
Computer Architecture and Engineering
CS152 Quiz #1

February 14th, 2012
Professor Krste Asanović

    Name:                                             

This is a closed book, closed notes exam.
80 Minutes
 17 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not 

yet taken the quiz. If you have inadvertently been exposed to a quiz prior 
to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without 
giving explanations if the instructions ask you to explain your choice.

Writing name on each sheet       ________       1 Points
Question 1 ________     10 Points
Question 2 ________     25 Points
Question 3 ________     20 Points
Question 4 ________     24 Points

TOTAL        ________  80 Points
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Question 1: ISA Visibility (10 points)
Do the following modifications change the ISA? Circle yes or no. 
Explain your reasoning to receive credit.

Problem 1.A 64-bit addresses

Changing to using 64-bit addresses from 32-bit addresses.

YES                                                 NO

The PC register, and the width of all general-purpose registers must change (to hold 64-
bit addresses for JR, LW, etc.), which can’t be hidden from the software (for example, 
shift instructions would behave differently). (-1 point for saying instructions would be 
different length).
li    x1, 0xffff_ffff
srai x2, x1, 16           (does x2 equal 0xffff, or does x2 equal 0xffffffff?)
Problem 1.B branch delay slots

Removing branch delay slots.

YES                                                 NO

This changes the behavior of instructions following branches, which compilers must 
know about to schedule instructions properly.  It would certainly break all old software 
which expects those instructions following branches to execute regardless of branch 
direction.

Problem 1.C bus-based micro-architecture

Building a bus-based (micro-coded) micro-architecture, instead of a 5-stage pipeline 
micro-architecture.

YES                                                 NO

A bus-based design and a 5-stage pipeline design are just different implementations (aka, 
micro-architectures) and are orthogonal to the ISA (the hardware designer can choose 
which micro-architecture to implement a given ISA).  
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Problem 1.D branch-target buffer

Adding a branch-target buffer, instead of statically predicting PC+4.

YES                                                 NO

Branch speculation is just predicting which instruction to fetch next, and doesn’t affect 
the actual machine state (Regfile, Memory).  It only hopes to decrease the CPI and 
improve the rate at which machine state is changed.

Problem 1.E registers

Adding more registers that user code can now address.

YES                                                 NO

Adding more registers would require changing instruction encodings (or adding new 
instructions that can access the higher-numbered registers), and thus be a change to the 
ISA.
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Question 2: Microprogramming (25 points)
In this question we ask you to implement a useful instruction for manipulating linked 
lists, Add to Linked List (AddToLinkedList).

Each node in the linked list is as follows:

Both “int” and “Node*” are 4 bytes in size. Thus the node looks like this in memory:

0x4000 0x4004 0x8000 0x8004
... value next ... value next ...
... 4 bytes 4 bytes ... 4 bytes 4 bytes ...

The field “next” is either a memory address pointing to the next Node, or is 0 (NULL), 
representing the end of the list.

The AddToLinkedList instruction walks a linked list, finds the last Node, and 
updates its “next” field to point to the new Node.

AddToLinkedList rs1, rs2

5 5 5 10 7
- rs1 rs2 unused AddToLinkedList

The memory location addressed by rs1 (M[rs1]), points to the first node in the linked list.  
The register rs2 holds the address (M[rs2]) that points to the new Node.
 
Starting from the memory location addressed by rs1 (M[rs1]), keep walking the list until 
you find “next” == 0.  Once found, replace “next” with the address stored in rs2. 

For full credit, both source registers rs1 and rs2 should remain untouched throughout the 
execution of AddToLinkedList (when finished executing the instruction, rs1 still 
points to the head of the list, and rs2 still points to the new Node).

struct Node {
	 int 	 value;
	 Node* next;
}
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In pseudo C code, AddToLinkedList behaves as follows:

For reference, we have included the actual bus-based datapath in Appendix A (Page 21) 
and a RISC-V instruction table in Appendix B (Page 22). You do not need this 
information if you remember the bus-based architecture from the online material.  Please 
detach the last two pages from the exam and use them as a reference while you 
answer this question. 

