has occurred somewhere else in the system between our own execution of load-
reserve and store-conditional.

Given this proposal, what problem(s) might we see in a system experiencing high contention for
a critical section protected with these instructions?

Live lock.

We cant make forward progress unless our data line is in the exclusive state: but if somebody
else tries to load-reserve the same data line we lose the line, and our store-conditional will fail.
This cycle can continue under high contention, where everybody is trying to load-reserve the
line, but before they perform the store-conditional, somebody else has already stepped in and
stolen the line away.

Ideally, store-conditional should let one cache go ahead, and invalidate the others. The problem
here is that we are literally removing a previous core’s reservation when a new core comes in and
performs its own load-reserve.

Name ____________________________

Page 15 of 22

Q4:B: A Fix for the First Proposal (4 points)
Because the first proposal from Q4.A may not work in a high-contention environment, here is a
second proposal:

 Load-reserve is performed just like a regular load. If the load misses in the cache, the
cache issues a coherent read (CR) of the line (requests read permission), and brings the
data into its cache in either the clean exclusive (CE) state or the clean shared (CS) state.

 Store-conditional first checks the cache to see if we still have the data. 3 possible
scenarios may occur:

 - 1) if the data is in clean exclusive (CE) or owned exclusive (OE) state, the store
completes successfully, and a success status is returned (just like in Q4.A).

 - 2) if the data is in the clean shared (CS) or owned shared (OS) state, the core
must first broadcast on the bus a CI message to request exclusive access to the
line. The core will eventually be given a copy of the data with exclusive access
(CE or OE), at which point the store may proceed and a success status is returned.

 - 3) If the data is in the invalid state, the store is not performed and a failure status
is returned (our reservation must have been cleared by another store).

Unfortunately, there is a new bug that we have introduced! How can this go wrong? (Hint:
make sure you understand that in this system actions on the bus are not atomic, as described on
Page 14).

Race.

The problem is two cores can hold the line in the shared state, and thus think their store-
conditional has succeeded! Sure, they sent out a CI message on the bus, and will eventually
receive exclusive access on which they can perform their store, but the point of store-conditional
is that only one successfully performs the store-conditional.
In lecture, we often discuss snoopy protocols in systems that are connected to a physical bus, in
which access to the bus is atomic and only one core can talk to the bus at a time. In such a
system this race would probably not occur (depending on how you implement the retry
mechanism), since the CI message can’t be sent out by two cores simultaneously. But in this
system described for this quiz (and matching Lab 5’s dual-core rocket system), two CI messages
can be sent out to the “coherence hub” simultaneously, and so this race does exist.

(note: I’m being a bit loose when I said “successfully performs the STC”. STC is always
performed and committed as an instruction, but I mean to imply “success” in that the actual store
was performed and committed to memory and that a success flag was set).

Name ____________________________

Page 16 of 22

Q4:C: A Fix for the Second Proposal (4 points)
Describe how you can fix the broken proposal in Q4.B so it works correctly.

A number of viable solutions were proposed by students. Credit was given for providing a
working solution (a point was taken off if it was unwieldy or very low performance).

One possible solution for when multiple caches share a line is to only allow the OS cache to
succeed when performing the STC.

Q4:D: Multi-programming Issues (4 points)
Your solution you described in Q4.C will work when a thread has full control of the processor.
However, what can go wrong if we allow multiple threads to be multiplexed onto a single core?
(i.e., the operating system can swap out threads).

Multiple threads multiplexed onto a single core will share the same cache!

Image 4 cores are running on a single core, and each thread performs a load-reserve. The first
LDR requires fetching the data from memory, but the subsequent 3 LDRs will hit in the cache!
Then, each of the 4 threads performs the STC: it will appear that no other cache has performed
the LDR or a STC because it is designed with other caches in mind, and using the coherence
protocol to change the state of the line when other threads touch it.

Name ____________________________

Page 17 of 22

Q4:E: Even More Issues! (4 points)
Below is code for atomically reading a shared variable in memory, protected by a lock
implemented using load-reserve (LDR) and store-conditional (STC).

The “status” variable is a register that holds 0 when the STC completes with a success code, and
1 otherwise. Remember, each core is using a direct-mapped cache.

try:
 LDR x1, LOCK
 LD x2, SHARED_VARIABLE
 STC x0, LOCK
 BNEZ status, try

When testing out the above code, you find that it gets stuck in an infinite loop! What happened?

