
Computer Architecture and Engineering
CS152 Quiz #1

February 14th, 2012
Professor Krste Asanović

 Name:

This is a closed book, closed notes exam.
80 Minutes
 17 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz. If you have inadvertently been exposed to a quiz prior
to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without
giving explanations if the instructions ask you to explain your choice.

Writing name on each sheet ________ 1 Points
Question 1 ________ 10 Points
Question 2 ________ 25 Points
Question 3 ________ 20 Points
Question 4 ________ 24 Points

TOTAL ________ 80 Points

Name ____________________________

Page 1 of 17

Question 1: ISA Visibility (10 points)
Do the following modifications change the ISA? Circle yes or no.
Explain your reasoning to receive credit.

Problem 1.A 64-bit addresses

Changing to using 64-bit addresses from 32-bit addresses.

YES NO

The PC register, and the width of all general-purpose registers must change (to hold 64-
bit addresses for JR, LW, etc.), which can’t be hidden from the software (for example,
shift instructions would behave differently). (-1 point for saying instructions would be
different length).
li x1, 0xffff_ffff
srai x2, x1, 16 (does x2 equal 0xffff, or does x2 equal 0xffffffff?)
Problem 1.B branch delay slots

Removing branch delay slots.

YES NO

This changes the behavior of instructions following branches, which compilers must
know about to schedule instructions properly. It would certainly break all old software
which expects those instructions following branches to execute regardless of branch
direction.

Problem 1.C bus-based micro-architecture

Building a bus-based (micro-coded) micro-architecture, instead of a 5-stage pipeline
micro-architecture.

YES NO

A bus-based design and a 5-stage pipeline design are just different implementations (aka,
micro-architectures) and are orthogonal to the ISA (the hardware designer can choose
which micro-architecture to implement a given ISA).

Name ____________________________

Page 2 of 17

Problem 1.D branch-target buffer

Adding a branch-target buffer, instead of statically predicting PC+4.

YES NO

Branch speculation is just predicting which instruction to fetch next, and doesn’t affect
the actual machine state (Regfile, Memory). It only hopes to decrease the CPI and
improve the rate at which machine state is changed.

Problem 1.E registers

Adding more registers that user code can now address.

YES NO

Adding more registers would require changing instruction encodings (or adding new
instructions that can access the higher-numbered registers), and thus be a change to the
ISA.

Name ____________________________

Page 3 of 17

Question 2: Microprogramming (25 points)
In this question we ask you to implement a useful instruction for manipulating linked
lists, Add to Linked List (AddToLinkedList).

Each node in the linked list is as follows:

Both “int” and “Node*” are 4 bytes in size. Thus the node looks like this in memory:

0x4000 0x4004 0x8000 0x8004
... value next ... value next ...
... 4 bytes 4 bytes ... 4 bytes 4 bytes ...

The field “next” is either a memory address pointing to the next Node, or is 0 (NULL),
representing the end of the list.

The AddToLinkedList instruction walks a linked list, finds the last Node, and
updates its “next” field to point to the new Node.

AddToLinkedList rs1, rs2

5 5 5 10 7
- rs1 rs2 unused AddToLinkedList

The memory location addressed by rs1 (M[rs1]), points to the first node in the linked list.
The register rs2 holds the address (M[rs2]) that points to the new Node.

Starting from the memory location addressed by rs1 (M[rs1]), keep walking the list until
you find “next” == 0. Once found, replace “next” with the address stored in rs2.

For full credit, both source registers rs1 and rs2 should remain untouched throughout the
execution of AddToLinkedList (when finished executing the instruction, rs1 still
points to the head of the list, and rs2 still points to the new Node).

struct Node {
	 int 	 value;
	 Node* next;
}

Name ____________________________

Page 4 of 17

In pseudo C code, AddToLinkedList behaves as follows:

For reference, we have included the actual bus-based datapath in Appendix A (Page 21)
and a RISC-V instruction table in Appendix B (Page 22). You do not need this
information if you remember the bus-based architecture from the online material. Please
detach the last two pages from the exam and use them as a reference while you
answer this question.