Q2.A  Microcoding    (16 points)

Fill out Worksheet 1 for the AddToLinkedList instruction.  You should try to 
optimize your implementation to reduce the number of cycles necessary and to have as 
many signals be “don’t cares” as possible.  You may not need all the lines in the table for 
your solution.

Remember: memory access can be variable latency, so you will have to make use of the 
“S” micro-branch signal when appropriate (just like in Problem Set #1). 

struct Node {
	 int 	 value;
	 Node* next;
}

void AddToLinkedList(Node* head_ptr, Node* new_ptr)
{
   Node* curr_ptr = head_ptr;

   while (curr_ptr->next != 0)
   {
      curr_ptr = curr_ptr->next;
   }

   curr_ptr->next = new_ptr;
}
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(scratch paper)

First, it may be helpful to first write out a lower-level of Psuedo C code:

void AddToLinkedListLowLevel(Node* head_ptr, Node* new_ptr) //aka, (rs1, rs2) are the inputs
{
   int a,b;
   
   a = head_ptr; //rs1
   a =  a + 4;
   b = a

   a = *(a);
   
   while (a != 0)
   {
      b = a + 4;
      a = *(b);
   }

   *(b) = new_ptr;
}

More optimally:
void AddToLinkedListLowLevel(Node* head_ptr, Node* new_ptr) //aka, (rs1, rs2) are the inputs
{
   int a,ma;
   a = head_ptr; //rs1

do {
   ma =  a + 4;
    a = *(a);
} while (a != 0);
   
   *(ma) = new_ptr; //rs2
}

Now we can more easily translate this C code into psuedo micro-ops
AddToLinkedList: 
   A     <- rs1           # head_ptr
Loop:
   MA    <- A+4           # point to next_ptr
   A     <- Mem           # load value of next_ptr
  if (A!=0) ubr to LOOP   # points to null? We're done.
Done:
   Mem   <- rs2           # update the last next_ptr to point to new_ptr   
   ujmp  Fetch
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State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Im
Sel

en
Imm

µBr Next State

FETCH
:
MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *
. . .

NOP: microbranch
back to 
FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH

ATLL: A <- rs1 0 rs1 0 1 1 * * 0 * * 0 * 0 N

LOOP: MA<- A+4 0 * * 0 * * INC_A_4 1 1 * 0 * 0 N

A <- Mem 0 * * 0 1 * * 0 0 0 1 * 0 S

If A!=0 j loop 0 * * 0 0 * COPY_A 0 0 * 0 * 0 NZ LOOP

DONE: Mem <- rs2 0 rs2 0 1 * * * 0 0 1 1 * 0 S
Jmp to Fetch * * * 0 * * * 0 * * 0 * 0 J FETCH

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Im
Sel

en
Imm

µBr Next State

FETCH
:
MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *
. . .

NOP: microbranch
back to 
FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH

ATLL: A <- rs1 0 rs1 0 1 1 * * 0 * * 0 * 0 N

MA,B<- A+4 0 * * 0 * 1 INC_A_4 1 1 * 0 * 0 N

A <- Mem 0 * * 0 1 0 * 0 0 0 1 * 0 S

LOOP: If A==0
  Jmp to Done

0 * 0 0 0 COPY_A 0 * * 0 * 0 EZ DONE

B,MA <- A+4 0 * * 0 * 1 INC_A_4 1 1 * 0 * 0 N
A <- Mem 0 * * 0 1 0 * 0 0 0 1 * 0 S

Jmp to Loop 0 * * 0 0 0 * 0 * * 0 * 0 J LOOP

DONE: MA <- B 0 * * 0 * * COPY_B 1 1 * 0 * 0 N

Mem <- rs2 0 rs2 0 1 * * * 0 0 1 1 * 0 S

Jmp to Fetch * * * 0 * * * 0 * * 0 * 0 J FETCH
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Q2.B CPI of AddToLinkedList    (2 points)
For a benchmark in which the average linked list contains 7 elements, what CPI do you expect 
your implementation of AddToLinkedList to achieve?
instruction fetch = 3 uops
1 element list =  3+6 uops (base case)
2 element list = 3+9 uops 
3 element list = 3+12 uops
etc.

