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Computer Architecture and Engineering 

CS152 Quiz #1 

February 19th, 2013 

Professor Krste Asanovic 
 

Name: _____<ANSWER KEY>_____ 
 

This is a closed book, closed notes exam. 
80 Minutes 

20 pages 
 
 
 
Notes: 

• Not all questions are of equal difficulty, so look over the entire exam and 
budget your time carefully. 

• Please carefully state any assumptions you make. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz’s contents with other students who have not taken 

the quiz.  If you have inadvertently been exposed to a quiz prior to taking it, 
you must tell the instructor or TA. 

• You will get no credit for selecting multiple-choice answers without giving 
explanations if the instructions ask you to explain your choice. 

 
 
 
             Writing name on each sheet   ________________   1 Point 
                                        Question 1 ________________ 18 Points 
                                        Question 2 ________________ 25 Points 
                                        Question 3 ________________ 18 Points 
                                        Question 4 ________________ 18 Points 
     TOTAL ________________ 80 Points 
!
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Question 1: Microprogramming [18 points] 
 
In this question, you are going to implement a compare-and-swap (CAS) instruction in 
microcode.  A CAS instruction compares the contents of a memory location to a given value and, 
only if they are the same, modifies the content of that memory location to a new given 
value.  The instruction will also write the old value read from the memory location (not the value 
written to it) to the register file.  This instruction is often used for implementing synchronization 
primitives.  The instruction has the following format: 
 

CAS rd, rs1, rs2 
 
CAS performs the following operation: 
 

value ← M[R[rs1]] 
if (value == R[rd]) M[R[rs1]] ← R[rs2] 
R[rd] ← value 

 
Given a bus-based microarchitecture in Appendix A (the same bus-based microarchitecture from 
the online material), fill in worksheet Q1-1 with the microcode for CAS.  Use don’t cares (*) for 
fields where it is safe to use don’t cares.  Study the hardware description well, and make sure all 
your microinstructions are legal. 
 
Please comment your code clearly.  If the pseudo-code for a line does not fit in the space 
provided, or if you have additional comments, you may write in the margins as long as you do it 
neatly.  Your code should exhibit “clean” behavior and not modify any ISA-visible registers 
(except the PC register and the rd register) in the course of executing the instruction.  You will 
receive credit for elegance and efficiency. 
 
Finally, make sure that your microcode sequence fetches the next instruction in program order 
(i.e., by doing a microbranch to FETCH0 as discussed in the handout). 
!
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State PseudoCode ld 
IR 

Reg 
Sel 

Reg 
Wr 

en 
Reg 

ld 
A 

ld 
B 

ALUOp en 
ALU 

ld 
MA 

Mem 
Wr 

en 
Mem 

Imm 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

0 PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 S * 

 PC <- A+4 0 PC 1 1 * * INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

CAS: MA <- R[rs1] 0 rs1 0 1 * * * 0 1 * 0 * 0 N * 

 A <- Mem 0 * * 0 1 * * 0 0 0 1 * 0 S * 

 B <- R[rd] 0 rd 0 1 0 1 * 0 0 * 0 * 0 N * 

 If (A-B != 0) goto 
SKIP 

0 * * 0 0 * SUB *(0/1) 0 * 0 * 0 NZ SKIP 

 Mem <- R[rs2] 0 rs2 0 1 0 * * 0 0 1 1 * 0 S * 

SKIP: R[rd] <- A; goto 
FETCH0 

* rd 1 1 * * * 0 * * 0 * 0 J FETCH0 

 
Worksheet Q1-1 

There are many valid answers to this question.  The pseudocode was worth 10 points, and the control signals were worth 8 points.  
The correctness of the pseudocode was examined first.  The problem description said to use “elegance and efficiency”.  With that in 
mind, one point was deducted per extra cycle your implementation took.  Correctness issues cost three or more points. 
 
Then, the control signals were examined to see if it reflected your pseudocode.  The problem description said to use don’t cares (*).  
Up to two points were deducted for not using don’t-cares everywhere possible.  The don’t care on the enALU of the SUB operation 
wasn’t enforced.  Correctness issues cost one point each. 
 
