
Name ___________________________________

 Page 1 of 20

Computer Architecture and Engineering

CS152 Quiz #1

February 19th, 2013

Professor Krste Asanovic

Name: _____<ANSWER KEY>_____

This is a closed book, closed notes exam.
80 Minutes

20 pages

Notes:

• Not all questions are of equal difficulty, so look over the entire exam and
budget your time carefully.

• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz’s contents with other students who have not taken

the quiz. If you have inadvertently been exposed to a quiz prior to taking it,
you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving
explanations if the instructions ask you to explain your choice.

 Writing name on each sheet ________________ 1 Point
 Question 1 ________________ 18 Points
 Question 2 ________________ 25 Points
 Question 3 ________________ 18 Points
 Question 4 ________________ 18 Points
 TOTAL ________________ 80 Points
!

Name ___________________________________

 Page 2 of 20

Question 1: Microprogramming [18 points]

In this question, you are going to implement a compare-and-swap (CAS) instruction in
microcode. A CAS instruction compares the contents of a memory location to a given value and,
only if they are the same, modifies the content of that memory location to a new given
value. The instruction will also write the old value read from the memory location (not the value
written to it) to the register file. This instruction is often used for implementing synchronization
primitives. The instruction has the following format:

CAS rd, rs1, rs2

CAS performs the following operation:

value ← M[R[rs1]]
if (value == R[rd]) M[R[rs1]] ← R[rs2]
R[rd] ← value

Given a bus-based microarchitecture in Appendix A (the same bus-based microarchitecture from
the online material), fill in worksheet Q1-1 with the microcode for CAS. Use don’t cares (*) for
fields where it is safe to use don’t cares. Study the hardware description well, and make sure all
your microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly. Your code should exhibit “clean” behavior and not modify any ISA-visible registers
(except the PC register and the rd register) in the course of executing the instruction. You will
receive credit for elegance and efficiency.

Finally, make sure that your microcode sequence fetches the next instruction in program order
(i.e., by doing a microbranch to FETCH0 as discussed in the handout).
!

Name ___________________________________

 Page 3 of 20

State PseudoCode ld
IR

Reg
Sel

Reg
Wr

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Imm
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 S *

 PC <- A+4 0 PC 1 1 * * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

CAS: MA <- R[rs1] 0 rs1 0 1 * * * 0 1 * 0 * 0 N *

 A <- Mem 0 * * 0 1 * * 0 0 0 1 * 0 S *

 B <- R[rd] 0 rd 0 1 0 1 * 0 0 * 0 * 0 N *

 If (A-B != 0) goto
SKIP

0 * * 0 0 * SUB *(0/1) 0 * 0 * 0 NZ SKIP

 Mem <- R[rs2] 0 rs2 0 1 0 * * 0 0 1 1 * 0 S *

SKIP: R[rd] <- A; goto
FETCH0

* rd 1 1 * * * 0 * * 0 * 0 J FETCH0

Worksheet Q1-1

There are many valid answers to this question. The pseudocode was worth 10 points, and the control signals were worth 8 points.
The correctness of the pseudocode was examined first. The problem description said to use “elegance and efficiency”. With that in
mind, one point was deducted per extra cycle your implementation took. Correctness issues cost three or more points.

Then, the control signals were examined to see if it reflected your pseudocode. The problem description said to use don’t cares (*).
Up to two points were deducted for not using don’t-cares everywhere possible. The don’t care on the enALU of the SUB operation
wasn’t enforced. Correctness issues cost one point each.

Name ___________________________________

 Page 4 of 20

Question 2: BTBs and Subroutine Return Stacks [25p]

For this question, consider a fully bypassed 5-stage RISC-V processor (as shown in Lecture 4,
and used in Lab 1). We have reproduced the pipeline diagram below (bypasses are not
shown). The fetch stage always speculates that the next PC is PC+4. For this problem, we will
ignore conditional branches, and only concern ourselves with unconditional jumps.

