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Computer Architecture and Engineering 

CS152 Quiz #3 

March 19th, 2013 

Professor Krste Asanović 
 

Name: _____<ANSWER KEY>_____ 
 

This is a closed book, closed notes exam. 
80 Minutes 

11 pages 
 
 
 
Notes: 

• Not all questions are of equal difficulty, so look over the entire exam and 
budget your time carefully. 

• Please carefully state any assumptions you make. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz’s contents with other students who have not taken 

the quiz.  If you have inadvertently been exposed to a quiz prior to taking it, 
you must tell the instructor or TA. 

• You will get no credit for selecting multiple-choice answers without giving 
explanations if the instructions ask you to explain your choice. 

 
 
 
             Writing name on each sheet   ________________   1 Point 
                                        Question 1 ________________ 41 Points 
                                        Question 2 ________________ 18 Points 
                                        Question 3 ________________ 20 Points 
     TOTAL ________________ 80 Points 
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Question 1: Out-of-order Processors [41 points] 
 
For this question, we will use the following DAXPY code to understand how out-of-order 
processors behave.  Written in C, the code is as follows: 
 
void daxpy(double a, double* x, double* y, int n) { 
  for (int i=0; i<n; i++) 
    y[i] = y[i] + a * x[i]; 
} 
 
Assuming that a is stored in f4, pointer x is stored in x5, pointer y is stored in x6, and n is 
stored in x7, the code compiles to the following inner loop: 
 
loop: 
  fld  f1, 0(x5) 
  fld  f2, 0(x6) 
  fmul f3, f1, f4 
  fadd f1, f2, f3 
  fsd  f1, 0(x6) 
  addi x5, x5, 8 
  addi x6, x6, 8 
  addi x7, x7, -1 
  bne  x7, x0, loop 
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Q1.A RAW, WAR, WAW Hazards [6 points] 
 
Draw arrows to mark all register RAW, WAR, WAW hazards between instructions.  Count how 
many hazards you have marked and write the total count at the end of each column.  We have 
expanded the loop to spot data hazards across loop iterations.  
 

RAW Hazards WAR Hazards WAW Hazards 
fld  f1, 0(x5) [1] 

fld  f2, 0(x6) [1] 

fmul f3, f1, f4 [1] 

fadd f1, f2, f3 [1] 

fsd  f1, 0(x6)  

addi x5, x5, 8 [2] 

addi x6, x6, 8 [2] 

addi x7, x7, -1 [2] 

bne  x7, x0, loop 

fld  f1, 0(x5) [1] 

fld  f2, 0(x6) [1] 

fmul f3, f1, f4 [1] 

fadd f1, f2, f3 [1] 

fsd  f1, 0(x6) 

addi x5, x5, 8 

addi x6, x6, 8 

addi x7, x7, -1 [1] 

bne  x7, x0, loop 

fld  f1, 0(x5) [1] 

fld  f2, 0(x6) [1] 

fmul f3, f1, f4 [1] 

fadd f1, f2, f3 [2] 

fsd  f1, 0(x6) [2] 

addi x5, x5, 8 [1] 

addi x6, x6, 8 [1] 

addi x7, x7, -1[1] 

bne  x7, x0, loop[1] 

fld  f1, 0(x5) [1] 

fld  f2, 0(x6) [1] 

fmul f3, f1, f4 [1] 

fadd f1, f2, f3 

fsd  f1, 0(x6) [1] 

addi x5, x5, 8 

addi x6, x6, 8 

addi x7, x7, -1 

bne  x7, x0, loop 

fld  f1, 0(x5) [1] 

fld  f2, 0(x6) [1] 

fmul f3, f1, f4 [1] 

fadd f1, f2, f3 [1] 

fsd  f1, 0(x6) 

addi x5, x5, 8 [1] 

addi x6, x6, 8 [1] 

addi x7, x7, -1 [1] 

bne  x7, x0, loop 

fld  f1, 0(x5) [1] 

fld  f2, 0(x6) 

fmul f3, f1, f4 

fadd f1, f2, f3 

fsd  f1, 0(x6) 

addi x5, x5, 8 

addi x6, x6, 8 

addi x7, x7, -1 

bne  x7, x0, loop 

# of RAW Hazards: __15__ # of WAR Hazards: __15__ # of WAW Hazards: ___8___ 
 
Q1.B Register Renaming and Data Hazards [3 points] 
Which of the data hazards from above would register renaming remove?  Explain. 

 
RAW  WAR  WAW 

 
WAR, WAW hazards are not real dependences.  With the destination register renamed for 
instructions that writes to a register, all subsequent instructions that read from that destination 
register will read the right value (gets rid of the WAR hazard).  Similarly, all subsequent 
instructions that write to the same destination register doesn’t risk clobbering the data as it writes 
to a different physical register (gets rid of the WAW hazard). 
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Q1.C Impact of Register Renaming on Performance [5 points] 
Suppose we run the DAXPY code on two out-of-order processors, one with register renaming 
and one without.  Both processors have unlimited reordering resources, perfect memory 
disambiguation, perfect branch prediction, and infinite superscalar issue width.  On which out-
of-order processor would the DAXPY code perform better?  Explain your reasoning. 
 