3uops in inst fetch 1 uop in the prologue, 3 in the loop (executed N times), 2 in the epilogue.

CPI = 3+ 1 + 3*N + 2 = 6 + 3*N = 6 + 21
CPI = 27 cycles on average for this benchmark

Q2.C Precise Exceptions    (4 points)
Briefly describe how you might implement precise exceptions for this instruction in a 
microcoded machine (you do not have to actually write microcode).  

First, you must decrement the PC register by 4, since it was speculatively incremented to PC+4 
in the instruction fetch.  Then, you can jump to the exception handler routine, and then restart 
execution of ATLL and try again. This works, because ATLL doesn’t change any of the state of 
the machine until the very last write to memory, and is idempotent.  Notice, we don’t have to 
save any of the temporary state (A,B,MA) because it can be re-created by starting ATLL from the 
beginning. Students proposed other schemes, but without describing how to save and restore the 
temporary state, full credit couldn’t be awarded.

Q2.D Issues with Precise Interrupts    (3 points)
What practical problems might arise with the instruction AddToLinkedList in a system with 
precise interrupts?
If the linked list is very long, the probability of it getting interrupted increases (by system 
interrupts, etc.). Because we will restart the instruction over again from the very beginning, we 
can’t actually guarantee it will ever finish before it gets interrupted again!

(Although this is more related to Unit 2 material, you can also think about how each memory 
access could cause a page fault/TLB miss, which throws an exception and requires an exception 
handler to service the page miss.  If the linked list is very long, the TLB may not be able to hold 
all of the pages required to keep the full linked list resident, and so running ATLL causes 
continuous TLB misses that keep undoing each other and forcing a restart of the instruction from 
the very beginning, and thus ensuring that no forward progress can be made).
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Question 3: Branch Speculation (20 points)
For this question, consider a fully bypassed 5-stage RISC-V processor (as shown in Lecture 4, 
and used in Lab 1).  We have reproduced the pipeline diagram below (bypasses are not shown).  
Branches are resolved in the Execute Stage, and the Fetch Stage always speculates that the next 
PC is PC+4.  For this problem, we will ignore unconditional jumps, and only concern ourselves 
with conditional branches. 

Inst 
Mem

Reg
File

E

Br
Logic br?

WPC D M

Data 
Mem

writeback

+4

BrAddr
Calc

pc4

br

Q3.A Motivating Branch Speculation    (2 points)

To get a better understanding of how the pipeline behaves, please fill out the following 
instruction/time diagrams for the following set of instructions:

 0x2000: ADDI x4, x0, 0
 0x2004: ADDI x5, x0, 1
 0x2008: BEQ  x4, x5, 0x2000 
 0x200c: LW   x7, 4(x6) 
 0x2010: OR   x5, x7, x5 
 0x2014: XOR  x7, x7, x3 
 0x2018: AND  x3, x2, x3

The first two instructions have been done for you. Please fill out the rest of the diagram for the 
remaining instructions. The sequence of instructions may finish before cycle t12.  

Hint: Throughout this question, make sure you also show speculated instructions in the 
instruction/time diagrams (exactly as the Trace files in Lab 1 would), as they also consume 
pipeline resources. 
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Chart 1: Using Standard Always Predict PC+4

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

0x2000 ADDI F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x200c LW F D X M W

0x2010 OR F D D X M W

0x2014 XOR F F D X M W

0x2018 AND F D X M W
The point in time that a branch comparison occurs is circled above. The second circle (OR) is 
when the decode stage recognizes a dependent load in the EXE stage (at t5) and stalls.
Q3.B Motivating Branch Speculation II    (2 points)
Fill in the following pipeline diagram (Chart 2), using the code segment below.  Notice, the 
immediates used in the first two instructions (ADDI) are different from the previous question!  
 0x2000: ADDI x4, x0, 1
 0x2004: ADDI x5, x0, 1
 0x2008: BEQ  x4, x5, 0x2000 
 0x200c: LW   x7, 4(x6) 
 0x2010: OR   x5, x7, x5 
 0x2014: XOR  x7, x7, x3 
 0x2018: AND  x3, x2, x3