For a JAL instruction (J-type instructions), the 25-bit jump target offset is sign-extended and
shifted left one bit to form a byte offset, then added to the pc to form the jump address. Note we
have an adder to calculate the jump address for JAL instructions in the decode stage. JAL stores
the address of the instruction following the jump (pc+4) into register x1.

For a JALR instruction (I-type instruction), the jump address is obtained by sign-extending the
12-bit immediate then adding it to the address contained in register rs1, and hence is only known
in the execute stage. The address of the instruction following the jump (pc+4) is written to
register rd. Note that the MIPS instruction “jr ra” is equivalent to a RISC-V instruction “jalr
x0,x1,0”.

To summarize,

Instruction Taken known? Target known?

JAL Decode stage Decode stage

JALR Decode stage Execute stage

PC D X M W

Inst
Mem

Reg
File

Data
Mem

Jump
Addr
Calc

JALR
Jump
Addr
Calc+4

pc4
pc_jal
pc_jalr

Name ___________________________________

 Page 5 of 20

Q2.A Motivating BTBs and Subroutine Return Stacks [3 points]

To understand the pipeline behavior, please fill out the following instruction/time diagram for the
following set of instructions until the pc becomes 0x2010. The first two instructions have been
done for you.

0x2000: jal foo
0x2004: addi x3,x0,3
0x2008: jal foo
0x200c: sub x4,x5,x7
0x2010: lw x7,4(x6)
...

foo: 0x4000: and x10,x11,x12
 0x4004: jalr x0,x1,0
bar: 0x4008: xor x20,x21,x22
 0x400c: or x24,x25,x26
 0x4010: jalr x0,x1,0

Name ___________________________________

 Page 6 of 20

PC Instruction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21

0x2000 jal F D X M W

0x2004 addi F - - - -

0x4000 and F D X M W

0x4004 jalr F D X M W

0x4008 xor F D - - - 1 point for getting jalr right

0x400c or F - - - -

0x2004 addi F D X M W

0x2008 jal F D X M W

0x200c sub F - - - - 1 point for getting jal right

0x4000 and F D X M W

0x4004 jalr F D X M W

0x4008 xor 1 point for getting jalr right F D - - -

0x400c or F - - - -

0x200c sub F D X M W

0x2010 lw F D X M W

Name ___________________________________

 Page 7 of 20

Q2.B Adding a BTB [4 points]

Let’s assume we have added a 4-entry fully associative BTB to the Fetch Stage. The BTB is
fully searched in the Fetch Stage to see if the PC matches any valid tags. If there’s a match, the
BTB makes a prediction (i.e., redirects the PC to the target PC recorded in the BTB). The new
pipeline diagram is shown below.

For a JAL instruction, (1) the jump address calculation logic in the Decode stage detects a
mispredict, and if a misprediction is detected, (2) kills the appropriate stages, (3) fixes up the
BTB, and (4) starts the Instruction Fetch using the correct jump address (pc_correct_jal).

For a JALR instruction, (1) the jump address calculation logic in the Execute stage detects a
mispredict, and if a misprediction is detected, (2) kills the appropriate stages, (3) fixes up the
BTB, and (4) starts the Instruction Fetch using the correct jump address (pc_correct_jalr).

Remember, the Fetch Stage is still predicting PC+4 every cycle, unless either the BTB makes a
prediction (has a matching and valid entry for the current PC), or the jump address calculation
logic in the Decode and Execute stage corrects for a misprediction (pc_correct_jal,
pc_correct_jalr).

Show how this pipeline will execute the same code segment shown in Q2.A (repeated below as
well) by filling in the following pipeline diagram until the pc becomes 0x2010. Assume the
BTB first allocates invalid entries, and then starts kicking out least-recently-used entries.

PC D X M W

Inst
Mem

Reg
File

Data
Mem

Jump
Addr
Calc

JALR
Jump
Addr
Calc+4

pc4
pc_correct_jal
pc_correct_jalr

tag v target
BTBpc_btb_predicted

predicted PC

!= !=

jal mispredict? jalr mispredict?