With register renaming, we are able to overcome WAR and WAW hazards and get the next 
iteration in flight. 
 
-1 if you didn’t mention getting the next iteration in flight 
-3 if you didn’t talk about getting rid of WAR and WAW hazards 
-5 if you didn’t pick the machine with register renaming 
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Q1.D Register renaming [6 points] 
Complete the following table, assuming that both x registers and f registers are renamed from 
the same pool of unified physical registers.  The initial map table and free list 
is given below.  Assume that the free list is organized as a FIFO – a physical 
register is popped off the top of list when allocated, and a physical register is 
added back to the bottom of the list when reclaimed.  For each instruction, 
label the following: -1 for incorrect box 

- which physical register gets assigned to the instruction as a destination 
- upon commit, which physical register gets added back to the free list 

 
 
 
 
 
 
 
 
 
 

Instruction ISA Destination 
Register 

Physical Destination 
Register Freed Register 

fld  f1, 0(x5) f1 P15 P11 
fld  f2, 0(x6) f2 P16 P22 
fmul f3, f1, f4 f3 P17 P3 
fadd f1, f2, f3 f1 P18 P15 
fsd  f1, 0(x6) n/a n/a n/a 
addi x5, x5, 8 x5 P19 P9 
addi x6, x6, 8 x6 P20 P13 
addi x7, x7, -1 x7 P21 P14 
bne  x7, x0, loop n/a n/a n/a 
fld  f1, 0(x5) f1 P1 P18 
fld  f2, 0(x6) f2 P2 P16 
fmul f3, f1, f4 f3 P4 P17 
fadd f1, f2, f3 f1 P5 P1 
fsd  f1, 0(x6) n/a n/a n/a 
addi x5, x5, 8 x5 P6 P19 
addi x6, x6, 8 x6 P8 P20 
addi x7, x7, -1 x7 P10 P21 
bne  x7, x0, loop n/a n/a n/a 

Free List 
P15 
P16 
P17 
P18 
P19 
P20 
P21 
P1 
P2 
P4 
P5 
P6 
P8 
P10 

Architectural Register Physical Register 
f1 P11 
f2 P22 
f3 P3 
f4 P7 
x5 P9 
x6 P13 
x7 P14 
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Q1.E Precise Exceptions [5 points] 
Describe how precise exceptions are implemented in out-of-order processors with unified 
physical register files.  Include descriptions of how the map table and free lists are maintained. 
 
Commit needs to happen in-order.  Once an exception is detected, the ROB is sequentially 
unrolled backwards starting from the tail pointer.  During this process, the map table is rolled 
back to an older mapping, and the allocated physical register is put back to the free list. 
 
-1 if you didn’t mention ROB 
-1 if you weren’t specific about how the map table and free lists are maintained 
-2 if you didn’t tell how to maintain the map table 
-2 if you didn’t specify how to update the free list 
-1 if you purposed snapshotting every cycle, but didn’t correctly specify how to maintain free list 
 
 
 
 
 
 
 
 
 
Q1.F Exceptions in Action [6 points] 
Suppose the second fsd instruction (the instruction that is in bold in the previous page) 
triggered an exception.  Show the state of the map table and free list before 
jumping into the exception handler.  Assume that the machine is flushed 
when the commit pointer of the ROB moves to the faulting instruction.  
-1 for incorrect box 
  

Free List 
P11 

P22 

P3 

P15 

P9 

P13 

P14 

P18 

P16 

P17 

P1 

P10 

P8 

P6 

Architectural 
Register 

Physical 
Register 

f1 P5 

f2 P2 

f3 P4 

f4 P7 

x5 P19 

x6 P20 

x7 P21 
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Q1.G Lifetime of Physical Registers [5 points] 
When can we free a physical register?  Explain. 
 
When next write of same architecture register commits.  
 
-1 if said when last reader commits, since due to exceptions that can happen after the last reader 
commits. 
-1 if didn’t mention “commit”. 
No points if you said you can free a physical register once an instruction has committed. 
 
 
 
 
 
 
 
 
 
Q1.H Impact of Unrolling on Performance [5 points] 
Could unrolling the loop in software, as shown below, help performance?  Could it hurt 
performance? Assume that n is always an even number, and hence the loop doesn’t need patch-
up code for the cases where n is an odd number.  Explain your reasoning. 
 
loop: 
  fld  f1, 0(x5) 
  fld  f2, 0(x6) 
  fld  f5, 8(x5) 
  fld  f6, 8(x6) 
  fmul f3, f1, f4 
  fadd f1, f2, f3 
  fmul f7, f5, f4 
  fadd f5, f7, f6 
  fsd  f1, 0(x6) 
  fsd  f5, 8(x6) 
  addi x5, x5, 16 
  addi x6, x6, 16 
  addi x7, x7, -2 
  bne  x7, x0, loop 
 
