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Computer Architecture and Engineering 

CS152 Quiz #5 

May 2th, 2013 

Professor Krste Asanović 
 

Name: _____<ANSWER KEY>_____ 
 

This is a closed book, closed notes exam. 
80 Minutes 

15 pages 
 
 
 
Notes: 

• Not all questions are of equal difficulty, so look over the entire exam and 
budget your time carefully. 

• Please carefully state any assumptions you make. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz’s contents with other students who have not taken 

the quiz.  If you have inadvertently been exposed to a quiz prior to taking it, 
you must tell the instructor or TA. 

• You will get no credit for selecting multiple-choice answers without giving 
explanations if the instruction ask you to explain your choice. 

 
 
 
 
             Writing name on each sheet   ________________   1 Point 
                                        Question 1 ________________ 24 Points 
                                        Question 2 ________________ 27 Points 
                                        Question 3 ________________ 28 Points 
     TOTAL ________________ 80 Points 
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Question 1: Relaxed Memory Models [24 points] 
 
The following code implements a simple producer-consumer code.  The producer writes data to 
the tail pointer of the queue (that has no bounds), while the consumer reads data from the head 
pointer of the queue (see the figure below). The code is similar to the one used in Lecture 2, 
however, note that the producer writes 2 elements into the queue every time.  The consumer still 
processes only 1 element at a time.  Assume an element is 8 bytes.  There is one producer and 
one consumer.   
 
 

 
 
 
Producer: 
 
Load Rtail, 0(tail) 
 
Store 0(Rtail), x 
 
Store 8(Rtail), y 
 
Rtail = Rtail + 16 
 
Store 0(tail), Rtail 
 

Consumer: 
 
      Load Rhead, 0(head) 
 
spin: Load Rtail, 0(tail) 
 
      if Rhead == Rtail goto spin 
 
      Load R, 0(Rhead) 
 
      Rhead = Rhead + 8 
 
      Store 0(head), Rhead 
 
      process(R) 
 

 
This code is correct on a sequentially consistent machine, but may not be on system with a 
relaxed memory model.  With that in mind, answer the following questions on page 3 and 4. 
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Q1.A Memory Ordering Constraints without Fences [6 points] 
 
If a system has a fully relaxed memory model and no fences are inserted in the code, what 
memory ordering constraints are present?  Clearly draw an arrow between memory instructions 
(i.e., Load/Store instructions) that have an ordering constraint.  For example, Load  
Store means that the Load is ordered to the Store (i.e., Load should happen before the 
Store). 
 
Producer: 
 
Load Rtail, 0(tail) 
 
Store 0(Rtail), x 
 
Store 8(Rtail), y 
 
Rtail = Rtail + 16 
 
Store 0(tail), Rtail 
 
-2 if missed important edges 
-0.5 for any wrong edge 

Consumer: 
 
      Load Rhead, 0(head) 
 
spin: Load Rtail, 0(tail) 
 
      if Rhead == Rtail goto spin 
 
      Load R, 0(Rhead) 
 
      Rhead = Rhead + 8 
 
      Store 0(head), Rhead 
 
      process(R) 
 

Q1.B Add Global Memory Fences [6 points] 
The code is correct on a sequentially consistent system, but on a system with a fully relaxed 
memory model it may not be.  Insert the minimum number of global memory fences (Membarall 
instruction) to make the code correct on a system with a relaxed memory model.  Note that a 
global memory fence orders all loads and stores preceding the fence before all loads and stores 
following the fence.  Also, draw arrows for additional memory ordering constraints that the 
Membarall instructions introduced. 
 
Producer: 
 
Load Rtail, 0(tail) 
 
Store 0(Rtail), x 
 
Store 8(Rtail), y 
Membarall 
Rtail = Rtail + 16 
 
Store 0(tail), Rtail 
-3 if missed Membar 
-1 for any additional Membar 
-0.5 for any wrong edge 

Consumer: 
 
      Load Rhead, 0(head) 
 
spin: Load Rtail, 0(tail) 
 
      if Rhead == Rtail goto spin 
      Membarall 
      Load R, 0(Rhead) 
 
      Rhead = Rhead + 8 
 
      Store 0(head), Rhead 
 
      process(R) 
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Q1.C Add Fine-Grain Memory Fences [6 points] 
Now assume that you have fine-grain memory fences (MembarLL, MembarLS, MembarSL, 
MembarSS).  The suffix after the Membar specifies the type of memory instructions that are 
ordered (e.g., MembarLL orders all loads before the fence to all loads after the fence, MembarLS 
orders all loads before the fence to all stores after the fence).  Insert the minimum number of 
fences to make the code correct on a system with a fully relaxed memory model.  Also draw 
arrows for additional memory ordering constraints that the Membar instructions introduced. 
 