Q2.A Microcoding (16 points)

Fill out Worksheet 1 for the AddToLinkedList instruction. You should try to
optimize your implementation to reduce the number of cycles necessary and to have as
many signals be “don’t cares” as possible. You may not need all the lines in the table for
your solution.

Remember: memory access can be variable latency, so you will have to make use of the
“S” micro-branch signal when appropriate (just like in Problem Set #1).

struct Node {
	 int 	 value;
	 Node* next;
}

void AddToLinkedList(Node* head_ptr, Node* new_ptr)
{
 Node* curr_ptr = head_ptr;

 while (curr_ptr->next != 0)
 {
 curr_ptr = curr_ptr->next;
 }

 curr_ptr->next = new_ptr;
}

Name ____________________________

Page 5 of 17

(scratch paper)

First, it may be helpful to first write out a lower-level of Psuedo C code:

void AddToLinkedListLowLevel(Node* head_ptr, Node* new_ptr) //aka, (rs1, rs2) are the inputs
{
 int a,b;

 a = head_ptr; //rs1
 a = a + 4;
 b = a

 a = *(a);

 while (a != 0)
 {
 b = a + 4;
 a = *(b);
 }

 *(b) = new_ptr;
}

More optimally:
void AddToLinkedListLowLevel(Node* head_ptr, Node* new_ptr) //aka, (rs1, rs2) are the inputs
{
 int a,ma;
 a = head_ptr; //rs1

do {
 ma = a + 4;
 a = *(a);
} while (a != 0);

 *(ma) = new_ptr; //rs2
}

Now we can more easily translate this C code into psuedo micro-ops
AddToLinkedList:
 A <- rs1 # head_ptr
Loop:
 MA <- A+4 # point to next_ptr
 A <- Mem # load value of next_ptr
 if (A!=0) ubr to LOOP # points to null? We're done.
Done:
 Mem <- rs2 # update the last next_ptr to point to new_ptr
 ujmp Fetch

Name ____________________________

Page 6 of 17

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Im
Sel

en
Imm

µBr Next State

FETCH
:
MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *
. . .

NOP: microbranch
back to
FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH

ATLL: A <- rs1 0 rs1 0 1 1 * * 0 * * 0 * 0 N

LOOP: MA<- A+4 0 * * 0 * * INC_A_4 1 1 * 0 * 0 N

A <- Mem 0 * * 0 1 * * 0 0 0 1 * 0 S

If A!=0 j loop 0 * * 0 0 * COPY_A 0 0 * 0 * 0 NZ LOOP

DONE: Mem <- rs2 0 rs2 0 1 * * * 0 0 1 1 * 0 S
Jmp to Fetch * * * 0 * * * 0 * * 0 * 0 J FETCH

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Im
Sel

en
Imm

µBr Next State

FETCH
:
MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *
. . .

NOP: microbranch
back to
FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH

ATLL: A <- rs1 0 rs1 0 1 1 * * 0 * * 0 * 0 N

MA,B<- A+4 0 * * 0 * 1 INC_A_4 1 1 * 0 * 0 N

A <- Mem 0 * * 0 1 0 * 0 0 0 1 * 0 S

LOOP: If A==0
 Jmp to Done

0 * 0 0 0 COPY_A 0 * * 0 * 0 EZ DONE

B,MA <- A+4 0 * * 0 * 1 INC_A_4 1 1 * 0 * 0 N
A <- Mem 0 * * 0 1 0 * 0 0 0 1 * 0 S

Jmp to Loop 0 * * 0 0 0 * 0 * * 0 * 0 J LOOP

DONE: MA <- B 0 * * 0 * * COPY_B 1 1 * 0 * 0 N

Mem <- rs2 0 rs2 0 1 * * * 0 0 1 1 * 0 S

Jmp to Fetch * * * 0 * * * 0 * * 0 * 0 J FETCH

Name ____________________________

Page 7 of 17

both methods are shown below. Full credit
giving for the more optimal design.

Q2.B CPI of AddToLinkedList (2 points)
For a benchmark in which the average linked list contains 7 elements, what CPI do you expect
your implementation of AddToLinkedList to achieve?
instruction fetch = 3 uops
1 element list = 3+6 uops (base case)
2 element list = 3+9 uops
3 element list = 3+12 uops
etc.