Name ___________________________________

 Page 8 of 20

Initially, the BTB contains:

Tag Valid Target PC

0x2000 1 0x4000

0x4004 1 0x2004

0x2008 0 0x4008

0x4010 0 0x2010

Please fill in the BTB’s final state below after running the code.

Tag Valid Target PC

0x2000 1 0x4000

0x4004 1 0x200c

0x2008 1 0x4000

- 0 -

2 points for the BTB. -1 point for an incorrect BTB entry.
2 points for the timing diagram. -1 point for an incorrect bubble.

We have copied over the same code segment shown in Q2.A for your convenience.

0x2000: jal foo
0x2004: addi x3,x0,3
0x2008: jal foo
0x200c: sub x4,x5,x7
0x2010: lw x7,4(x6)
...

foo: 0x4000: and x10,x11,x12
 0x4004: jalr x0,x1,0
bar: 0x4008: xor x20,x21,x22
 0x400c: or x24,x25,x26
 0x4010: jalr x0,x1,0

Name ___________________________________

 Page 9 of 20

PC Instruction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21

0x2000 jal F D X M W

0x4000 and F D X M W

0x4004 jalr F D X M W

0x2004 addi F D X M W

0x2008 jal F D X M W

0x200c sub F - - - -

0x4000 and F D X M W

0x4004 jalr F D X M W

0x2004 addi F D - - -

0x2008 jal F - - - -

0x200c sub F D X M W

0x2010 lw F D X M W

Name ___________________________________

 Page 10 of 20

Q2.C BTB Misprediction [4 points]

When a JAL instruction hits in the BTB, can the target PC be incorrect? Explain.

No, JAL’s target addresses cannot change; the target PC is statically encoded in the instruction.
2 points. 1 point for Yes/No, 1 point for reasoning.

When a JALR instruction hits in the BTB, can the target PC be incorrect? Explain.

Yes, JALR’s target addresses can change; the target PC is read from a register.
2 points. 1 point for Yes/No, 1 point for reasoning.

Q2.D Adding a return stack [4 points]

Let’s assume we have added a 4-entry subroutine return stack to the Decode Stage. Note we
have removed the BTB from the pipeline, and will only be using the return stack for this
question. Once a JAL instruction is decoded, pc+4 is pushed into the return stack. Once a JALR
instruction is decoded, the return address is popped off from the return stack, and the PC is
redirected to that address (pc_rs_predicted). The predicted address is pushed down to the
Execute stage, where it is gets checked for a misprediction.

Remember, the Fetch Stage is still predicting PC+4 every cycle, unless the return stack makes a
prediction, a JAL instruction redirects the PC in the decode stage (pc_ jal), or the jump address
calculation logic in the Execute stage corrects for a misprediction (pc_correct_jalr).

Show how this pipeline will execute the same code segment shown in Q2.A by filling in the
following pipeline diagram until the pc becomes 0x2010.

PC D X M W

Inst
Mem

Reg
File

Data
Mem

Jump
Addr
Calc

JALR
Jump
Addr
Calc+4

pc4
pc_jal

pc_correct_jalr

Return Stack

pc_rs_predicted

!=

jalr mispredict?

Name ___________________________________

 Page 11 of 20

PC Instruction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21

0x2000 jal F D X M W

0x2004 addi F - - - 1 point for getting jal right

0x4000 and F D X M W

0x4004 jalr F D X M W

0x4008 xor F - - - - 1 point for getting jalr right

0x2004 addi F D X M W

0x2008 jal F D X M W

0x200c sub F - - - - 1 point for getting jalr right

0x4000 and F D X M W

0x4004 jalr F D X M W

0x4008 xor 1 point for getting jalr right F - - - -

0x200c sub F D X M W

0x2010 lw F D X M W

Name ___________________________________

 Page 12 of 20

Q2.E More on return stacks [4 points]

When would a return stack not work effectively? Briefly explain when, and provide a minimal
code sequence that will result in return stack mispredictions.

2 points for reasoning, 2 points for minimal code sequence.

more than 4 jals -> overflows the stack
jalr with an immediate
jalr with a different register
Math on x1, before used in jalr x0,x1,0
jalr used for a switch statement
jalr used for indirect function calls
long jumps
return stacks also wouldn’t work well with exceptions

Q2.F Return stack in the Fetch Stage [6 points]

For further benefits, you could implement a return stack in the Fetch stage. Why would that
help, and how would you build that? Explain.