Producer: 
 
Load Rtail, 0(tail) 
 
Store 0(Rtail), x 
 
Store 8(Rtail), y 
MembarSS 
Rtail = Rtail + 16 
 
Store 0(tail), Rtail 
-3 if missed Membar 
-1 for any additional Membar 
-0.5 for any wrong edge 

Consumer: 
 
      Load Rhead, 0(head) 
 
spin: Load Rtail, 0(tail) 
 
      if Rhead == Rtail goto spin 
      MembarLL 
      Load R, 0(Rhead) 
 
      Rhead = Rhead + 8 
 
      Store 0(head), Rhead 
 
      process(R) 

 
Q1.D Impact on Performance [6 points] 
The global memory fence can add more memory ordering constraints than are necessary for 
correct execution of a code sequence.  Is it possible to have an interleaving of memory 
instructions that is valid in Q1.C but invalid in Q1.B?  If so, show the ordering by writing 
numbers next to the memory instructions, starting from 1 as the first executed instruction.  If not, 
check here _______. 
 
Producer: 
 
_1_ Load Rtail, 0(tail) 
 
_2_ Store 0(Rtail), x 
 
_3_ Store 8(Rtail), y 
 
   Rtail = Rtail + 16 
 
_4_ Store 0(tail), Rtail 
 
The point of the question was with 
fine-grain fences, there is no ordering 
constraint for the load->store 
instruction on the consumer side. 

Consumer: 
 
      _5_ Load Rhead, 0(head) 
 
spin: _7_ Load Rtail, 0(tail) 
 
         if Rhead == Rtail goto spin 
 
      _8_ Load R, 0(Rhead) 
 
         Rhead = Rhead + 8 
 
      _6_ Store 0(head), Rhead 
 
         process(R) 
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Question 2: Parallel Histograms [27 points] 
 
For this question, we consider executing a histogram kernel on systems that have one or more 
cores on a shared memory bus.  Each core is a simple single-issue, in-order core.  The following 
histogram kernel pseudo-code reads in elements, calculates the bin for every element, and 
increments a counter for that bin. 
 
loop: 
  ld element, 0(ptr) 
  bin = calculate_bin(element) 
  ld count, 0(bin) 
  addi count, count, 1 
  sd count, 0(bin) 
  addi ptr, ptr, 8 
  bne ptr, bounds, loop 
 
The calculate_bin part is abstracted away as in a function, but in reality, it will be mapped down 
to machine instructions. Through this question, assume that the input elements are uniformly 
randomly distributed across the histogram bins, and the histogram bins are correctly zeroed out 
initially. 
 
First consider running the code on the following system that has one core connected to the 
memory bus.  Note the core doesn’t have a cache. 

 
We use the following simple performance model to calculate how many cycles it will take to bin 
an element. 
 
Load: 1 cycle + 1 bus access (1 bus access = 10 cycles, load will occupy the bus for 10 cycles) 
Store: 1 cycle + 1 bus access (store also occupies the bus for 10 cycles) 
Calculate_bin: 5 cycles 
Integer instructions: 1 cycle 
 
The given code will take 11 (load) + 5 (calculate_bin) + 11 (load) + 1 (addi) + 11 (store) + 1 
(addi) + 1 (bne) = 41 cycles/element.  Out of the 41 cycles, the core will occupy the bus for 30 
cycles.  
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Q2.A Histograms on Multi-core Systems [4 points] 
 
Consider the following multi-core. 

 
Andrew points out that the code in the previous page will not work properly on the system 
above.  What is the problem with the original code when running on a system with many cores?  
Come up with an interleaving of instructions that would exercise the problem. 
 
If instructions from core 0 and core 1 interleaves the following way to update the same bin: 
Core 0  Core1 
ld  
  ld 
addi 
  addi 
sd 
  sd 
 
One update will be dropped. 
 
Andrew revises the code: 
 
loop: 
  ld element, 0(ptr) 
  bin = calculate_bin(element) 
  fetch_and_add bin, 1 
  addi ptr, ptr, 8 
  bne ptr, bounds, loop 
 
Why would using fetch_and_add fix the problem? 
 
fetch_and_add provides atomicity.  
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Q2.B Performance with Infinite Number of Cores without Caches [5 points] 
 
Assume we have many elements (long input vector) for the histogram, and the elements are 
distributed among cores evenly.  
 
fetch_and_add takes 1 cycle + 1 bus access for the memory read, + 1 cycle for the add, + 1 
bus access for the memory write, for 22 cycles total.  The fetch_and_add instruction occupies the 
bus for 21 cycles, as the bus is locked to provide atomicity during the read/add/write sequence. 
While the bus is locked, other cores cannot put their requests on the memory bus. 
 