3uops in inst fetch 1 uop in the prologue, 3 in the loop (executed N times), 2 in the epilogue.

CPI = 3+ 1 + 3*N + 2 = 6 + 3*N = 6 + 21
CPI = 27 cycles on average for this benchmark

Q2.C Precise Exceptions (4 points)
Briefly describe how you might implement precise exceptions for this instruction in a
microcoded machine (you do not have to actually write microcode).

First, you must decrement the PC register by 4, since it was speculatively incremented to PC+4
in the instruction fetch. Then, you can jump to the exception handler routine, and then restart
execution of ATLL and try again. This works, because ATLL doesn’t change any of the state of
the machine until the very last write to memory, and is idempotent. Notice, we don’t have to
save any of the temporary state (A,B,MA) because it can be re-created by starting ATLL from the
beginning. Students proposed other schemes, but without describing how to save and restore the
temporary state, full credit couldn’t be awarded.

Q2.D Issues with Precise Interrupts (3 points)
What practical problems might arise with the instruction AddToLinkedList in a system with
precise interrupts?
If the linked list is very long, the probability of it getting interrupted increases (by system
interrupts, etc.). Because we will restart the instruction over again from the very beginning, we
can’t actually guarantee it will ever finish before it gets interrupted again!

(Although this is more related to Unit 2 material, you can also think about how each memory
access could cause a page fault/TLB miss, which throws an exception and requires an exception
handler to service the page miss. If the linked list is very long, the TLB may not be able to hold
all of the pages required to keep the full linked list resident, and so running ATLL causes
continuous TLB misses that keep undoing each other and forcing a restart of the instruction from
the very beginning, and thus ensuring that no forward progress can be made).

Name ____________________________

Page 8 of 17

Question 3: Branch Speculation (20 points)
For this question, consider a fully bypassed 5-stage RISC-V processor (as shown in Lecture 4,
and used in Lab 1). We have reproduced the pipeline diagram below (bypasses are not shown).
Branches are resolved in the Execute Stage, and the Fetch Stage always speculates that the next
PC is PC+4. For this problem, we will ignore unconditional jumps, and only concern ourselves
with conditional branches.

Inst
Mem

Reg
File

E

Br
Logic br?

WPC D M

Data
Mem

writeback

+4

BrAddr
Calc

pc4

br

Q3.A Motivating Branch Speculation (2 points)

To get a better understanding of how the pipeline behaves, please fill out the following
instruction/time diagrams for the following set of instructions:

 0x2000: ADDI x4, x0, 0
 0x2004: ADDI x5, x0, 1
 0x2008: BEQ x4, x5, 0x2000
 0x200c: LW x7, 4(x6)
 0x2010: OR x5, x7, x5
 0x2014: XOR x7, x7, x3
 0x2018: AND x3, x2, x3

The first two instructions have been done for you. Please fill out the rest of the diagram for the
remaining instructions. The sequence of instructions may finish before cycle t12.

Hint: Throughout this question, make sure you also show speculated instructions in the
instruction/time diagrams (exactly as the Trace files in Lab 1 would), as they also consume
pipeline resources.

Name ____________________________

Page 9 of 17

Chart 1: Using Standard Always Predict PC+4

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

0x2000 ADDI F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x200c LW F D X M W

0x2010 OR F D D X M W

0x2014 XOR F F D X M W

0x2018 AND F D X M W
The point in time that a branch comparison occurs is circled above. The second circle (OR) is
when the decode stage recognizes a dependent load in the EXE stage (at t5) and stalls.
Q3.B Motivating Branch Speculation II (2 points)
Fill in the following pipeline diagram (Chart 2), using the code segment below. Notice, the
immediates used in the first two instructions (ADDI) are different from the previous question!
 0x2000: ADDI x4, x0, 1
 0x2004: ADDI x5, x0, 1
 0x2008: BEQ x4, x5, 0x2000
 0x200c: LW x7, 4(x6)
 0x2010: OR x5, x7, x5
 0x2014: XOR x7, x7, x3
 0x2018: AND x3, x2, x3

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

0x2000 ADDI F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x200c LW F D - - -

0x2010 OR F - - - -

0x2000 ADDI F D X M W

0x2004 ADDI F D X M W
The IF_KILL and DEC_KILL signal goes out in t5, when the “mispredict” is discovered.
Bubbles are inserted into the pipeline, and show up on t6.