Why (3 points): By moving the return stack into the Fetch stage, we are able to get rid of the one
cycle penalty when executing JALR instructions (see timing diagram in Q2.D).

How (3 points): Make a BTB like structure to tag PCs of a JAL/JALR instruction. With this
BTB like structure, the Fetch stage can detect JAL/JALR instructions and manipulate the return
stack without increasing the critical path.

Some people suggested to add some decode logic in the fetch stage, but that scheme would likely
increase the critical path (1 point). People who simply said “add a BTB like structure” without
any explanation got 2 points.

Name ___________________________________

 Page 13 of 20

Question 3: Load-Value Speculation [18 points]

In the conventional fully bypassed 5-stage pipeline discussed in class, the main remaining data
hazard is the load-use hazard. For example, in the following instruction sequence:

 lw x1, 16(x2)
 xor x3, x1, x5

The xor instruction will experience a one-cycle stall in the decode stage, while the lw propagates
to the memory stage. For the remainder of this question, we will only consider 32-bit loads (lw).
You may ignore branch and jump instructions in this problem.

 F D X M W lw
 F D D X M W xor

Load-value speculation

One approach to removing the hazard is to speculate on the load value returned (load-value
speculation). In lecture, we briefly described one scheme, a load-zero predictor where the value
was predicted to be zero. An instruction that would otherwise stall in the decode stage waiting
for a memory value was provided the value 0 instead. When the load instruction reaches the
memory stage, the value is checked and if not zero, the pipeline is flushed and the dependent
instruction is replayed as shown.

 F D X M W lw
 F D X - - xor flushed
 F D - - - flushed

F - - - - flushed
F D X M W xor correct value

Q3.A [3 points] Assuming the pipeline is flushed as shown on a mispredict, calculate the
minimum accuracy required for the load-zero predictor to improve performance. Note the
predictor is only used when an instruction would otherwise stall in decode waiting for a load
value.

Mispredict penalty of a predicted load-zero is 3 cycles. The load-use delay is 1 cycle. The
predictor should be at least 66.7% accurate to improve performance.

Name ___________________________________

 Page 14 of 20

Load-value table

One possible way to improve the performance of load-value speculation, is to add a lookup table
to remember the previous value returned by a given load instruction. We call this scheme a load-
value table. The lookup table is indexed by the PC of the load instruction, and returns a predicted
load value in parallel with instruction fetch. The predicted load value is used when an
instruction would otherwise stall waiting for the load.

As before, if the predicted value is different than the actual load value, the pipeline is flushed, the
table is updated, and the dependent instruction is replayed.

Q3.B [5 points] Discuss whether it is ever possible for the load-value table to be less
accurate than the load-zero predictor.

Yes, when the same load instruction returns alternating values including zeros. For example, if
an array returned [0,1,0,1,0,1,…], a load-zero predictor would be correct half the time. A load-
value table would always predict a wrong value. This would happen in the following code
sequence:

loop:
 lw x2,0(x3)
 addi x2,x2,1
 andi x2,x2,1
 sw x2,0(x3)
 j loop

PC D X M W

Inst
Mem

Reg
File

Data
Mem

Load
Value
Table

!=

load value
mispredict?

Name ___________________________________

 Page 15 of 20

Load-address table

Another approach is to replace the load-value table with a load-address table. The load-address
table is also indexed by the PC of the load instruction, but now returns a prediction of the address
that the load instruction will access. If the pipeline control logic detects a load in the execute
stage, with a dependent use in the decode stage, the predicted address is now used to access the
data memory in the execute stage, allowing the value to be returned from memory one cycle
earlier, hence avoiding the stall. The execute stage is still used to calculate the address for the
load, and this is checked against the predicted address. If the predicted and actual addresses
match, the load instruction does not need to access the data memory in the memory stage (the
load value is passed down the pipeline to writeback). If there is an address mismatch, the load
accesses the data memory again in the memory stage and the pipeline behind the load is stalled
for a cycle.