What would the performance be in terms of cycles/element in the steady state running the code 
in Q2.A (the code is also in the Appendix, which you may detach) with an infinite number of 
cores without caches?  Justify your work. 
 
Bus occupancy / element = 10 + 21 = 31 cycles/element 
(Assuming all non-bus activity is overlapped) 
 
21 cycles/element = 2 points 
-1 for not setting occupancy correct 
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Q2.C Single Core with a Single-Word-Line Cache [5 points] 
 
Now consider the following single-core system with single-word-line write-back caches. 

 
Assume we have many elements (long input vector) to be histogrammed.  The caches are big 
enough to hold all the bin data while we are running the histogram kernel.  The characteristics of 
the cache are: 
 
Load/Store Hit in the cache: 1 cycle 
Load/Store Miss with a clean victim: 1 cycle + 1 bus access 
Load/Store Miss with a dirty victim: 1 cycle + 2 bus accesses (1 to write back, 1 to pull data in) 
Fetch_and_add hit in the cache: 3 cycles 
Fetch_and_add miss with a clean victim: 3 cycles + 1 bus access 
Fetch_and_add miss with a dirty victim: 3 cycles + 2 bus access 
 
The fetch_and_add is performed atomically on the data in the local cache, and does not impact 
other accesses across the bus. 
 
What would the performance be in terms of cycles/element running the code in Q2.A (the code is 
also in the Appendix, which you may detach) in the steady state?  Justify your work. 
 
1 cycle + 2 bus access  ld – miss with dirty victim 
 + 1 bus access         later causes miss with clean victim 
5 cycles   calculate_bin 
3 cycles   fetch_and_add hit 
1 cycle    addi 
1 cycle    bne 
 
11 cycles + 3 bus accesses = 41 cycles / element (assuming cache capacity is just big enough to 
hold bins) 
3 points for 31 cycles / element (if load misses with clean victim). 
5 points for some number between 31-41 cycles / element. 
1 point if  you got 41 cycles / element assuming fetch_and_add missing in the cache  
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Q2.D Load No-Allocate [4 points] 
 
We quickly realize that we are streaming through the elements (long input vector), and polluting 
the cache that holds useful data (bin data of the histogram).  We extend our ISA to have a “load 
no-allocate instruction”, which does not allocate space for the data in cache if the load is a miss, 
but only loads the value from memory into the destination register.  Here’s the new code: 
 
loop: 
  ld.noallocate element, 0(ptr) 
  bin = calculate_bin(element) 
  fetch_and_add bin, 1 
  addi ptr, ptr, 8 
  bne ptr, bounds, loop 
 
Assume we have many elements (long input vector) for the histogram, and the caches are big 
enough to hold all the bin data of the histogram.  The characteristics of the cache are the same as 
Q2.C.  What would the performance be in terms of cycles/element running the code above in the 
steady state?  Justify your work. 
 
1 cycle + 1 bus access  ld.noallocate 
5 cycles   calculate_bin 
3 cycles   fetch_and_add 
1 cycle    addi 
1 cycle    bne 
 
11 cycles + 1 bus access = 21 cycles / element 
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Q2.E Optimal Number of Cores [4 points] 
 
Consider the following multi-core system with single-word-line write-back caches.   
 

 
Assume we have many elements (long input vector) for the histogram, and the input data is 
uniform random.  The caches are big enough to hold all the bin data of the histogram.  The 
characteristics of the cache are the same as Q2.C.  To keep the caches coherent, we implement a 
snoopy cache coherence protocol on the bus.  We can snoop, invalidate, and transfer the data all 
in 1 bus access of 10 cycles. 
 
Determine the optimal number of cores to give the highest performance running the code in 
Q2.D (the code is also in the Appendix, which you may detach).  Justify your work. 
 
