
Name ___________________________________

 Page 1 of 15

Computer Architecture and Engineering

CS152 Quiz #4

April 9th, 2013

Professor Krste Asanović

Name: _____<ANSWER KEY>_____

This is a closed book, closed notes exam.
80 Minutes

15 pages

Notes:

• Not all questions are of equal difficulty, so look over the entire exam and
budget your time carefully.

• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz’s contents with other students who have not taken

the quiz. If you have inadvertently been exposed to a quiz prior to taking it,
you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving
explanations if the instructions ask you to explain your choice.

 Writing name on each sheet ________________ 1 Point
 Question 1 ________________ 22 Points
 Question 2 ________________ 21 Points
 Question 3 ________________ 12 Points
 Question 4 ________________ 24 Points
 TOTAL ________________ 80 Points
!

Name ___________________________________

 Page 2 of 15

Question 1: VLIW Machines [22 points]

In this question, we will consider the execution of the following code segment on a VLIW
processor.

void kernel(int N, float A, float* X, float* Y, float* Z)
{
 for (int i=0; i<N; i++)
 Z[i] = Z[i] + A*X[i]*Y[i];
}

The code above translates to the following operation:

loop:
 flw f1, 0(x1) # load X[i]
 flw f2, 0(x2) # load Y[i]
 flw f3, 0(x3) # load Z[i]
 fmul f4, f0, f1 # A is in f0
 fmul f5, f4, f2
 fadd f6, f5, f3
 fsw f6, 0(x3)
 addi x1, x1, 4
 addi x2, x2, 4
 addi x3, x3, 4
 bne x3, x4, loop

This code will run on a VLIW machine that looks similar to the one presented in lecture and used
in the problem set, shown here:

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Add FP Mul

Our machine has six execution units:

- two integer units, latency one cycle (i.e., dependent integer operations can be issued
back-to-back), also used for branches.

- two memory units, latency two cycles, fully pipelined, each unit can perform both loads
and stores.

- two FPU units, latency four cycles, fully pipelined, one unit can only perform a FP add
operation, the other unit can only perform a FP mul operation.

This machine has no interlocks. All register values are read at the start of the instruction before
any writes from the same instruction take effect (i.e., no WAR hazards between operations
within a single VLIW instruction).

Please feel free to detach the Appendix page, which has the same code, for your convenience.

Name ___________________________________

 Page 3 of 15

Q1.A Scheduling VLIW Code, Naïve scheduling [4 points]
Schedule operations into VLIW instructions in the following table. Show only one iteration of
the loop. Make the code efficient, but do not use software pipelining or loop unrolling. You
don’t need to write in NOPs.
Inst Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Add FP Mul

1 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) flw f2, 0(x2)

2 addi x3,x3,4 flw f3,0(x3)

3 fmul f4,f0,f1

4

5

6

7 fmul f5,f4,f2

8

9

10

11 fadd f6,f5,f3

12

13

14

15 bne x3,x4 fsw f6,-4(x3)

16

17

18

19

20

21

22

23

What is the resulting throughput of the code in “floating-point operations per cycle”? Don’t
count flw and fsw as floating-point operations.

______________3/15______________

Name ___________________________________

 Page 4 of 15

Q1.B Scheduling VLIW Code, Software pipelining [6 points]
Rewrite the assembly code to leverage software pipelining (do not use loop unrolling). Schedule
VLIW instructions in the following table. You should show the loop prologue. Draw a box
around the instructions that form the loop body.
Inst Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Add FP Mul

1 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1)

2 addi x3,x3,4

3 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) fmul f4,f0,f1

4 addi x3,x3,4

5 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) flw f2,-8(x2) fmul f4,f0,f1

6 addi x3,x3,4

7 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) flw f2,-8(x2) fmul f4,f0,f1

8 addi x3,x3,4 fmul f5,f4,f2

9 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) flw f2,-8(x2) fmul f4,f0,f1

10 addi x3,x3,4 flw f3,-16(x3) fmul f5,f4,f2

11 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) flw f2,-8(x2) fmul f4,f0,f1

12 addi x3,x3,4 flw f3,-16(x3) fadd f6,f5,f3 fmul f5,f4,f2

13 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) flw f2,-8(x2) fmul f4,f0,f1

14 addi x3,x3,4 flw f3,-16(x3) fadd f6,f5,f3 fmul f5,f4,f2

15 addi x1,x1,4 addi x2,x2,4 flw f1, 0(x1) flw f2,-8(x2) fmul f4,f0,f1

16 addi x3,x3,4 bne x3,x4 flw f3,-16(x3) fsw f6,-28(x3) fadd f6,f5,f3 fmul f5,f4,f2