  



Name ___________________________________ 

 Page 4 of 20 

Question 2: BTBs and Subroutine Return Stacks [25p] 
 
For this question, consider a fully bypassed 5-stage RISC-V processor (as shown in Lecture 4, 
and used in Lab 1).  We have reproduced the pipeline diagram below (bypasses are not 
shown).  The fetch stage always speculates that the next PC is PC+4.  For this problem, we will 
ignore conditional branches, and only concern ourselves with unconditional jumps. 
 
 

 
 
 
For a JAL instruction (J-type instructions), the 25-bit jump target offset is sign-extended and 
shifted left one bit to form a byte offset, then added to the pc to form the jump address.  Note we 
have an adder to calculate the jump address for JAL instructions in the decode stage.  JAL stores 
the address of the instruction following the jump (pc+4) into register x1. 
 
For a JALR instruction (I-type instruction), the jump address is obtained by sign-extending the 
12-bit immediate then adding it to the address contained in register rs1, and hence is only known 
in the execute stage.  The address of the instruction following the jump (pc+4) is written to 
register rd.  Note that the MIPS instruction “jr ra” is equivalent to a RISC-V instruction “jalr 
x0,x1,0”. 
 
To summarize, 
 

Instruction Taken known? Target known? 

JAL Decode stage Decode stage 

JALR Decode stage Execute stage 

 
  

PC D X M W

Inst
Mem

Reg
File

Data
Mem

Jump
Addr
Calc

JALR
Jump
Addr
Calc+4

pc4
pc_jal
pc_jalr
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Q2.A Motivating BTBs and Subroutine Return Stacks [3 points] 
 
To understand the pipeline behavior, please fill out the following instruction/time diagram for the 
following set of instructions until the pc becomes 0x2010.  The first two instructions have been 
done for you. 
 

0x2000: jal foo 
0x2004: addi x3,x0,3 
0x2008: jal foo 
0x200c: sub x4,x5,x7 
0x2010: lw x7,4(x6) 
... 

 
foo: 0x4000: and x10,x11,x12 
 0x4004: jalr x0,x1,0 
bar: 0x4008: xor x20,x21,x22 
 0x400c: or x24,x25,x26 
 0x4010: jalr x0,x1,0 
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PC Instruction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 

0x2000 jal F D X M W                 

0x2004 addi  F - - - -                

0x4000 and   F D X M W               

0x4004 jalr    F D X M W              

0x4008 xor     F D - - -  1 point for getting jalr right 

0x400c or      F - - - -            

0x2004 addi       F D X M W           

0x2008 jal        F D X M W          

0x200c sub         F - - - -  1 point for getting jal right 

0x4000 and          F D X M W        

0x4004 jalr           F D X M W       

0x4008 xor 1 point for getting jalr right  F D - - -      

0x400c or             F - - - -     

0x200c sub              F D X M W    

0x2010 lw               F D X M W   
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Q2.B Adding a BTB [4 points] 
 
Let’s assume we have added a 4-entry fully associative BTB to the Fetch Stage.  The BTB is 
fully searched in the Fetch Stage to see if the PC matches any valid tags.  If there’s a match, the 
BTB makes a prediction (i.e., redirects the PC to the target PC recorded in the BTB).  The new 
pipeline diagram is shown below. 
 

 
 
For a JAL instruction, (1) the jump address calculation logic in the Decode stage detects a 
mispredict, and if a misprediction is detected, (2) kills the appropriate stages, (3) fixes up the 
BTB, and (4) starts the Instruction Fetch using the correct jump address (pc_correct_jal). 
 
For a JALR instruction, (1) the jump address calculation logic in the Execute stage detects a 
mispredict, and if a misprediction is detected, (2) kills the appropriate stages, (3) fixes up the 
BTB, and (4) starts the Instruction Fetch using the correct jump address (pc_correct_jalr). 
 
Remember, the Fetch Stage is still predicting PC+4 every cycle, unless either the BTB makes a 
prediction (has a matching and valid entry for the current PC), or the jump address calculation 
logic in the Decode and Execute stage corrects for a misprediction (pc_correct_jal, 
pc_correct_jalr). 
 
Show how this pipeline will execute the same code segment shown in Q2.A (repeated below as 
well) by filling in the following pipeline diagram until the pc becomes 0x2010.   Assume the 
BTB first allocates invalid entries, and then starts kicking out least-recently-used entries. 
 