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

0x2000 ADDI F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x200c LW F D - - -

0x2010 OR F - - - -

0x2000 ADDI F D X M W

0x2004 ADDI F D X M W
The IF_KILL and DEC_KILL signal goes out in t5, when the “mispredict” is discovered. 
Bubbles are inserted into the pipeline, and show up on t6.
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 0x2000: ADDI x4, x0, 0
 0x2004: ADDI x5, x0, 1
 0x2008: BEQ  x4, x5, 0x2000 
 0x200c: LW   x7, 4(x6) 
 0x2010: OR   x5, x7, x5 
 0x2014: XOR  x7, x7, x3 
 0x2018: AND  x3, x2, x3



Q3. Adding a BHT

As you showed in the first parts of this question, branches in RISC-V can be expensive in a 5-
stage pipeline.  One way to help reduce this branch penalty is to add a Branch History Table 
(BHT) to the processor. 

This new proposed datapath is shown below:

Inst 
Mem

Reg
File

E

Br
Logic br?

WPC D M

Data 
Mem

writeback

+4

BrAddr
Calc

br_predicted

pc4

. . .

taken/not-taken?

BHTPC

br_correct

The BHT has been added in the Decode Stage.  The BHT is indexed by the PC register in the 
Decode Stage.  Branch address calculation has been moved to the Decode Stage. This allows the 
processor to redirect the PC if the BHT predicts “Taken”.   

On a BHT mis-prediction, (1) the branch comparison logic in the Execute Stage detects mis-
predicts, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the correct 
branch target (br_correct).  

Remember: the Fetch Stage is still predicting PC+4 every cycle, unless corrected by either the 
BHT in the Decode Stage(br_predicted) or by the branch logic in the Execute Stage
(br_correct). 
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Q3.C  BHT Performance  (9 points)
Using the code segment below, fill in the following pipeline diagram.  Initially, the BHT 
counters are all initialized to “strongly-taken”.  The register x2 is initialized to 0, while the 
register x3 is initialized to 2.  The first instruction has been done for you.  It is okay if you do not 
use the entire table.
 0x2000: LW   x7, 0(x6)
 0x2004: ADDI x2, x2, 1 
 0x2008: BEQ  x2, x3, 0x2000 
 0x200c: SW   x7, 0(x6) 
 0x2010: OR   x5, x5, 4 
 0x2014: OR   x7, x7, 5
Loop is not taken.  The BHT is “strongly” taken, so BHT predicts “taken” when we see BEQ.  
BHT is in Decode, and Fetch stage always predicts PC+4, so we eat 1 cycle when the PHT 
predicts taken branch, and we eat another cycle if BHT predicts taken, but branch is actually not 
taken (i.e., it just degregates to the original 2-cycle branch penalty).
At t4 (as circled), the Decode stage kills the fetch stage to redirect it down the “taken” path.  
However, at t5 we resolve the branch comparison in Execute and must correct for the BHT’s 
misprediction, and kill Fetch and Decode.

PC Ins
tr

t1 t2 t3 t4 t5 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

0x2000 LW F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x200c SW F - - - -

0x2000 LW F - - - -

0x200c SW F D X M W

0x2010 OR F D X M W

0x2010 OR F D X M W

Name ____________________________
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Q3. Adding a BTB
Unfortunately, while the BHT is an improvement, we still have to wait until we know the branch 
address to act on the BHT’s prediction.  We can solve this by using a two-entry Branch Target 
Buffer (BTB). 

The new pipeline is shown below. For this question, we have removed the BHT and will only be 
using the BTB.

Inst 
Mem

Reg
File

E

Br
Logic br?

WPC D M

Data 
Mem

writeback

+4

BrAddr
Calc

pc4

br_correct

tag v target

br_predicted

BTB

The BTB has been added in the Fetch Stage.  The BTB is indexed by the PC register in the 
Fetch Stage.  Branch address calculation has been moved back in the Execute Stage. 