Name ____________________________

Page 10 of 17

 0x2000: ADDI x4, x0, 0
 0x2004: ADDI x5, x0, 1
 0x2008: BEQ x4, x5, 0x2000
 0x200c: LW x7, 4(x6)
 0x2010: OR x5, x7, x5
 0x2014: XOR x7, x7, x3
 0x2018: AND x3, x2, x3

Q3. Adding a BHT

As you showed in the first parts of this question, branches in RISC-V can be expensive in a 5-
stage pipeline. One way to help reduce this branch penalty is to add a Branch History Table
(BHT) to the processor.

This new proposed datapath is shown below:

Inst
Mem

Reg
File

E

Br
Logic br?

WPC D M

Data
Mem

writeback

+4

BrAddr
Calc

br_predicted

pc4

. . .

taken/not-taken?

BHTPC

br_correct

The BHT has been added in the Decode Stage. The BHT is indexed by the PC register in the
Decode Stage. Branch address calculation has been moved to the Decode Stage. This allows the
processor to redirect the PC if the BHT predicts “Taken”.

On a BHT mis-prediction, (1) the branch comparison logic in the Execute Stage detects mis-
predicts, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the correct
branch target (br_correct).

Remember: the Fetch Stage is still predicting PC+4 every cycle, unless corrected by either the
BHT in the Decode Stage(br_predicted) or by the branch logic in the Execute Stage
(br_correct).

Name ____________________________

Page 11 of 17

Q3.C BHT Performance (9 points)
Using the code segment below, fill in the following pipeline diagram. Initially, the BHT
counters are all initialized to “strongly-taken”. The register x2 is initialized to 0, while the
register x3 is initialized to 2. The first instruction has been done for you. It is okay if you do not
use the entire table.
 0x2000: LW x7, 0(x6)
 0x2004: ADDI x2, x2, 1
 0x2008: BEQ x2, x3, 0x2000
 0x200c: SW x7, 0(x6)
 0x2010: OR x5, x5, 4
 0x2014: OR x7, x7, 5
Loop is not taken. The BHT is “strongly” taken, so BHT predicts “taken” when we see BEQ.
BHT is in Decode, and Fetch stage always predicts PC+4, so we eat 1 cycle when the PHT
predicts taken branch, and we eat another cycle if BHT predicts taken, but branch is actually not
taken (i.e., it just degregates to the original 2-cycle branch penalty).
At t4 (as circled), the Decode stage kills the fetch stage to redirect it down the “taken” path.
However, at t5 we resolve the branch comparison in Execute and must correct for the BHT’s
misprediction, and kill Fetch and Decode.

PC Ins
tr

t1 t2 t3 t4 t5 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

0x2000 LW F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x200c SW F - - - -

0x2000 LW F - - - -

0x200c SW F D X M W

0x2010 OR F D X M W

0x2010 OR F D X M W

Name ____________________________

Page 12 of 17

Q3. Adding a BTB
Unfortunately, while the BHT is an improvement, we still have to wait until we know the branch
address to act on the BHT’s prediction. We can solve this by using a two-entry Branch Target
Buffer (BTB).

The new pipeline is shown below. For this question, we have removed the BHT and will only be
using the BTB.

Inst
Mem

Reg
File

E

Br
Logic br?

WPC D M

Data
Mem

writeback

+4

BrAddr
Calc

pc4

br_correct

tag v target

br_predicted

BTB

The BTB has been added in the Fetch Stage. The BTB is indexed by the PC register in the
Fetch Stage. Branch address calculation has been moved back in the Execute Stage.

On a branch mis-prediction, (1) the branch comparison logic in the Execute Stage detects the
mis-predict, (2) kills the appropriates stages, and (3) starts the Instruction Fetch using the
correct branch target (br_correct).