 
 

PC D X M W

Inst
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Reg
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JALR
Jump
Addr
Calc+4

pc4
pc_correct_jal
pc_correct_jalr

tag v target
BTBpc_btb_predicted

predicted PC

!= !=

jal mispredict? jalr mispredict?
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Initially, the BTB contains: 
 

Tag Valid Target PC 

0x2000 1 0x4000 

0x4004 1 0x2004 

0x2008 0 0x4008 

0x4010 0 0x2010 
 
Please fill in the BTB’s final state below after running the code. 
 

Tag Valid Target PC 

0x2000 1 0x4000 

0x4004 1 0x200c 

0x2008 1 0x4000 

- 0 - 
 
2 points for the BTB. -1 point for an incorrect BTB entry. 
2 points for the timing diagram.  -1 point for an incorrect bubble. 
 
We have copied over the same code segment shown in Q2.A for your convenience. 
 

0x2000: jal foo 
0x2004: addi x3,x0,3 
0x2008: jal foo 
0x200c: sub x4,x5,x7 
0x2010: lw x7,4(x6) 
... 

 
foo: 0x4000: and x10,x11,x12 
 0x4004: jalr x0,x1,0 
bar: 0x4008: xor x20,x21,x22 
 0x400c: or x24,x25,x26 
 0x4010: jalr x0,x1,0 
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PC Instruction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 

0x2000 jal F D X M W                 

0x4000 and  F D X M W                

0x4004 jalr   F D X M W               

0x2004 addi    F D X M W              

0x2008 jal     F D X M W             

0x200c sub      F - - - -            

0x4000 and       F D X M W           

0x4004 jalr        F D X M W          

0x2004 addi         F D - - -         

0x2008 jal          F - - - -        

0x200c sub           F D X M W       

0x2010 lw            F D X M W      
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Q2.C BTB Misprediction [4 points] 
 
When a JAL instruction hits in the BTB, can the target PC be incorrect?  Explain. 
 
No, JAL’s target addresses cannot change; the target PC is statically encoded in the instruction. 
2 points.  1 point for Yes/No, 1 point for reasoning. 
 
When a JALR instruction hits in the BTB, can the target PC be incorrect?  Explain. 
 
Yes, JALR’s target addresses can change; the target PC is read from a register. 
2 points.  1 point for Yes/No, 1 point for reasoning. 
 
Q2.D Adding a return stack [4 points] 
 
Let’s assume we have added a 4-entry subroutine return stack to the Decode Stage.  Note we 
have removed the BTB from the pipeline, and will only be using the return stack for this 
question.  Once a JAL instruction is decoded, pc+4 is pushed into the return stack.  Once a JALR 
instruction is decoded, the return address is popped off from the return stack, and the PC is 
redirected to that address (pc_rs_predicted).  The predicted address is pushed down to the 
Execute stage, where it is gets checked for a misprediction. 
 

 
 
Remember, the Fetch Stage is still predicting PC+4 every cycle, unless the return stack makes a 
prediction, a JAL instruction redirects the PC in the decode stage (pc_ jal), or the jump address 
calculation logic in the Execute stage corrects for a misprediction (pc_correct_jalr). 
 
Show how this pipeline will execute the same code segment shown in Q2.A by filling in the 
following pipeline diagram until the pc becomes 0x2010.
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PC Instruction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 

0x2000 jal F D X M W                 

0x2004 addi  F - - -  1 point for getting jal right 

0x4000 and   F D X M W               

0x4004 jalr    F D X M W              

0x4008 xor     F - - - -  1 point for getting jalr right 

0x2004 addi      F D X M W            

0x2008 jal       F D X M W           

0x200c sub        F - - - -  1 point for getting jalr right 

0x4000 and         F D X M W         

0x4004 jalr          F D X M W        

0x4008 xor 1 point for getting jalr right  F - - - -       

0x200c sub            F D X M W      

0x2010 lw             F D X M W     
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Q2.E More on return stacks [4 points] 
 
When would a return stack not work effectively?  Briefly explain when, and provide a minimal 
code sequence that will result in return stack mispredictions. 
 
2 points for reasoning, 2 points for minimal code sequence. 
 
more than 4 jals -> overflows the stack 
jalr with an immediate 
jalr with a different register 
Math on x1, before used in jalr x0,x1,0 
jalr used for a switch statement 
jalr used for indirect function calls 
long jumps 
return stacks also wouldn’t work well with exceptions 
 
 
 
 
 
Q2.F Return stack in the Fetch Stage [6 points] 
 
For further benefits, you could implement a return stack in the Fetch stage.  Why would that 
help, and how would you build that?  Explain. 
 
