
Name ___________________________________

 Page 1 of 11

Computer Architecture and Engineering

CS152 Quiz #3

March 19th, 2013

Professor Krste Asanović

Name: _____<ANSWER KEY>_____

This is a closed book, closed notes exam.
80 Minutes

11 pages

Notes:

• Not all questions are of equal difficulty, so look over the entire exam and
budget your time carefully.

• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz’s contents with other students who have not taken

the quiz. If you have inadvertently been exposed to a quiz prior to taking it,
you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving
explanations if the instructions ask you to explain your choice.

 Writing name on each sheet ________________ 1 Point
 Question 1 ________________ 41 Points
 Question 2 ________________ 18 Points
 Question 3 ________________ 20 Points
 TOTAL ________________ 80 Points
	
 	

Name ___________________________________

 Page 2 of 11

Question 1: Out-of-order Processors [41 points]

For this question, we will use the following DAXPY code to understand how out-of-order
processors behave. Written in C, the code is as follows:

void daxpy(double a, double* x, double* y, int n) {
 for (int i=0; i<n; i++)
 y[i] = y[i] + a * x[i];
}

Assuming that a is stored in f4, pointer x is stored in x5, pointer y is stored in x6, and n is
stored in x7, the code compiles to the following inner loop:

loop:
 fld f1, 0(x5)
 fld f2, 0(x6)
 fmul f3, f1, f4
 fadd f1, f2, f3
 fsd f1, 0(x6)
 addi x5, x5, 8
 addi x6, x6, 8
 addi x7, x7, -1
 bne x7, x0, loop

Name ___________________________________

 Page 3 of 11

Q1.A RAW, WAR, WAW Hazards [6 points]

Draw arrows to mark all register RAW, WAR, WAW hazards between instructions. Count how
many hazards you have marked and write the total count at the end of each column. We have
expanded the loop to spot data hazards across loop iterations.

RAW Hazards WAR Hazards WAW Hazards
fld f1, 0(x5) [1]

fld f2, 0(x6) [1]

fmul f3, f1, f4 [1]

fadd f1, f2, f3 [1]

fsd f1, 0(x6)

addi x5, x5, 8 [2]

addi x6, x6, 8 [2]

addi x7, x7, -1 [2]

bne x7, x0, loop

fld f1, 0(x5) [1]

fld f2, 0(x6) [1]

fmul f3, f1, f4 [1]

fadd f1, f2, f3 [1]

fsd f1, 0(x6)

addi x5, x5, 8

addi x6, x6, 8

addi x7, x7, -1 [1]

bne x7, x0, loop

fld f1, 0(x5) [1]

fld f2, 0(x6) [1]

fmul f3, f1, f4 [1]

fadd f1, f2, f3 [2]

fsd f1, 0(x6) [2]

addi x5, x5, 8 [1]

addi x6, x6, 8 [1]

addi x7, x7, -1[1]

bne x7, x0, loop[1]

fld f1, 0(x5) [1]

fld f2, 0(x6) [1]

fmul f3, f1, f4 [1]

fadd f1, f2, f3

fsd f1, 0(x6) [1]

addi x5, x5, 8

addi x6, x6, 8

addi x7, x7, -1

bne x7, x0, loop

fld f1, 0(x5) [1]

fld f2, 0(x6) [1]

fmul f3, f1, f4 [1]

fadd f1, f2, f3 [1]

fsd f1, 0(x6)

addi x5, x5, 8 [1]

addi x6, x6, 8 [1]

addi x7, x7, -1 [1]

bne x7, x0, loop

fld f1, 0(x5) [1]

fld f2, 0(x6)

fmul f3, f1, f4

fadd f1, f2, f3

fsd f1, 0(x6)

addi x5, x5, 8

addi x6, x6, 8

addi x7, x7, -1

bne x7, x0, loop

of RAW Hazards: __15__ # of WAR Hazards: __15__ # of WAW Hazards: ___8___

Q1.B Register Renaming and Data Hazards [3 points]
Which of the data hazards from above would register renaming remove? Explain.

RAW WAR WAW

WAR, WAW hazards are not real dependences. With the destination register renamed for
instructions that writes to a register, all subsequent instructions that read from that destination
register will read the right value (gets rid of the WAR hazard). Similarly, all subsequent
instructions that write to the same destination register doesn’t risk clobbering the data as it writes
to a different physical register (gets rid of the WAW hazard).

Name ___________________________________

 Page 4 of 11

Q1.C Impact of Register Renaming on Performance [5 points]
Suppose we run the DAXPY code on two out-of-order processors, one with register renaming
and one without. Both processors have unlimited reordering resources, perfect memory
disambiguation, perfect branch prediction, and infinite superscalar issue width. On which out-
of-order processor would the DAXPY code perform better? Explain your reasoning.