Q3.C [5 points] For the load-address table scheme, give a short instruction sequence that
shows the occurrence of a structural hazard in accessing the data memory. Indicate clearly for
each load instruction whether its address is correctly or incorrectly predicted.

lw x2,0(x3) sw x2,0(x3)
lw x4,0(x1) lw x4,0(x1)
addi x3,x4,1 addi x3,x4,1
Note that there’s a structural hazard only when there’s a dependent instruction (addi). Otherwise
the second load instruction will not speculatively access the data memory.

lw x2,0(x3)
lw x4,0(x2)
add x3,x4,1
If the second load is dependent on the first load, there’s a structural hazard only when the first
load mispredicts.

PC D X M W

Inst
Mem

Reg
File

Data
Mem

Load
Addr
Table

Data
Mem

!=

load address
mispredict?

Name ___________________________________

 Page 16 of 20

Q3.D [5 points] Let’s now assume a load instruction will not access memory in the execute
stage if a structural hazard would be present on the data cache, but will instead access the data
cache in the memory stage as in the original pipeline. The dependent instruction will have to
stall to wait for the bypassed value in this case. Calculate the minimum accuracy needed to
improve performance in this case.

In case of a mispredict, the load instruction will access the data cache the next cycle, wasting one
cycle. Assuming we don’t have load prediction, there’s already a cycle that we need to stall for
the load-use delay. Assuming that we don’t increase the critical path, improvement is
guaranteed. Minimum accuracy needed = 0%.

Name ___________________________________

 Page 17 of 20

Question 4: Iron Law of Processor Performance [18 points]

Mark whether the following modifications will cause each of the three categories to increase, decrease, or whether the modification will have no
effect. Explain your reasoning to receive credit.

Assume the initial machine is pipelined. Also assume that any modification is done in a way that preserves correctness and maintains efficiency, but
that the rest of the machine remains unchanged.

Instructions/Program Cycles/Instruction Seconds/Cycle

A Improve branch
predictor
accuracy

No effect

No changes to the program.

Decrease

Branch prediction normally works well,
decreasing the number of stall cycles on
a branch, and hence reduces CPI.

Same

Should stay the same. Could increase if
circuit is large, but usually make sure
not to impact cycle time.

B Provide a new
instruction that
sums three
source registers
and writes
result to
destination
register

Decrease

Can replace two add instructions with
one three-way add instruction.

Increases

The number of instructions will be
reduced, but the number of stall cycles
will be mostly unchanged.

-0.5 if said would increase because the
instruction was implemented to take
multiple cycles with only 2 read ports
(not a great implementation)

-1.5, if said would stay the same

Could increase, or maybe same

The instruction might require a slightly
long cycle time, either because register
file has an extra read port or because the
3-way adder takes slightly longer. But
might be same if critical path
somewhere else (e.g., memory stage).

Name ___________________________________

 Page 18 of 20

C Change
load/store
instructions to
only use the
address in a
register (i.e., no
offset).

Increase

More instructions are required to
replace base+offset calculation in
load/store instructions.

Decrease

As all address arithmetic instructions
that are added will take fewer cycles
than original base+offset loads (number
of instructions increases, but number of
stalls stays the same).

Also, pipeline can be simplified to have
memory stage in parallel with ALU
stage, reducing some load-use delays,
further reducing CPI.

Likely improves, might stay the same

Removing one pipeline stage removes a
number of bypasses which are often on
critical path.

-0.5 for saying same, as most likely will
reduce.

-1 for not seeing change in pipeline
structure and fewer bypasses.

ThREd

D Remove
hardware
floating-point
instructions and
instead use
software
subroutines for
floating-point
arithmetic

Increase

More instructions required to emulate
floating-point instructions.

Decrease

Integer instructions have much lower
CPI than floating-point instructions in
general.