Why (3 points): By moving the return stack into the Fetch stage, we are able to get rid of the one 
cycle penalty when executing JALR instructions (see timing diagram in Q2.D). 
 
How (3 points): Make a BTB like structure to tag PCs of a JAL/JALR instruction.  With this 
BTB like structure, the Fetch stage can detect JAL/JALR instructions and manipulate the return 
stack without increasing the critical path. 
 
Some people suggested to add some decode logic in the fetch stage, but that scheme would likely 
increase the critical path (1 point).  People who simply said “add a BTB like structure” without 
any explanation got 2 points.  
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Question 3: Load-Value Speculation [18 points] 
 
In the conventional fully bypassed 5-stage pipeline discussed in class, the main remaining data 
hazard is the load-use hazard.  For example, in the following instruction sequence: 
 
 lw x1, 16(x2) 
 xor x3, x1, x5 
 
The xor instruction will experience a one-cycle stall in the decode stage, while the lw propagates 
to the memory stage.  For the remainder of this question, we will only consider 32-bit loads (lw).  
You may ignore branch and jump instructions in this problem. 
 
 F D X M W    lw 
  F D D X M W  xor 
 
Load-value speculation 

 
One approach to removing the hazard is to speculate on the load value returned (load-value 
speculation). In lecture, we briefly described one scheme, a load-zero predictor where the value 
was predicted to be zero.  An instruction that would otherwise stall in the decode stage waiting 
for a memory value was provided the value 0 instead.  When the load instruction reaches the 
memory stage, the value is checked and if not zero, the pipeline is flushed and the dependent 
instruction is replayed as shown. 
 
 F D X M W     lw 
  F D X - -    xor flushed 
   F D - - -   flushed 

F - - - -  flushed 
F D X M W  xor correct value 

 
Q3.A [3 points] Assuming the pipeline is flushed as shown on a mispredict, calculate the 
minimum accuracy required for the load-zero predictor to improve performance.  Note the 
predictor is only used when an instruction would otherwise stall in decode waiting for a load 
value. 
 
Mispredict penalty of a predicted load-zero is 3 cycles.  The load-use delay is 1 cycle.  The 
predictor should be at least 66.7% accurate to improve performance. 
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Load-value table 
 

One possible way to improve the performance of load-value speculation, is to add a lookup table 
to remember the previous value returned by a given load instruction.  We call this scheme a load-
value table. The lookup table is indexed by the PC of the load instruction, and returns a predicted 
load value in parallel with instruction fetch.  The predicted load value is used when an 
instruction would otherwise stall waiting for the load. 

 
 
As before, if the predicted value is different than the actual load value, the pipeline is flushed, the 
table is updated, and the dependent instruction is replayed. 
 
Q3.B [5 points] Discuss whether it is ever possible for the load-value table to be less 
accurate than the load-zero predictor. 
 
Yes, when the same load instruction returns alternating values including zeros.  For example, if 
an array returned [0,1,0,1,0,1,…], a load-zero predictor would be correct half the time.  A load-
value table would always predict a wrong value.  This would happen in the following code 
sequence: 
 
loop: 
  lw x2,0(x3) 
  addi x2,x2,1 
  andi x2,x2,1 
  sw x2,0(x3) 
  j loop 
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Load-address table 
 

Another approach is to replace the load-value table with a load-address table.  The load-address 
table is also indexed by the PC of the load instruction, but now returns a prediction of the address 
that the load instruction will access.  If the pipeline control logic detects a load in the execute 
stage, with a dependent use in the decode stage, the predicted address is now used to access the 
data memory in the execute stage, allowing the value to be returned from memory one cycle 
earlier, hence avoiding the stall.  The execute stage is still used to calculate the address for the 
load, and this is checked against the predicted address.  If the predicted and actual addresses 
match, the load instruction does not need to access the data memory in the memory stage (the 
load value is passed down the pipeline to writeback).  If there is an address mismatch, the load 
accesses the data memory again in the memory stage and the pipeline behind the load is stalled 
for a cycle. 
 