With register renaming, we are able to overcome WAR and WAW hazards and get the next
iteration in flight.

-1 if you didn’t mention getting the next iteration in flight
-3 if you didn’t talk about getting rid of WAR and WAW hazards
-5 if you didn’t pick the machine with register renaming

Name ___________________________________

 Page 5 of 11

Q1.D Register renaming [6 points]
Complete the following table, assuming that both x registers and f registers are renamed from
the same pool of unified physical registers. The initial map table and free list
is given below. Assume that the free list is organized as a FIFO – a physical
register is popped off the top of list when allocated, and a physical register is
added back to the bottom of the list when reclaimed. For each instruction,
label the following: -1 for incorrect box

- which physical register gets assigned to the instruction as a destination
- upon commit, which physical register gets added back to the free list

Instruction ISA Destination
Register

Physical Destination
Register Freed Register

fld f1, 0(x5) f1 P15 P11
fld f2, 0(x6) f2 P16 P22
fmul f3, f1, f4 f3 P17 P3
fadd f1, f2, f3 f1 P18 P15
fsd f1, 0(x6) n/a n/a n/a
addi x5, x5, 8 x5 P19 P9
addi x6, x6, 8 x6 P20 P13
addi x7, x7, -1 x7 P21 P14
bne x7, x0, loop n/a n/a n/a
fld f1, 0(x5) f1 P1 P18
fld f2, 0(x6) f2 P2 P16
fmul f3, f1, f4 f3 P4 P17
fadd f1, f2, f3 f1 P5 P1
fsd f1, 0(x6) n/a n/a n/a
addi x5, x5, 8 x5 P6 P19
addi x6, x6, 8 x6 P8 P20
addi x7, x7, -1 x7 P10 P21
bne x7, x0, loop n/a n/a n/a

Free List
P15
P16
P17
P18
P19
P20
P21
P1
P2
P4
P5
P6
P8
P10

Architectural Register Physical Register
f1 P11
f2 P22
f3 P3
f4 P7
x5 P9
x6 P13
x7 P14

Name ___________________________________

 Page 6 of 11

Q1.E Precise Exceptions [5 points]
Describe how precise exceptions are implemented in out-of-order processors with unified
physical register files. Include descriptions of how the map table and free lists are maintained.

Commit needs to happen in-order. Once an exception is detected, the ROB is sequentially
unrolled backwards starting from the tail pointer. During this process, the map table is rolled
back to an older mapping, and the allocated physical register is put back to the free list.

-1 if you didn’t mention ROB
-1 if you weren’t specific about how the map table and free lists are maintained
-2 if you didn’t tell how to maintain the map table
-2 if you didn’t specify how to update the free list
-1 if you purposed snapshotting every cycle, but didn’t correctly specify how to maintain free list

Q1.F Exceptions in Action [6 points]
Suppose the second fsd instruction (the instruction that is in bold in the previous page)
triggered an exception. Show the state of the map table and free list before
jumping into the exception handler. Assume that the machine is flushed
when the commit pointer of the ROB moves to the faulting instruction.
-1 for incorrect box

Free List
P11

P22

P3

P15

P9

P13

P14

P18

P16

P17

P1

P10

P8

P6

Architectural
Register

Physical
Register

f1 P5

f2 P2

f3 P4

f4 P7

x5 P19

x6 P20

x7 P21

Name ___________________________________

 Page 7 of 11

Q1.G Lifetime of Physical Registers [5 points]
When can we free a physical register? Explain.

When next write of same architecture register commits.

-1 if said when last reader commits, since due to exceptions that can happen after the last reader
commits.
-1 if didn’t mention “commit”.
No points if you said you can free a physical register once an instruction has committed.

Q1.H Impact of Unrolling on Performance [5 points]
Could unrolling the loop in software, as shown below, help performance? Could it hurt
performance? Assume that n is always an even number, and hence the loop doesn’t need patch-
up code for the cases where n is an odd number. Explain your reasoning.

loop:
 fld f1, 0(x5)
 fld f2, 0(x6)
 fld f5, 8(x5)
 fld f6, 8(x6)
 fmul f3, f1, f4
 fadd f1, f2, f3
 fmul f7, f5, f4
 fadd f5, f7, f6
 fsd f1, 0(x6)
 fsd f5, 8(x6)
 addi x5, x5, 16
 addi x6, x6, 16
 addi x7, x7, -2
 bne x7, x0, loop

Loop unrolling does help performance, as unrolling reduces loop overhead (bookkeeping). This
lets the processor to put more load/store instructions in the ROB, and hence helps performance.
Many people mentioned that unrolling will let the processor execute the next iteration earlier, but
if you think about it, without unrolling, the out-of-order processor is still able to kick out the next
iteration earlier. Some people also said that by unrolling, there are fewer branches in the code,
but note that this branch is an easy one to predict. The benefit of unrolling is more about
reducing the instruction count rather than reducing the number of branches to predict.	