1 cycle + 1 bus access  ld.noallocate 
5 cycles   calculate_bin 
3 + (N-1)/N bus access fetch_and_add 
1 cycle    addi 
1 cycle    bne 
 
11 cycles + [1 + (N-1)/N] bus accesses 
 
N = 1, 11 cycles + 1 bus access = 21 cycles / element 
N = 2, 15 cycles / element (bottlenecked by bus occupancy) 
N = 3, 10*(1+2/3) cycles / element (bottlenecked by bus occupancy) 
 
As N gets bigger, the bus occupancy goes up.  Therefore the optimal number of cores is 2.  
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Q2.F Optimal Number of Cores with a New Algorithm [5 points] 
 
Chris points out that rather than using fetch_and_add to atomically increment the bin count, each 
core could generate a local histogram (increment local bin counters) for its portion of the input 
vector.   Once all cores are finished with their share of the input vector, adding together the local 
histograms will produce the global histogram.  Assume that the last part (adding together the 
local histograms) doesn’t impact performance, since the input vector is large.  Because we are 
doing a local histogram, we don’t need to use an atomic fetch_and_add.  Here’s the revised code: 
 
loop: 
  ld.noallocate element, 0(ptr) 
  bin = calculate_bin(element) 
  ld count, 0(bin) 
  addi count, count, 1 
  sd count, 0(bin) 
  addi ptr, ptr, 8 
  bne ptr, bounds, loop 
 
We run this code on the multi-core system shown in Q2.E.  Use the same performance model 
assumed in Q2.E. 
 
Determine the optimal number of cores that will result in best performance.  Justify your work. 
 
1 cycle + 1 bus access  ld.noallocate 
5 cycles   calculate_bin 
1 cycle    ld hit 
1 cycle    addi 
1 cycle    sd hit 
1 cycle    addi 
1 cycle    bne 
 
11 cycles + 1 bus access 
 
N = 1, 11 cycle + 1 bus access = 21 cycles / element 
N = 2, 10.5 cycles / element (can do 2 elements every 21 cycles, because limited by 11 cycle + 1 
bus access) 
N = 3, 10 cycles / element (limited by bus occupancy) 
N = 4, 10 cycles / element (limited by bus occupancy) 
 
As N gets bigger you are still limited by bus occupancy.  Therefore the optimal number of cores 
is 3. 
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Question 3: Directory Protocols [28 points] 
 
Your TA Yunsup is planning to build a 1024-core system that is cache coherent.  Each core will 
have an 8-way set-associative 8KB cache with 64-byte cache lines.  The system has 256 GB of 
DRAM.  Recalling that directories are more scalable than snoopy buses, Yunsup decides to 
implement a full-map directory to maintain coherence. 
 
Yunsup’s first directory cache coherence protocol maintains a bit vector for each cache-line-
sized block of main memory.  For a given memory block, each bit in the vector represents 
whether or not one core in the machine has that line cached.  To implement this scheme, Yunsup 
figures out he needs 512 GB to store only the directory bits (larger than the total DRAM in the 
system!). 
 
Q3.A Compressed Directory [3 points] 
 
Quickly realizing that the full-map directory scheme might be impractical to implement, Yunsup 
considers a compressed directory scheme where each bit in the vector now represents that one or 
more cores in a group of 32 cores has that line cached.  For example, if bit 1 of the vector is 
valid, it means that at least one of cores between 32-63 has a cached copy.  How large is the 
compressed directory? 
 
256GB / 64 byte lines * 1024/32 bits/line = 16 GB 
 
 
 
 
 
 
 
 
Q3.B 1-bit Directory [3 points] 
 
Yunsup realizes that the compressed directory is still too big, and considers having only one bit 
for each memory line.  The 1-bit is used to represent whether or not any core on the chip has that 
line cached.  Yunsup calls this scheme the 1-bit directory.  Now, how large is this 1-bit 
directory? 
 
16GB / 32 = 512MB 
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Q3.C Reverse Directory [6 points] 
 
Yunsup finally figures out that the problem of directory schemes proposed in Q3.A-Q3.C is that 
the machine is allocating bits per all memory lines that exist in the system; even for the lines that 
are not cached by any core in the system.  Yunsup does some research and realizes that he could 
build a reverse directory. 
 
In a reverse directory scheme, tags of all caches in the system are duplicated in the directory 
controllers.  Each tag in the directory controller has an associated valid bit.  The duplicated tags 
are organized in a different way; tags from the same set across all caches live in the same 
directory controller.  All cache requests go to the directory controller that has the duplicated tags 
of the corresponding set to see if any cache has a copy of the same line.  The directory protocol 
keeps the duplicated tags coherent with the tags in the caches.  For example, once a line in the 
cache is evicted, the directory controller is notified so that it will invalidate the duplicated tag. 
 
Given that virtual addresses are 64 bits, how large is the reverse directory? 
 
8KB / 64 bytes/line = 128 lines 
8-way set-associative, 128 / 8 = 16 sets / cache 
 
tag size = 64 – 4 (index) – 6 (offset) = 54 bits 
valid bit = 1 bit 
 
55 bits/line * 128 lines/cache * 1024 caches = 880 KB 
 
-1 for error in tag calculation 
-1 for missing the valid bit 
-2 for missing one part of the multiplication 
-3 for not multiplying at all  
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Q3.D Invalidations for a Load [4 points] 
Assume that core #250 has written to address X.  Right after that, core #999 wants to read from 
address X.  How many invalidation messages must be sent in total? 
 