17 flw f2,-8(x2) fmul f4,f0,f1

18 bne x3,x4 flw f3,-16(x3) fsw f6,-28(x3) fadd f6,f5,f3 fmul f5,f4,f2

19 flw f2,-8(x2)

20 bne x3,x4 flw f3,-16(x3) fsw f6,-28(x3) fadd f6,f5,f3 fmul f5,f4,f2

21

22 bne x3,x4 flw f3,-16(x3) fsw f6,-28(x3) fadd f6,f5,f3 fmul f5,f4,f2

23

What is the resulting throughput of the code in “floating-point operations per cycle”? Only
consider the steady-state operation of the loop.

______________3/2_______________

Name ___________________________________

 Page 5 of 15

-2 if software pipeline loop is 3 cycles
-3 if software pipeline loop is 4 cycles
-4 if software pipeline loop is 5 cycles
-5 if software pipeline loop is 6 cycles
-6 if software pipeline loop is >= 7 cycles

-1 ~ -4 if work in prolog was not clear

Q1.C Impact on Performance
For the code given in Q1, how would the following changes impact “floating-point operations
per cycle” in the steady-state operation of the loop? Justify your answer. You don’t need to
show the scheduled result as you did in Q1.A and Q1.B.

1) Loop unrolling [4 points]

The software pipelined loop is constrained by number of fmul instructions; loop unrolling
wouldn’t help.

New “floating-point operations per cycle” :

_______________3/2_______________
2) Additional FP Multiply unit [4 points]

The software pipelined loop is constrained by number of memory units.

New “floating-point operations per cycle” :

______________3/2_______________
3) Memory Unit latency changes to 3 cycles [4 points]

Software pipelining will be able to hide memory unit latencies as long as it is constant.

New “floating-point operations per cycle” :

______________3/2_______________

Name ___________________________________

 Page 6 of 15

Question 2: Vector Machines [21 points]

In this question, we will consider the execution of the same code segment that was used in Q1 on
a vector machine. Here the code is again, written in C:

void kernel(int N, float A, float* X, float* Y, float* Z)
{
 for (int i=0; i<N; i++)
 Z[i] = Z[i] + A*X[i]*Y[i];
}

The code above translates to the following traditional vector assembly code:

x4 contains N at the beginning
vsetvl x5, x4
vflstw vf0, f0, x0 # f0 contains A
loop:
 vsetvl x5, x4
 vflw vf1, x1
 vflw vf2, x2
 vflw vf3, x3
 vfmul vf4, vf0, vf1
 vfmul vf5, vf4, vf2
 vadd vf6, vf5, vf3
 vfsw vf6, x3
 sub x4, x4, x5
 slli x5, x5, 2
 add x1, x1, x5
 add x2, x2, x5
 add x3, x3, x5
 bne x4, x0, loop!

The baseline vector machine in this question has the following features:

- 64 elements per vector register
- 32 lanes
- one ALU per lane: 1 cycle latency
- one LD/ST unit per lane: 2 cycle latency
- one FP add unit per lane: 2 cycle latency
- one FP multiply unit per lane: 3 cycle latency
- all functional units have dedicated read/write ports into the vector register file
- no dead time
- no support for chaining
- scalar instructions execute separately on a control processor (5-stage, in-order)

Name ___________________________________

 Page 7 of 15

Q2.A Scheduling Vector Code, No Chaining [4 points]

Complete the pipeline diagram of the baseline vector processor running the given code.

The following supplementary information explains the diagram:

- Scalar instructions execute in 5 cycles: fetch (F), decode (D), execute (X), memory (M),
and writeback (W).

- A vector instruction is also fetched (F) and decoded (D). Then, it stalls (—) until its
required vector functional unit is available.

- With no chaining, a dependent vector instruction stalls until the previous instruction
finishes writing back all of its elements.

- A vector instruction is pipelined across all the lanes in parallel.
- For each element, the operands are read (R) from the vector register file, the operation

executes on the load/store unit (M) or the ALU (X), and the result is written back (W) to
the vector register file.

- A stalled vector instruction does not block a scalar instruction from executing.
- Assume that the vsetvl and vflstw instruction outside the loop has already been scheduled

and executed.
- vflw1, vflw2, and vflw3 refer to the first, second, and third vflw instructions in the loop,

etc.

