
Computer Architecture and Engineering
CS152 Quiz #2
March 6th, 2012

Professor Krste Asanović

 Name: <ANSWER KEY>

This is a closed book, closed notes exam.
80 Minutes
 12 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz. If you have inadvertently been exposed to a quiz prior
to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without
giving explanations if the instruction ask you to explain your choice.

Writing name on each sheet ________ 2 Points
Question 1 ________ 18 Points
Question 2 ________ 29 Points
Question 3 ________ 31 Points

TOTAL ________ 80 Points

Name __________(answer key)________

Page 1 of 12

Question 1: Three C’s of Cache Misses (18 points)
Mark whether the following modifications to cache parameters will cause each of the
categories to increase, decrease, or whether the modification will have no effect. You
can assume the baseline cache is set associative. Explain your reasoning to receive
credit.

Assume that in each case the other cache parameters (number of sets, number of ways,
number of bytes/line) and the rest of the machine design remain the same.

Name __________(answer key)________

Page 2 of 12

compulsory
misses

conflict
misses

capacity
misses

increasing
number of sets

no effect

block size is constant

decreases

more sets are available
for data, so there is less
of a chance for two ops
to collide and evict one
another

decreases

capacity increases

increasing
number of ways

no effect

block size is constant

decreases

there are more ways
available for data to be
placed into

decreases

capacity increases

increasing
number of bytes per line

decreases

more data is brought in
on a given cache miss

no effect

associativity and
number of sets is
constant

decreases

capacity increases

Question 2: Way-Predicting Cache Evaluation
(29 points)
As a new hire for Caches-R-Us, you are tasked with evaluating a new cache design. To
improve hit rates, your team has decided to use a two-way set-associative cache (it was
formerly direct-mapped). Unfortunately, the access time has suffered. To fix this, you
propose a “way-predicting” cache: on every cache access, you predict which way to
select and read out the data in that way.

On a cache access, the prediction is used to route the data. If it is incorrect, there will be
a delay as the correct way is accessed. If the desired data is not resident in the cache, it is
like a normal cache miss. Figure 1 summarizes this process:

Figure 1: Way-prediction FSM

Since there are only two ways, only one bit will be used per prediction, and its value will
directly correspond to the way. For this problem, you can ignore how predictions are
generated. You can assume at the beginning of a cycle, the selected prediction is
available, and determining the prediction is not on the critical path.

Memory Access
(check predicted way)

hit miss

return data look in the
other way

return data in
the other way

slow hit miss

read block of data
from next level of
cache

Name __________(answer key)________

Page 3 of 12

De
co

de
r

MUX

Data Output
Drivers

Prediction

Tag Index Offset
Input Address

Way0 Way1

Data Memory Array

indexindex

MUX

Data Bus

Figure 2. Way-Predicting 2-way Set-Associative Cache Datapath

Q2.A: Cache parameters (4 points)

Fill out the following table of cache parameters. The address size is 32 bits, the index
size is 8 bits, and the block offset size is 4 bits (note: these parameters will hold for the
rest of Question 2).

 Way-predicting 2-way set associative cache
Tag size (bits) 20 bits

Cache line size
(bytes)

16 bytes

Number of sets 256 sets

Cache capacity (KB) 256*16*2=8192 (8 kB)

Table 1. Cache Parameters

Name __________(answer key)________

Page 4 of 12

Q2.B: Critical Paths (6 points)

Using Figure 2, Table 1, and Table 2, determine the cache access time (ps) for our way-
predicting cache (i.e., the delay through the critical path). You can assume the prediction
bit generation is off the critical path.

Component Delay equation (ps) Total (ps)
Decoder 20×(# of index bits) + 60 220

Memory array 10×log2 (# of rows) +
10×⎣log2 (# of bits in a row)⎦+200

360

N-to-1 MUX 50×log2 N + 200 300

Buffer driver 160 160

Data output driver 90×(associativity) + 100 280

Critical
Path Delay

1160 ps

Table 2. Delay of each cache component

Buffer driver is not on critical path. # of bits in row includes across ways (so 16B*8b*2ways). -
(1/2) pt for that. (if 350)

Notice how way prediction takes the tag check off the critical path. The inverting and
non-inverting buffer drivers both have the same delay. You only need to worry about the
case of a fast hit (cache hit with correct prediction).