Loop unrolling does help performance, as unrolling reduces loop overhead (bookkeeping).  This 
lets the processor to put more load/store instructions in the ROB, and hence helps performance.  
Many people mentioned that unrolling will let the processor execute the next iteration earlier, but 
if you think about it, without unrolling, the out-of-order processor is still able to kick out the next 
iteration earlier.  Some people also said that by unrolling, there are fewer branches in the code, 
but note that this branch is an easy one to predict.  The benefit of unrolling is more about 
reducing the instruction count rather than reducing the number of branches to predict.	
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Question 2: Limits on Throughput [18 points] 
 
Suppose we are running the following assembly codes on an out-of-order processor with 
unlimited renaming registers and reordering resources, perfect memory disambiguation, perfect 
prediction, and infinite superscalar issue width.  Floating-point add instructions have a 5-cycle 
latency, floating-point multiply takes 8 cycles, and integer instructions take one cycle.  Assume 
that all loads/stores hit in the cache, and take 2 cycles to execute.  Also assume that load values 
are forwarded from the speculative store buffer; in this case, the load instruction can execute one 
cycle after the store instruction.  For each of the following code sequences, in the steady state, 
how many floating-point operations will execute per cycle? 
 
Q2.A [6 points] 

C Code Variable Mapping Assembly Code 
for (int i=0; i<n; i++) 
    y[i] = y[i] + a * x[i]; 

f3: a 
x1: x pointer 
x2: y pointer 
x3: i 

loop: 
  fld f1, 0(x1) 
  fld f2, 0(x2) 
  fmul f1, f1, f3 
  fadd f1, f1, f2 
  fsd f1, 0(x2) 
  addi x1, x1, 8 
  addi x2, x2, 8 
  addi x3, x3, -1 
  bne x3, x0, loop 

 
Critical path: addi (previous iteration)  addi (1 cycle latency) 
# of floating-point ops: 2 
 
2 floating-point operations per cycle 
 
-2 if 5 FLOP/cycle (i.e., counted floating point load/store instructions) 
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Q2.B [6 points] 
C Code Variable Mapping Assembly Code 

for (int i=0; i<n; i++) 
    sum = sum + x[i]; 

f2: sum 
x1: x pointer 
x2: i 

loop: 
  fld f1, 0(x1) 
  fadd f2, f2, f1 
  addi x1, x1, 8 
  addi x2, x2, -1 
  bne x2, x0, loop 

 
Critical path: fadd (previous iteration)  fadd (5 cycle latency) 
# of floating-point ops: 1 
 
1/5 floating-point operations per cycle 
 
-2 if 2/5 FLOP/cycle (i.e., counted floating point load/store instructions) 
 
 
 
 
 
 
 
Q2.C [6 points] 

C Code Variable Mapping Assembly Code 
for (int i=0; i<n; i++) 
    a[i+1] = a[i] * b[i]; 

x1: a pointer 
x2: b pointer 
x3: i 

loop: 
  fld f1, 0(x1) 
  fld f2, 0(x2) 
  fmul f1, f1, f2 
  fsd f1, 8(x1) 
  addi x1, x1, 8 
  addi x2, x2, 8 
  addi x3, x3, -1 
  bne x3, x0, loop 

 
Critical path: fld  fmul  fsd (previous iteration)  fld (8+2+1 cycle latency) 
# of floating-point ops: 1 
 
1/11 floating-point operations per cycle 
 
-2 if 1/12 FLOP/cycle (i.e., counted 2 cycles for fld) 
-2 if 4/11 FLOP/cycle (i.e., counted floating point load/store instructions) 
-4 if 4/12 FLOP/cycle (i.e., made both mistakes) 
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Question 3: Potpourri [20 points] 
 
Q3.A [5 points] Why is the issue window usually sized smaller than the ROB? 
 
Issue window smaller than ROB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q3.B [5 points] Why do architects put more attention on the accuracy of branch predictors in a 
superscalar out-of-order processor than in a 5-stage in-order processor? 
 

- branch mispredicts are major source of performance loss in OoO machines, much more 
than 5-stage in-order processors. 

- Lots of speculative work can be wasted 
- Incorrect speculation can take resources away from correct path code 

 
-1 if not listed  
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Q3.C [5 points] Suppose we speculatively issue an instruction that depends on a load value 
assuming the load will hit in the cache.  How can we detect misspeculation at commit time by re-
executing the load?  Explain. 
 

- assumed instructions behind load keep executing with wrong “miss” value 
- check load value against value reloaded at commit and squash pipe if different 
- checking for miss at commit time doesn’t work, as intervening store commit can cause 

eviction between correct speculation at load commit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q3.D [5 points] Suppose we bypass load values from the speculative store buffer.  If the load 
address hits in both the store buffer and the cache, which one should we use: load data from 
forwarded from the store buffer or the load data from the cache? 
 

- we use youngest store that is older than the load 
- this would come from either cache or store buffer depending the order of load & stores in 

store buffer 
 
-2 if didn’t include cache as potential source but otherwise correct 
-4 if didn’t consider relative age of loads & stores 
 
 