Name ___________________________________

 Page 8 of 15

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
vsetvl F D X M W
vflw1 F D R M1 M2 W
 R M1 M2 W
vflw2 F D - R M1 M2 W
 R M1 M2 W
vflw3 F D - - R M1 M2 W
 R M1 M2 W
vfmul1 F D - - R X1 X2 X3 W
 R X1 X2 X3 W
vfmul2 F D - - - - - - - R X1 X2 X3 W
 R X1 X2 X3 W
vfadd F D - - - - - - - - - - - - R X1 X2 W
 R X1 X2 W
vfsw F D - - - - - - - - - - - - - - - - R M M W
 R M M W
sub F D X M W
slli F D X M W
add F D X M W
add F D X M W
add F D X M W
bne F D X M W
vsetvl F D X M W
vflw1 F D - - - - - - - - - - R M M W
 R M M W
vflw2 F D - - - - - - - - - - - R M M W
 R M M W

-1 per unique mistake.

Name ___________________________________

 Page 9 of 15

Q2.B Scheduling Vector Code, with Chaining [5 points]
In this part, we analyze the performance benefits of chaining. Vector chaining is done through
the register file and an element can be read (R) on the same cycle in which it is written back
(W), or it can be read on any later cycle (the chaining is flexible).

To analyze performance, we calculate the total number of cycles per vector loop iteration by
summing the number of cycles between the issuing of successive vector instructions. For
example, in Question Q2.A, vflw1 begins execution in cycle 4 and vflw2 in cycle 6. Therefore,
there are 2 cycles between vflw1 and vflw2.

Complete the following table. The first row corresponds to the baseline 32-lane vector processor
with no chaining. The second row adds flexible chaining to the baseline processor.

Hint: You should consider each pair of vector instructions independently, and you can ignore the
scalar instructions.

Vector
Processor
Config

Number of cycles between successive vector instructions Total cycles
per vector
loop iteartion

vflw1,
vflw2

vflw2,
vflw3

vflw3,
vfmul1

vfmul1,
vfmul2

vfmul2,
vfadd

vfadd,
vfsw

vfsw,
vflw1

32 lanes,
no-
chaining

2 2 1 6 6 5 2 24

32 lanes,
chaining 2 2 1 4 4 3 2 18, see (b)

Q2.C Impact on Performance [12 points]
How would the following changes impact performance? Complete the following table.

Vector
Processor
Config

Number of cycles between successive vector instructions Total cycles
per vector
loop iteartion

vflw1,
vflw2

vflw2,
vflw3

vflw3,
vfmul1

vfmul1,
vfmul2

vfmul2,
vfadd

vfadd,
vfsw

vfsw,
vflw1

8 lanes,
chaining 8 8 1 4 4 3 8 36, see (c)

32 lanes,
chaining,
additional
LD/ST
unit per
lane

1 1 1 4 4 3 1 15, see (d)

32 lanes,
chaining,
additional
FP mul
unit per
lane

2 2 1 4 4 3 2 18, see (e)

Name ___________________________________

 Page 10 of 15

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
vsetvl F D X M W
vflw1 F D R M1 M2 W
 R M1 M2 W
vflw2 F D - R M1 M2 W
 R M1 M2 W
vflw3 F D - - R M1 M2 W
 R M1 M2 W
vfmul1 F D - - R X1 X2 X3 W
 R X1 X2 X3 W
vfmul2 F D - - - - - R X1 X2 X3 W
 R X1 X2 X3 W
vfadd F D - - - - - - - - R X1 X2 W
 R X1 X2 W
vfsw F D - - - - - - - - - - R M M W
 R M M W
sub F D X M W
slli F D X M W
add F D X M W
add F D X M W
add F D X M W
bne F D X M W
vsetvl F D X M W
vflw1 F D - - - - R M M W
 R M M W
vflw2 F D - - - - - R M M W
 R M M W

(b) 32 lanes, chaining

Name ___________________________________

 Page 11 of 15

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
vflw3 F D R M M W
 R M M W
 R M M W
 R M M W
 R M M W
 R M M W
 R M M W
 R M M W
vfmul1 F D R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
vfmul2 F D - - - R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
 R X X X W
vadd F D - - - - - - R X X W
 R X X W

(c) 8 lanes, chaining

Name ___________________________________

 Page 12 of 15

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
vsetvl F D X M W
vflw1 F D R M1 M2 W
 R M1 M2 W
vflw2 F D R M1 M2 W
 R M1 M2 W
vflw3 F D R M1 M2 W
 R M1 M2 W
vfmul1 F D R X1 X2 X3 W
 R X1 X2 X3 W
vfmul2 F D - - - R X1 X2 X3 W
 R X1 X2 X3 W
vfadd F D - - - - - - R X1 X2 W
 R X1 X2 W
vfsw F D - - - - - - - - R M M W
 R M M W
sub F D X M W
slli F D X M W
add F D X M W
add F D X M W
add F D X M W
bne F D X M W
vsetvl F D X M W
vflw1 F D - R M M W
 R M M W
vflw2 F D - R M M W
 R M M W