 
Q3.C [5 points] For the load-address table scheme, give a short instruction sequence that 
shows the occurrence of a structural hazard in accessing the data memory.  Indicate clearly for 
each load instruction whether its address is correctly or incorrectly predicted. 
 
lw x2,0(x3)     sw x2,0(x3) 
lw x4,0(x1)     lw x4,0(x1) 
addi x3,x4,1     addi x3,x4,1 
Note that there’s a structural hazard only when there’s a dependent instruction (addi).  Otherwise 
the second load instruction will not speculatively access the data memory. 
 
lw x2,0(x3)  
lw x4,0(x2) 
add x3,x4,1  
If the second load is dependent on the first load, there’s a structural hazard only when the first 
load mispredicts. 
  

PC D X M W

Inst
Mem

Reg
File

Data
Mem

Load
Addr
Table

Data
Mem

!=

load address
mispredict?



Name ___________________________________ 

 Page 16 of 20 

Q3.D [5 points] Let’s now assume a load instruction will not access memory in the execute 
stage if a structural hazard would be present on the data cache, but will instead access the data 
cache in the memory stage as in the original pipeline.  The dependent instruction will have to 
stall to wait for the bypassed value in this case.  Calculate the minimum accuracy needed to 
improve performance in this case. 
 
In case of a mispredict, the load instruction will access the data cache the next cycle, wasting one 
cycle.  Assuming we don’t have load prediction, there’s already a cycle that we need to stall for 
the load-use delay.  Assuming that we don’t increase the critical path, improvement is 
guaranteed.  Minimum accuracy needed = 0%. 
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Question 4: Iron Law of Processor Performance [18 points] 
 
Mark whether the following modifications will cause each of the three categories to increase, decrease, or whether the modification will have no 
effect. Explain your reasoning to receive credit. 
 
Assume the initial machine is pipelined. Also assume that any modification is done in a way that preserves correctness and maintains efficiency, but 
that the rest of the machine remains unchanged. 
 
  

Instructions/Program Cycles/Instruction Seconds/Cycle 

A Improve branch 
predictor 
accuracy 
 
 
 
 
 
 
 
 
 

No effect 
 

No changes to the program. 

Decrease 
 

Branch prediction normally works well, 
decreasing the number of stall cycles on 
a branch, and hence reduces CPI. 

Same 
 

Should stay the same.  Could increase if 
circuit is large, but usually make sure 
not to impact cycle time. 

 

B Provide a new 
instruction that 
sums three 
source registers 
and writes 
result to 
destination 
register 
 
 
 
 
 

Decrease 
 

Can replace two add instructions with 
one three-way add instruction.  

Increases 
 

The number of instructions will be 
reduced, but the number of stall cycles 
will be mostly unchanged. 
 
-0.5 if said would increase because the 
instruction was implemented to take 
multiple cycles with only 2 read ports 
(not a great implementation) 
 
-1.5, if said would stay the same 

Could increase, or maybe same 
 

The instruction might require a slightly 
long cycle time, either because register 
file has an extra read port or because the 
3-way adder takes slightly longer.  But 
might be same if critical path 
somewhere else (e.g., memory stage). 
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C Change 
load/store 
instructions to 
only use the 
address in a 
register (i.e., no 
offset). 
 
 
 
 
 
 
 
 
 

Increase 
 

More instructions are required to 
replace base+offset calculation in 
load/store instructions. 

Decrease 
 

As all address arithmetic instructions 
that are added will take fewer cycles 
than original base+offset loads (number 
of instructions increases, but number of 
stalls stays the same). 
 
Also, pipeline can be simplified to have 
memory stage in parallel with ALU 
stage, reducing some load-use delays, 
further reducing CPI. 

Likely improves, might stay the same 
 

Removing one pipeline stage removes a 
number of bypasses which are often on 
critical path. 
 
-0.5 for saying same, as most likely will 
reduce. 
 
-1 for not seeing change in pipeline 
structure and fewer bypasses. 

 
ThREd 

D Remove 
hardware 
floating-point 
instructions and 
instead use 
software 
subroutines for 
floating-point 
arithmetic 
 
 
 
 
 
 
 
 
 

Increase 
 

More instructions required to emulate 
floating-point instructions. 

Decrease 
 

Integer instructions have much lower 
CPI than floating-point instructions in 
general. 
 