If the LOCK and the SHARED_VARIABLE alias to the same set in the DM cache, the
SHARED_VARIABLE could evict the LOCK, and thus the STC will fail every time!

END OF QUIZ

Name ____________________________

Page 18 of 22

Appendix A

Directory-based Cache Coherence Protocol 4/27/2011

Before introducing a directory-based cache coherence protocol, we make the following
assumptions about the interconnection network:

• Message passing is reliable, and free from deadlock, livelock and starvation. In other
words, the transfer latency of any protocol message is finite.

• Message passing is FIFO. That is, protocol messages with the same source and
destination sites are always received in the same order as that in which they were issued.

Cache states: For each cache line, there are 4 possible states:
• C-invalid (= Nothing): The accessed data is not resident in the cache.
• C-shared (= Sh): The accessed data is resident in the cache, and possibly also cached at

other sites. The data in memory is valid.
• C-modified (= Ex): The accessed data is exclusively resident in this cache, and has been

modified. Memory does not have the most up-to-date data.
• C-transient (= Pending): The accessed data is in a transient state (for example, the site

has just issued a protocol request, but has not received the corresponding protocol reply).

Home directory states: For each memory block, there are 4 possible states:
• R(dir): The memory block is shared by the sites specified in dir (dir is a set of sites). The

data in memory is valid in this state. If dir is empty (i.e., dir = ε), the memory block is
not cached by any site.

• W(id): The memory block is exclusively cached at site id, and has been modified at that
site. Memory does not have the most up-to-date data.

• TR(dir): The memory block is in a transient state waiting for the acknowledgements to the
invalidation requests that the home site has issued.

• TW(id): The memory block is in a transient state waiting for a block exclusively cached at
site id (i.e., in C-modified state) to make the memory block at the home site up-to-date.

Protocol messages: There are 10 different protocol messages, which are summarized in the
following table (their meaning will become clear later).

Category Messages
Cache to Memory Requests ShReq, ExReq
Memory to Cache Requests WbReq, InvReq, FlushReq
Cache to Memory Responses WbRep(v), InvRep, FlushRep(v)
Memory to Cache Responses ShRep(v), ExRep(v)

Name ____________________________

Page 19 of 22

No. Current State Handling Message Next State Dequeue
Message?

Action

1 C-nothing Load C-pending No ShReq(id,Home,a)

2 C-nothing Store C-pending No ExReq(id,Home,a)

3 C-nothing WbReq(a) C-nothing Yes None

4 C-nothing FlushReq(a) C-nothing Yes None

5 C-nothing InvReq(a) C-nothing Yes None

6 C-nothing ShRep (a) C-shared Yes updates cache with prefetch data

7 C-nothing ExRep (a) C-exclusive Yes updates cache with data

8 C-shared Load C-shared Yes Reads cache

9 C-shared WbReq(a) C-shared Yes None

10 C-shared FlushReq(a) C-nothing Yes InvRep(id, Home, a)

11 C-shared InvReq(a) C-nothing Yes InvRep(id, Home, a)

12 C-shared ExRep(a) C-exclusive Yes None

13 C-shared (Voluntary Invalidate) C-nothing N/A InvRep(id, Home, a)

14 C-exclusive Load C-exclusive Yes reads cache

15 C-exclusive Store C-exclusive Yes writes cache

16 C-exclusive WbReq(a) C-shared Yes WbRep(id, Home, data(a))

17 C-exclusive FlushReq(a) C-nothing Yes FlushRep(id, Home, data(a))

18 C-exclusive (Voluntary Writeback) C-shared N/A WbRep(id, Home, data(a))

19 C-exclusive (Voluntary Flush) C-nothing N/A FlushRep(id, Home, data(a))

20 C-pending WbReq(a) C-pending Yes None

21 C-pending FlushReq(a) C-pending Yes None

22 C-pending InvReq(a) C-pending Yes None

23 C-pending ShRep(a) C-shared Yes updates cache with data

24 C-pending ExRep(a) C-exclusive Yes update cache with data

Table H12-1: Cache State Transitions

Name ____________________________

Page 20 of 22

No. Current State Message Received Next State Dequeue
Message?