Name ___________________________________

 Page 8 of 11

Question 2: Limits on Throughput [18 points]

Suppose we are running the following assembly codes on an out-of-order processor with
unlimited renaming registers and reordering resources, perfect memory disambiguation, perfect
prediction, and infinite superscalar issue width. Floating-point add instructions have a 5-cycle
latency, floating-point multiply takes 8 cycles, and integer instructions take one cycle. Assume
that all loads/stores hit in the cache, and take 2 cycles to execute. Also assume that load values
are forwarded from the speculative store buffer; in this case, the load instruction can execute one
cycle after the store instruction. For each of the following code sequences, in the steady state,
how many floating-point operations will execute per cycle?

Q2.A [6 points]

C Code Variable Mapping Assembly Code
for (int i=0; i<n; i++)
 y[i] = y[i] + a * x[i];

f3: a
x1: x pointer
x2: y pointer
x3: i

loop:
 fld f1, 0(x1)
 fld f2, 0(x2)
 fmul f1, f1, f3
 fadd f1, f1, f2
 fsd f1, 0(x2)
 addi x1, x1, 8
 addi x2, x2, 8
 addi x3, x3, -1
 bne x3, x0, loop

Critical path: addi (previous iteration)  addi (1 cycle latency)
of floating-point ops: 2

2 floating-point operations per cycle

-2 if 5 FLOP/cycle (i.e., counted floating point load/store instructions)

Name ___________________________________

 Page 9 of 11

Q2.B [6 points]
C Code Variable Mapping Assembly Code

for (int i=0; i<n; i++)
 sum = sum + x[i];

f2: sum
x1: x pointer
x2: i

loop:
 fld f1, 0(x1)
 fadd f2, f2, f1
 addi x1, x1, 8
 addi x2, x2, -1
 bne x2, x0, loop

Critical path: fadd (previous iteration)  fadd (5 cycle latency)
of floating-point ops: 1

1/5 floating-point operations per cycle

-2 if 2/5 FLOP/cycle (i.e., counted floating point load/store instructions)

Q2.C [6 points]

C Code Variable Mapping Assembly Code
for (int i=0; i<n; i++)
 a[i+1] = a[i] * b[i];

x1: a pointer
x2: b pointer
x3: i

loop:
 fld f1, 0(x1)
 fld f2, 0(x2)
 fmul f1, f1, f2
 fsd f1, 8(x1)
 addi x1, x1, 8
 addi x2, x2, 8
 addi x3, x3, -1
 bne x3, x0, loop

Critical path: fld  fmul  fsd (previous iteration)  fld (8+2+1 cycle latency)
of floating-point ops: 1

1/11 floating-point operations per cycle

-2 if 1/12 FLOP/cycle (i.e., counted 2 cycles for fld)
-2 if 4/11 FLOP/cycle (i.e., counted floating point load/store instructions)
-4 if 4/12 FLOP/cycle (i.e., made both mistakes)

Name ___________________________________

 Page 10 of 11

Question 3: Potpourri [20 points]

Q3.A [5 points] Why is the issue window usually sized smaller than the ROB?

Issue window smaller than ROB.

Q3.B [5 points] Why do architects put more attention on the accuracy of branch predictors in a
superscalar out-of-order processor than in a 5-stage in-order processor?

- branch mispredicts are major source of performance loss in OoO machines, much more
than 5-stage in-order processors.

- Lots of speculative work can be wasted
- Incorrect speculation can take resources away from correct path code

-1 if not listed

Name ___________________________________

 Page 11 of 11

Q3.C [5 points] Suppose we speculatively issue an instruction that depends on a load value
assuming the load will hit in the cache. How can we detect misspeculation at commit time by re-
executing the load? Explain.

- assumed instructions behind load keep executing with wrong “miss” value
- check load value against value reloaded at commit and squash pipe if different
- checking for miss at commit time doesn’t work, as intervening store commit can cause

eviction between correct speculation at load commit.

Q3.D [5 points] Suppose we bypass load values from the speculative store buffer. If the load
address hits in both the store buffer and the cache, which one should we use: load data from
forwarded from the store buffer or the load data from the cache?

- we use youngest store that is older than the load
- this would come from either cache or store buffer depending the order of load & stores in

store buffer

-2 if didn’t include cache as potential source but otherwise correct
-4 if didn’t consider relative age of loads & stores