On a branch mis-prediction, (1) the branch comparison logic in the Execute Stage detects the 
mis-predict, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the 
correct branch target (br_correct).  

Remember: the Fetch Stage is still predicting PC+4 every cycle, unless either the BTB makes a 
prediction (has a matching and valid entry for the current PC) or the branch logic in the Execute 
Stage corrects for a branch mis-prediction (br_correct).
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Q3.D BTB Performance    (7 points)

Using the code segment below (the exact same code from Q3.C), fill in the following pipeline 
diagram. Upon entrance to this code segment, the register x2 is initialized to 0, while the register 
x3 is initialized to 2.  
 0x2000: LW   x7, 0(x6)
 0x2004: ADDI x2, x2, 1 
 0x2008: BEQ  x2, x3, 0x2000 
 0x200c: SW   x7, 0(x6) 
 0x2010: OR   x5, x5, 4 
 0x2014: OR   x7, x7, 5
 Initially, the BTB contains:

Tag V Target PC
0x2008 1 0x2000
0x201c 0 0x2010

(For simplicity, the Tag is 32-bits, and we match the entire 32-bit PC register in the Decode 
Stage to verify a match). It is okay if you do not use the entire instruction/time table. 
BTB mispredicts the exit, and it takes two cycles for branch logic in Exe to catch the mistake.

The first circle is drawn to show when the BTB had a hit and predicted “taken”.  The second 
circle in t3 shows when the branch comparison catches a mispredict and kills two cycles.

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18

0x2000 LW F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x2000 LW F D - - -

0x2004 ADDI F - - - -

0x200c SW F D X M W

F D X M W

F D X M W
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Question 4: Iron Law of Processor Performance 

(24 points)

Mark whether the following modifications will cause each of the three categories to increase, 
decrease, or whether the modification will have no effect.  

Assume the rest of the machine remains unchanged.  Also, we are measuring these metrics from 
the viewpoint of the user code. Thus, an Operating System call will simply appear to be a single 
instruction that takes many, many cycles to execute.

Explain your reasoning to receive credit.
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Instructions / Program Cycles / Instruction Seconds / Cycle

a)

Changing a 2-
stage processor 
(fetch,execute) 
into a 3-stage 
processor 
(fetch,execute,writ
eback).  Both 
processors are 
fully bypassed.

 unchanged

(not ISA visible)

 unchanged

(Writeback occurs well 
after branch resolution, 
load-use, and any other 

possible stall conditions.  
So no additional stalls 

will occur due to adding 
a writeback stage.)

 decreases

(We cut down on the 
critical path by moving 

register-write to an extra 
stage.)

b)

Move the branch 
and jump logic 
from the Execute 
stage to the 
Decode stage.

 unchanged

(not ISA visible)

decreases

(One less stage gets 
killed on a branch 

mispredict.)

 increases

(more logic is added to 
the critical path in 

Decode: register file 
read->register-register 
comparison->pc select. 
This is likely to become 
the critical path and thus 
hurt seconds per cycle.)

Worksheet 2
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Instructions / Program Cycles / Instruction Seconds / Cycle

c)

Switching from a 
fully interlocked 
5-stage design to a 
fully bypassed 5-
stage design.

 unchanged

(not ISA visible)

decreases

(Far fewer stalls will 
now occur due to back-
to-back read-after-write 

hazards.)

increases

(The bypasses will add 
to the critical path.)

d)

Merge the Decode 
and Execute stages 
into a single stage 
(i.e., perform a 
register read, then 
an ALU execution 
in the same cycle).

 unchanged

(not ISA visible)

decreases

will decrease due to 
branches/ jumps

in more detail:
Since branches are 

resolved in Execute, 
branch CPI goes down 

because instead of 
eating two cycles on a 

mispredict, we only lose 
1 (because of the 
merged Dec+Exe)

Common mistake to 
think we lose some 

bypassing potential (we 
can still bypass back-to-

back instructions by 
bypassing from 

beginning of Memory to 
before the ALU.

increases

(More logic is being 
performed in a single 
stage, thus hurting the 

critical path.)

Worksheet 3
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