-1.5 for No effect

No effect

Usually stays the same as FPU is
pipelined to not be on critical path

-0.5 for Decrease

Name ___________________________________

 Page 19 of 20

Appendix A. A Cheat Sheet for the Bus-based RISC-V Implementation
Remember that you can use the following ALU operations:

ALUOp ALU Result Output
COPY_A A
COPY_B B
INC_A_1 A+1
DEC_A_1 A-1
INC_A_4 A+4
DEC_A_4 A-4
ADD A+B
SUB A-B
SLT Signed(A) < Signed(B)
SLTU A < B
Table A1: Available ALU operations

Also remember that !Br (microbranch) represents a 3-bit field with six possible values: N, J, EZ,
NZ, D, and S. If !Br is N (next), then the next state is simply (current state + 1). If it is J
(jump), then the next state is unconditionally the state specified in the Next State column. If it is
EZ (branch-if-equal-zero), then the next state depends on the value of the ALU’s zero output
signal. If zero is asserted (== 1), then the next state is that specified in the Next State column,
otherwise, it is (current state + 1). NZ (branch-if-not-zero) behaves exactly like EZ, but instead
performs a microbranch if zero is not asserted (!= 1). If !Br is D (dispatch), then the FSM looks
at the opcode and function fields in the IR and goes into the corresponding state. If S, the !PC
spins if busy? is asserted, otherwise goes to (current state + 1).

Name ___________________________________

 Page 20 of 20

Appendix B. CS152 RISC-V Instruction Table

!

31 27 26 22 21 17 16 15 14 12 11 10 9 8 7 6 0

jump target opcode J-type
rd LUI-immediate opcode LUI-type
rd rs1 imm[11:7] imm[6:0] funct3 opcode I-type

imm[11:7] rs1 rs2 imm[6:0] funct3 opcode B-type
rd rs1 rs2 funct10 opcode R-type
rd rs1 rs2 rs3 funct5 opcode R4-type

Control Transfer Instructions

imm25 1100111 J imm25
imm25 1101111 JAL imm25

imm12hi rs1 rs2 imm12lo 000 1100011 BEQ rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 001 1100011 BNE rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 100 1100011 BLT rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 101 1100011 BGE rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 110 1100011 BLTU rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 111 1100011 BGEU rs1,rs2,imm12

rd rs1 imm12 000 1101011 JALR.C rd,rs1,imm12
rd rs1 imm12 001 1101011 JALR.R rd,rs1,imm12
rd rs1 imm12 010 1101011 JALR.J rd,rs1,imm12

Memory Instructions

rd rs1 imm12 010 0000011 LW rd,rs1,imm12
imm12hi rs1 rs2 imm12lo 010 0100011 SW rs1,rs2,imm12

Integer Compute Instructions

rd rs1 imm12 000 0010011 ADDI rd,rs1,imm12
rd rs1 000000 shamt 001 0010011 SLLI rd,rs1,shamt
rd rs1 imm12 010 0010011 SLTI rd,rs1,imm12
rd rs1 imm12 011 0010011 SLTIU rd,rs1,imm12
rd rs1 imm12 100 0010011 XORI rd,rs1,imm12
rd rs1 000000 shamt 101 0010011 SRLI rd,rs1,shamt
rd rs1 imm12 110 0010011 ORI rd,rs1,imm12
rd rs1 imm12 111 0010011 ANDI rd,rs1,imm12
rd rs1 rs2 0000000 000 0110011 ADD rd,rs1,rs2
rd rs1 rs2 1000000 000 0110011 SUB rd,rs1,rs2
rd rs1 rs2 0000000 001 0110011 SLL rd,rs1,rs2
rd rs1 rs2 0000000 010 0110011 SLT rd,rs1,rs2
rd rs1 rs2 0000000 011 0110011 SLTU rd,rs1,rs2
rd rs1 rs2 0000000 100 0110011 XOR rd,rs1,rs2
rd rs1 rs2 0000000 101 0110011 SRL rd,rs1,rs2
rd rs1 rs2 0000000 110 0110011 OR rd,rs1,rs2
rd rs1 rs2 0000000 111 0110011 AND rd,rs1,rs2
rd imm20 0110111 LUI rd,imm20