Remember: the Fetch Stage is still predicting PC+4 every cycle, unless either the BTB makes a
prediction (has a matching and valid entry for the current PC) or the branch logic in the Execute
Stage corrects for a branch mis-prediction (br_correct).

Name ____________________________

Page 13 of 17

Q3.D BTB Performance (7 points)

Using the code segment below (the exact same code from Q3.C), fill in the following pipeline
diagram. Upon entrance to this code segment, the register x2 is initialized to 0, while the register
x3 is initialized to 2.
 0x2000: LW x7, 0(x6)
 0x2004: ADDI x2, x2, 1
 0x2008: BEQ x2, x3, 0x2000
 0x200c: SW x7, 0(x6)
 0x2010: OR x5, x5, 4
 0x2014: OR x7, x7, 5
 Initially, the BTB contains:

Tag V Target PC
0x2008 1 0x2000
0x201c 0 0x2010

(For simplicity, the Tag is 32-bits, and we match the entire 32-bit PC register in the Decode
Stage to verify a match). It is okay if you do not use the entire instruction/time table.
BTB mispredicts the exit, and it takes two cycles for branch logic in Exe to catch the mistake.

The first circle is drawn to show when the BTB had a hit and predicted “taken”. The second
circle in t3 shows when the branch comparison catches a mispredict and kills two cycles.

PC Instr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18

0x2000 LW F D X M W

0x2004 ADDI F D X M W

0x2008 BEQ F D X M W

0x2000 LW F D - - -

0x2004 ADDI F - - - -

0x200c SW F D X M W

F D X M W

F D X M W

Name ____________________________

Page 14 of 17

Question 4: Iron Law of Processor Performance

(24 points)

Mark whether the following modifications will cause each of the three categories to increase,
decrease, or whether the modification will have no effect.

Assume the rest of the machine remains unchanged. Also, we are measuring these metrics from
the viewpoint of the user code. Thus, an Operating System call will simply appear to be a single
instruction that takes many, many cycles to execute.

Explain your reasoning to receive credit.

Name ____________________________

Page 15 of 17

Instructions / Program Cycles / Instruction Seconds / Cycle

a)

Changing a 2-
stage processor
(fetch,execute)
into a 3-stage
processor
(fetch,execute,writ
eback). Both
processors are
fully bypassed.

 unchanged

(not ISA visible)

 unchanged

(Writeback occurs well
after branch resolution,
load-use, and any other

possible stall conditions.
So no additional stalls

will occur due to adding
a writeback stage.)

 decreases

(We cut down on the
critical path by moving

register-write to an extra
stage.)

b)

Move the branch
and jump logic
from the Execute
stage to the
Decode stage.

 unchanged

(not ISA visible)

decreases

(One less stage gets
killed on a branch

mispredict.)

 increases

(more logic is added to
the critical path in

Decode: register file
read->register-register
comparison->pc select.
This is likely to become
the critical path and thus
hurt seconds per cycle.)

Worksheet 2

Name ____________________________

Page 16 of 17

Instructions / Program Cycles / Instruction Seconds / Cycle

c)

Switching from a
fully interlocked
5-stage design to a
fully bypassed 5-
stage design.

 unchanged

(not ISA visible)

decreases

(Far fewer stalls will
now occur due to back-
to-back read-after-write

hazards.)

increases

(The bypasses will add
to the critical path.)

d)

Merge the Decode
and Execute stages
into a single stage
(i.e., perform a
register read, then
an ALU execution
in the same cycle).

 unchanged

(not ISA visible)

decreases

will decrease due to
branches/ jumps

in more detail:
Since branches are

resolved in Execute,
branch CPI goes down

because instead of
eating two cycles on a

mispredict, we only lose
1 (because of the
merged Dec+Exe)

Common mistake to
think we lose some

bypassing potential (we
can still bypass back-to-

back instructions by
bypassing from

beginning of Memory to
before the ALU.

increases

(More logic is being
performed in a single
stage, thus hurting the

critical path.)

Worksheet 3

Name ____________________________

Page 17 of 17