(d) 32 lanes, chaining, additional LD/ST unit per lane

Name ___________________________________

 Page 13 of 15

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
vsetvl F D X M W
vflw1 F D R M1 M2 W
 R M1 M2 W
vflw2 F D - R M1 M2 W
 R M1 M2 W
vflw3 F D - - R M1 M2 W
 R M1 M2 W
vfmul1 F D - - R X1 X2 X3 W
 R X1 X2 X3 W
vfmul2 F D - - - - - R X1 X2 X3 W
 R X1 X2 X3 W
vfadd F D - - - - - - - - R X1 X2 W
 R X1 X2 W
vfsw F D - - - - - - - - - - R M M W
 R M M W
sub F D X M W
slli F D X M W
add F D X M W
add F D X M W
add F D X M W
bne F D X M W
vsetvl F D X M W
vflw1 F D - - - - R M M W
 R M M W
vflw2 F D - - - - - R M M W
 R M M W

(3) x32 lanes, chaining, additional FP mul unit per lane (same as (b) since there’s a RAW hazard between two vfmul)

Name ___________________________________

 Page 14 of 15

Question 3: Multithreaded Machines [12 points]

In this question, we will consider the execution of the same code segment that was used in Q1 on
a single-issue in-order multithreaded machine. Here the code is again, written in C:

void kernel(int N, float A, float* X, float* Y, float* Z)
{
 for (int i=0; i<N; i++)
 Z[i] = Z[i] + A*X[i]*Y[i];
}

The code above translates to the following assembly code:

loop:
 flw f1, 0(x1) # load X[i]
 flw f2, 0(x2) # load Y[i]
 flw f3, 0(x3) # load Z[i]
 fmul f4, f0, f1 # A is in f0
 fmul f5, f4, f2
 fadd f6, f5, f3
 fsw f6, 0(x3)
 addi x1, x1, 4
 addi x2, x2, 4
 addi x3, x3, 4
 bne x3, x4, loop

Each cycle, the processor can fetch and issue one instruction that performs any of the following
operations:

- load/store, 25 cycle latency (fully pipelined)
- integer add, 1 cycle latency
- floating-point add, floating-point multiply, 4 cycle latency (fully pipelined)
- branch, no delay slots, 1 cycle latency

The processor does not have a cache. Each memory operation directly accesses main memory. If
an instruction cannot be issued due to a data dependency, the processor stalls. We also assume
that the processor has a perfect branch predictor with no penalty for both taken and not-taken
branches.

Name ___________________________________

 Page 15 of 15

Q3.A Scheduling Multithreaded Code, Round-Robin Scheduling [6 points]

Consider a single-issue in-order, multithreaded pipeline, where threads are switched every cycle
using a fixed round-robin schedule. If the thread is not ready to run on its turn, a bubble is
inserted into the pipeline.

Each thread executes the above algorithm, and is calculating its own independent piece of the Z
array (i.e., there is no communication required between threads). Assuming an infinite number
of registers, what is the minimum number of threads we need to fully utilize the processor? You
are free to re-schedule the assembly as necessary to minimize the number of threads required.
Show your work.

loop: start cycle
 flw f1, 0(x1) # load X[i] 1
 flw f2, 0(x2) # load Y[i] N+1
 flw f3, 0(x3) # load Z[i] 2N+1
 addi x1, x1, 4 3N+1
 addi x2, x2, 4 4N+1
 addi x3, x3, 4 5N+1
 fmul f4, f0, f1 # A is in f0 6N+1
 fmul f5, f4, f2 7N+1
 fadd f6, f5, f3 8N+1
 fsw f6, 0(x3) 9N+1
 bne x3, x4, loop 10N+1

Since the first flw is pushed to the memory system on cycle 1, we need the result written back to
register file before (at cycle 6N) the fmul instruction issues.

6N >= 25

We need 5 threads to hide the memory latency. 5 threads is enough to cover the floating-point
add and multiply functional latency.