-1.5 for No effect 

No effect 
 

Usually stays the same as FPU is 
pipelined to not be on critical path 
 
-0.5 for Decrease 
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Appendix A. A Cheat Sheet for the Bus-based RISC-V Implementation 
Remember that you can use the following ALU operations: 
 

ALUOp ALU Result Output 
COPY_A A 
COPY_B B 
INC_A_1 A+1 
DEC_A_1 A-1 
INC_A_4 A+4 
DEC_A_4 A-4 
ADD A+B 
SUB A-B 
SLT Signed(A) < Signed(B) 
SLTU A < B 
Table A1: Available ALU operations 

 
Also remember that !Br (microbranch) represents a 3-bit field with six possible values: N, J, EZ, 
NZ, D, and S.  If !Br is N (next), then the next state is simply (current state + 1).  If it is J 
(jump), then the next state is unconditionally the state specified in the Next State column.  If it is 
EZ (branch-if-equal-zero), then the next state depends on the value of the ALU’s zero output 
signal.  If zero is asserted (== 1), then the next state is that specified in the Next State column, 
otherwise, it is (current state + 1). NZ (branch-if-not-zero) behaves exactly like EZ, but instead 
performs a microbranch if zero is not asserted (!= 1). If  !Br is D (dispatch), then the FSM looks 
at the opcode and function fields in the IR and goes into the corresponding state. If S, the !PC 
spins if busy? is asserted, otherwise goes to (current state + 1). 
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Appendix B. CS152 RISC-V Instruction Table 
 
 
!

31 27 26 22 21 17 16 15 14 12 11 10 9 8 7 6 0

jump target opcode J-type
rd LUI-immediate opcode LUI-type
rd rs1 imm[11:7] imm[6:0] funct3 opcode I-type

imm[11:7] rs1 rs2 imm[6:0] funct3 opcode B-type
rd rs1 rs2 funct10 opcode R-type
rd rs1 rs2 rs3 funct5 opcode R4-type

Control Transfer Instructions

imm25 1100111 J imm25
imm25 1101111 JAL imm25

imm12hi rs1 rs2 imm12lo 000 1100011 BEQ rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 001 1100011 BNE rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 100 1100011 BLT rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 101 1100011 BGE rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 110 1100011 BLTU rs1,rs2,imm12
imm12hi rs1 rs2 imm12lo 111 1100011 BGEU rs1,rs2,imm12

rd rs1 imm12 000 1101011 JALR.C rd,rs1,imm12
rd rs1 imm12 001 1101011 JALR.R rd,rs1,imm12
rd rs1 imm12 010 1101011 JALR.J rd,rs1,imm12

Memory Instructions

rd rs1 imm12 010 0000011 LW rd,rs1,imm12
imm12hi rs1 rs2 imm12lo 010 0100011 SW rs1,rs2,imm12

Integer Compute Instructions

rd rs1 imm12 000 0010011 ADDI rd,rs1,imm12
rd rs1 000000 shamt 001 0010011 SLLI rd,rs1,shamt
rd rs1 imm12 010 0010011 SLTI rd,rs1,imm12
rd rs1 imm12 011 0010011 SLTIU rd,rs1,imm12
rd rs1 imm12 100 0010011 XORI rd,rs1,imm12
rd rs1 000000 shamt 101 0010011 SRLI rd,rs1,shamt
rd rs1 imm12 110 0010011 ORI rd,rs1,imm12
rd rs1 imm12 111 0010011 ANDI rd,rs1,imm12
rd rs1 rs2 0000000 000 0110011 ADD rd,rs1,rs2
rd rs1 rs2 1000000 000 0110011 SUB rd,rs1,rs2
rd rs1 rs2 0000000 001 0110011 SLL rd,rs1,rs2
rd rs1 rs2 0000000 010 0110011 SLT rd,rs1,rs2
rd rs1 rs2 0000000 011 0110011 SLTU rd,rs1,rs2
rd rs1 rs2 0000000 100 0110011 XOR rd,rs1,rs2
rd rs1 rs2 0000000 101 0110011 SRL rd,rs1,rs2
rd rs1 rs2 0000000 110 0110011 OR rd,rs1,rs2
rd rs1 rs2 0000000 111 0110011 AND rd,rs1,rs2
rd imm20 0110111 LUI rd,imm20