Q2.C: Way-predicting I-Cache (5 points)

You realize that way-prediction could work well in the instruction cache. You propose a
way-predicting I-cache where each set has its own prediction bit that records the last way
that was accessed (for that set only).

For a cache with a LRU replacement policy (and the given parameters in Table 1), under
what scenarios do you expect the proposed way prediction scheme to mispredict for an
instruction cache?
This scheme does well for short loops that stay within the same cache line (temporal locality), and
it works well for sequential code that steps through at unit-stride (spatial locality. It will only
mispredict when it runs off the cache line). However, it does poorly with code that branches
between two different ways in the same set.

-1 point if didnʼt say “code map to same set”, since that would be the worst possible case (i.e.,
specified that the branch is to a section of code that is a multiple of 4kB away).

+2 if mentioned branching
+3 if mentioned same set
+1 for compulsory misses

Name __________(answer key)________

Page 5 of 12

Q2.D: Robust Prediction for the I-Cache (5 points)
A new proposal for predicting ways in I-caches is even more robust.. It combines three
different techniques used in different scenarios: 1) when stepping sequentially through
instructions on the same cache line, predict the same way, 2) when accessing the last
instruction in a line, keep a prediction bit (one per line) to remember which way the next
sequential instruction is in, and 3) for taken branches, add a prediction bit to the Branch
History Table to point to the way that holds the target of the branch.

Explain all cases where this new prediction scheme will be incorrect (i.e., mispredict) for
typical program behavior. Assume the cache still uses a LRU replacement policy.

Looking for at least two coherent, correct statements:

 - cache miss, you havenʼt yet learned the prediction (i.e., where the next way is the first time you
run off the new cache line; the first time you take a branch you donʼt know which way itʼs in)

- branch mispredict (i.e., the last iteration a loop) will send you to the wrong way

- aliasing in the branch predictor. Even if it predicts the branch path correctly, it may predict the
wrong way (because two branches are sharing the same BHT entry).

+3 points for getting the first case.
+2 points for getting the second case.

4/5 points given for people that gave more than one situation, but it was just a variation of a
single “category” (i.e., only listing different ways to mispredict a branch, but not covering cache
misses or branch aliasing).

Q2.E: Way Prediction in the Data Cache (5 points)

Your boss also asks you to evaluate using a way-predicting 2-way set-associative cache
as the data cache. The proposed prediction scheme for the data cache is to set the
prediction bit to the last accessed way (each set has its own prediction bit that remembers
the last way accessed). Explain how this technique will affect cache hit time compared to
both a regular 2-way set-associative data cache and a direct-mapped cache.

Way prediction is faster than a 2-way set-associative cache (tag is not on critical path).

However, it is slower than direct-mapped caches because it still must select and drive out data
from one of the ways.

Name __________(answer key)________

Page 6 of 12

Q2.F: Aliasing (4 points)

Assuming that the page size is 4KB for this machine, and the cache parameters from
Table 1 still hold, and the cache is physically-tagged, virtually-indexed, does our way-
predicting 2-way set-associative cache have a problem with aliasing? Describe why or
why not.

Nope, there are no problems with aliasing. The number of bits for the page offset is the same as
the number of bits for the index + number of bits for the block offset, meaning that each alias can
only be found in a single set. Thus two aliases will index the same set, and share the same
physical tag.

-3 for saying they will map to different indices (but recognize different indices would cause issues
and mention a way it could be fixed)

-2 for wrong answer, but consistent with past answers?

-3 for saying “no”, but no backing this statement up.

Notice that way prediction has no effect on this.