-1 if said 4 threads, due to trivial cycle counting error
-3 if didn’t reorder addi instructions (3N >= 25, need 9 threads)
-4 if didn’t reorder addi instructions, and made a trivial cycle counting error (8 threads)

Name ___________________________________

 Page 16 of 15

Q3.B Scheduling Multithreaded Code, Dynamic Scheduling [6 points]

Now consider a single-issue in-order, multithreaded pipeline in which threads are dynamically
scheduled as needed (i.e., the pipeline can pick the next instruction from any thread that is ready
to execute). If the thread is not ready to run on its turn, a new thread is switched in.

What is the minimum number of threads we need to achieve peak performance? Again, you are
free to re-schedule the assembly as necessary to minimize the number of threads required. Show
your work.

In steady state:
 fadd f6, f5, f3
 flw f1, 0(x1) # load X[i]
 flw f2, 0(x2) # load Y[i]
 flw f3, 0(x3) # load Z[i]
 fsw f6, 0(x3)
 bne x3, x4, loop
 addi x1, x1, 4
 addi x2, x2, 4
 addi x3, x3, 4

...25-8 = 17 cycles to hide...

 fmul f4, f0, f1 # A is in f0

...3 cycles to hide...

 fmul f5, f4, f2

...3 cycles to hide...

You could hide 17 cycles with 2 threads executing the first 9 instructions. However, you cannot
hide 3 cycles between the fmul instructions with 2 threads executing the fmul instruction. You
need 3 threads to achieve peak performance.

I was surprised nobody software pipelined the loop. You could probably achieve peak
performance with 2 threads. However, since nobody came up with this, I didn’t take off any
points.

-3 if said 2,4 threads

-1 ~ -5 if didn’t justify your answer

Name ___________________________________

 Page 17 of 15

Question 4: Iron Law of Processor Performance [24 points]

Mark whether the following modifications will cause each of the three categories to increase, decrease, or whether the modification will have no
effect. Explain your reasoning to receive credit.

Assume the initial machine is a 5-stage in-order RISC pipeline. Also assume that any modification is done in a way that preserves correctness and
maintains efficiency, but that the rest of the machine remains unchanged. Assume that applications can benefit from the proposed change.

Instructions/Program Cycles/Instruction Seconds/Cycle

A

Add a single-lane
vector unit.

Decrease – one vector instruction
encodes more work.

Increase – vector instructions take more
time to execute.

Unchanged, Might increase slightly –
Vector units are highly

B

Move to a classic
VLIW design with
four operation slots
per instruction.

Reduce – if enough parallelism to
pack slots.
Could increase if have to use many
NOPs to avoid hazards.

Classic VLIW CPI = 1
-1 for increase due to hazards.

Should reduce as hardware is simpler –
but not much change for single-issue.
Might increase due to bypass
complexities of quad-issue VLIW.

-1 for increase but bad explanation

Name ___________________________________

 Page 18 of 15

 Instructions/Program Cycles/Instruction
(Aggregate across threads)

Seconds/Cycle

C

Add fine-grain
vertical
multithreading and
run a workload
consisting of
multiple separate
single-threaded
programs
(multiprogramming)

Unchanged. Should decrease as hazards are
overlapped.

Similar – possibly slight increase.

D

Add fine-grain
vertical
multithreading and
run a workload
consisting of single
programs that have
been parallelized
(multithreading)

Slight increase due to work
distribution & synchronization
between threads

-1 if said same

Should decrease as hazards are
overlapped with other thread’s
execution

Similar – possibly slight increase.

END OF QUIZ

Name ___________________________________

 Page 19 of 15

Appendix. Code for your convenience

C Code:

void kernel(int N, float A, float* X, float* Y, float* Z)
{
 for (int i=0; i<N; i++)
 Z[i] = Z[i] + A*X[i]*Y[i];
}

Assembly Code:

loop:
 flw f1, 0(x1) # load X[i]
 flw f2, 0(x2) # load Y[i]
 flw f3, 0(x3) # load Z[i]
 fmul f4, f0, f1 # A is in f0
 fmul f5, f4, f2
 fadd f6, f5, f3
 fsw f6, 0(x3)
 addi x1, x1, 4
 addi x2, x2, 4
 addi x3, x3, 4
 bne x3, x4, loop

Vector Assembly Code:

x4 contains N at the beginning
vsetvl x5, x4
vflstw vf0, f0, x0 # f0 contains A
loop:
 vsetvl x5, x4
 vflw vf1, x1
 vflw vf2, x2
 vflw vf3, x3
 vfmul vf4, vf0, vf1
 vfmul vf5, vf4, vf2
 vadd vf6, vf5, vf3
 vfsw vf6, x3
 sub x4, x4, x5
 slli x5, x5, 2
 add x1, x1, x5
 add x2, x2, x5
 add x3, x3, x5
 bne x4, x0, loop!