Action

1 R(dir) & (dir = ε) ShReq(a) R({id}) Yes ShRep(Home, id, data(a))

2 R(dir) & (dir = ε) ExReq(a) W(id) Yes ExRep(Home, id, data(a))

3 R(dir) & (dir = ε) (Voluntary Prefetch) R({id}) N/A ShRep(Home, id, data(a))

4 R(dir) & (id ∉ dir)
& (dir ≠ ε)

ShReq(a) R(dir + {id}) Yes ShRep(Home, id, data(a))

5 R(dir) & (id ∉ dir)
& (dir ≠ ε)

ExReq(a) Tr(dir) No InvReq(Home, dir, a)

6 R(dir) & (id ∉ dir)
& (dir ≠ ε)

(Voluntary Prefetch) R(dir + {id}) N/A ShRep(Home, id, data(a))

7 R(dir) & (dir = {id}) ShReq(a) R(dir) Yes None

8 R(dir) & (dir = {id}) ExReq(a) W(id) Yes ExRep(Home, id, data(a))

9 R(dir) & (dir = {id}) InvRep(a) R(ε) Yes None

10 R(dir) & (id ∈ dir)
& (dir ≠ {id})

ShReq(a) R(dir) Yes None

11 R(dir) & (id ∈ dir)
& (dir ≠ {id})

ExReq(a) Tr(dir-{id}) No InvReq(Home, dir - {id}, a)

12 R(dir) & (id ∈ dir)
& (dir ≠ {id})

InvRep(a) R(dir - {id}) Yes None

13 W(id’) ShReq(a) Tw(id’) No WbReq(Home, id’, a)

14 W(id’) ExReq(a) Tw(id’) No FlushReq(Home, id’, a)

15 W(id) ExReq(a) W(id) Yes None

16 W(id) WbRep(a) R({id}) Yes data -> memory

17 W(id) FlushRep(a) R(ε) Yes data -> memory

18 Tr(dir) & (id ∈ dir) InvRep(a) Tr(dir - {id}) Yes None

19 Tr(dir) & (id ∉ dir) InvRep(a) Tr(dir) Yes None

20 Tw(id) WbRep(a) R({id}) Yes data-> memory

21 Tw(id) FlushRep(a) R(ε) Yes data-> memory

Table H12-2: Home Directory State Transitions, Messages sent from site id

Name ____________________________

Page 21 of 22

Appendix B

Snoopy Cache Coherence Protocol 4/27/2011

We introduce an invalidation coherence protocol for write-back caches similar to those employed
by the SUN MBus. As in most invalidation protocols, only a single cache may own a modified
copy of a cache line at any one time. However, in addition to allowing multiple shared copies of
clean data, multiple shared copies of modified data may also exist. (Here, modified data refers to
data different from memory. When multiple shared copies of modified data exist, one of the
caches owns the current copy of the data instead of the memory.) All shared copies are
invalidated any time a new modified (write) copy is created.

The MBus transactions with which we are concerned are:
• Coherent Read (CR): issued by a cache on a read miss to load a cache line.
• Coherent Read and Invalidate (CRI): issued by a cache on a write-allocate after a write

miss.
• Coherent Invalidate (CI): issued by a cache on a write hit to a block that is in one of the

shared states.
• Block Write (WR): issued by a cache on the write-back of a cache block.
• Coherent Write and Invalidate (CWI): issued by an I/O processor (DMA) on a block write

(a full block at a time).

In addition to these primary bus transactions, there is:
• Cache to Cache Intervention (CCI): used by a cache to satisfy other caches’ read

transactions when appropriate. A CCI intervenes and overrides the answers normally
supplied by memory. Data should be supplied using CCI whenever possible for faster
response relative to the memory. However, only the cache that owns the data can respond
by CCI.

The five possible states of a data block are:
• Invalid (I): Block is not present in the cache.
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache has

it.
• Owned exclusive (OE): The cached data is different from memory, and no other cache has

it. This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

• Clean shared (CS): The data has not been modified by the corresponding CPU since
cached. Multiple CS copies and at most one OS copy of the same data could exist.

• Owned shared (OS): The data is different from memory. Other CS copies of the same data
could exist. This cache is responsible for supplying this data instead of memory when other
caches request copies of this data. (Note, this state can only be entered from the OE state.)

Name ____________________________

Page 22 of 22