(1) Compressed Directory 
 
32 invalidation messages go out to the 32 cores that include #250 
 
(2) 1-bit Directory 
 
1023 invalidation messages go out 
I didn’t penalize people who said 1024, since it wasn’t clear in the question whether you send an 
invalidation message to yourself 
 
(3) Reverse Directory 
 
1 invalidation message, as reverse directory has precise state 
 
-1.5 if wrong answer, -0.5 for trivial mistake 
 
Q3.E Invalidations for a Test&Set [5 points] 
Consider the case where we use the atomic instruction test&set to implement a lock.  For the 
case where all 1024 cores execute one test&set instruction to the same memory address (initially 
the memory address isn’t present in any cache in the system), how many invalidation messages 
must be sent to complete all test&set instructions? 
 
(1) Compressed Directory 
 
[31/32] * 1023 
The important thing here is that the first test&set doesn’t send out any invalidation message, as 
the question says initially the memory address isn’t present in any cache in the system.  The 
reason why I said 31/32 is again, you might optimize the cache coherence protocol to not send an 
invalidation message to yourself. 
 
 (2) 1-bit Directory 
 
[1023/1024] * 1023 
Again, the first test&set doesn’t send out any invalidation message.  1023/1024 depends on 
whether you send an invalidation message to yourself. 
 
(3) Reverse Directory 
 
1023 
For the same reason, the first test&set doesn’t send out an invalidation message. 
 
-2 for wrong answer, -1 if you didn’t omit the first invalidation message, -0.5 for trivial mistake 
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Q3.F Invalidations for Test&Test&Set [7 points] 
Realizing that using a Test&Set instruction to implement a lock generates a lot of invalidation 
traffic while waiting for the lock to be freed, we instead implement Test&Test&Set as the 
following: 
 
lock(addr): 
    while ((*addr == 1) || test&set(addr) == 1) ; 
 
At the start of the program, the lock is not held and is not in any cache.  Core #1, #2, #3, #258, 
#931 are competing for a lock.  Every thread performs the first Test, which evaluates to false 
since the lock was not held.  Each thread then executes the atomic Test&Set.  Assume core #931 
wins the lock.  How many invalidation messages must be sent in this case? 
 
After the first test, every core will have the line cached.  The first test&set will have to invalidate 
all copies, and the following 4 test&set instructions will only have to invalidate one exclusive 
copy. 
 
(1) Compressed Directory 
 
(32 + 32 + [31/32]) + 32 + [31/32] + [31/32] + 32 
 
The first clause is the number of invalidation messages you need to send in order to invalidate all 
shared copies.  The following terms are invalidating exclusive copies. 
[31/32] depending on whether you send an invalidation message to yourself. 
 
 (2) 1-bit Directory 
 
[1023/1024] * 5 
 
With a 1-bit directory scheme, the same amount of invalidation messages are sent out to 
invalidate many shared copies or one exclusive copy. 
 
(3) Reverse Directory 
 
4 + 1 + 1 + 1 + 1 
 
Again, the first clause is the number of invalidation messages you need to send in order to 
invalidate 4 shared copies.  The following terms are invalidating exclusive copies. 
 

• Many students didn’t count invalidation messages for the following 4 test&set 
instructions.  I took a point off for that. 

• Many students said for the compressed directory scheme, you send 64 invalidation 
messages to invalidate all shared copies.  However, since the compressed directory 
scheme only uses 1 bit for 32 cores, you still need to send [31/32] invalidation messages 
to insure exclusivity.  I took a point off for this case. 

• -2 for wrong answer 
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Appendix 
 
Code used for Q2.A, Q2.B, Q2.C 
 
loop: 
  ld element, 0(ptr) 
  bin = calculate_bin(element) 
  fetch_and_add bin, 1 
  addi ptr, ptr, 8 
  bne ptr, bounds, loop 
 
Code used for Q2.D, Q2.E 
 
loop: 
  ld.noallocate element, 0(ptr) 
  bin = calculate_bin(element) 
  fetch_and_add bin, 1 
  addi ptr, ptr, 8 
  bne ptr, bounds, loop 
 
Code used for Q2.F 
 
loop: 
  ld.noallocate element, 0(ptr) 
  bin = calculate_bin(element) 
  ld count, 0(bin) 
  addi count, count, 1 
  sd count, 0(bin) 
  addi ptr, ptr, 8 
  bne ptr, bounds, loop 
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