Name __________(answer key)________

Page 7 of 12

Question 3: Virtual Memory and Big Pages
(31 points)
For this problem, the machine you are studying uses a 2-level page table scheme. Also,
the OS is smart enough to only allocate memory for the pages that it uses. Addresses in
this machine are 32-bits long. The page offset is 12-bits in size. Both the level-1 page
table index and level-2 page table index are 10 bits each.

10 10 12
L1 page idx L2 page idx page offset

Q3.A: Aggressor Code (4 points)
Provide a sequence of addresses (in hexadecimal) that a user program could issue to the
memory system that would give the fastest growth in total physical memory usage for
this system.

Step through addresses with a stride of 0x40_0000

0x00_0000
0x40_0000
0x80_0000
0xc0_0000

This is walking through the L1 page index, allocating a whole new L2 page for each memory
access. After 1024 accesses, you have filled the L1 page table, allocated 1024 L2 page tables,
and allocated 1024 data pages. If you step through on a L2 page idx unit-step, you would only
allocated 1024 data pages and 1 L2 page table after 1024 accesses.

-2 points for stepping through at the L2 page index size.

Q3.B: Page Table Overhead (4 points)
As you learned in Lectures 8 and 9 (which covered address translation and virtual
memory), the page tables themselves also reside in memory. Naturally, these page tables
are “overhead” that is required to track all of a program’s “user data”. Describe the
worst-case scenario in terms of memory devoted to “overhead” versus memory devoted
to “user data”. In other words, in what situation would the most overhead be allocated
relative to user data (you do not have to write code, but be quantitative and exact).
Only using 1 user page. That requires one L1 page table and one L2 page table, so a ratio of 2:1
in overhead to user data.

-1 point: Most students said to have a filled L1 table (one page) by striding 4MB through memory
-> thatʼs 1 L1 + 1024 L2s + 1024 user pages -> ~1:1 ratio.
-1 point: suggested that you arenʼt counting the full 4kB page as being allocated if you touch 1
word.
-4 points: If student said to allocate all of memory. Thatʼs the answer to the next question.

Name __________(answer key)________

Page 8 of 12

Q3.C: Page Table Overhead Part II (4 points)
Now the other extreme: describe the best-case scenario in terms of the ratio between
allocated “overhead” to allocated “user data” (minimizing overhead).

Allocate all of memory. one L1 page + 1024 L2 pages + 1M user pages -> ~1/1024 overhead to
user pages.

Notice, we donʼt care how much of the page is used. If one word from the user page is
referenced, the whole page must be allocated.

-1 point: if said to only have one L1 page, one L2 page, full L2 allocation (doesnʼt amortize out the
single L1 table).

Q3.D: Memory System Performance (6 points)
Consider a memory system in which you have a direct-mapped TLB with 64 entries.
Assume that page table entries are not allocated in the cache. If a user program performs
sequential (unit-stride) 32-bit accesses through 4GB of memory, how many TLB misses
will occur? How many individual memory accesses to the page table are required?

3 points:
1 million (2^20) TLB misses
two memory accesses for each miss (reading the L1 page, reading the L2 page. Remember: this
is only because we artificially restricted the problem to never allow the caching of the page tables.
In a real machine, the locality of our accesses should have the L1 and L2 page in the caches).

3 points:
Thus, 2 million accesses (2^21). full credit if answer was 2x the wrong answer given for the TLB
misses.

TLB misses __ 1 million accesses (2^20)__

accesses __ 2 million accesses (2^21)__

Name __________(answer key)________

Page 9 of 12

Q3.E: Big Pages (4 points)

Big Page Address
10 10 12

L1 page idx page offsetpage offset

Now let us consider adding “Big Pages” to the system. Normally, memory is allocated
using the normal (“little”) pages. Translating a virtual page number to a physical page
number requires walking two levels of page tables to find the base address to the “little”
page (you learned this in lecture). However, “Big Pages” allow programs to allocate
enormous chunks of memory as a single, big page. The virtual page number of a “Big
Page” is only 10 bits: the same, upper 10 bits used for the Level 1 page table index. The
remaining 22 bits of the “Big Page” is used as the big page’s offset. In this case, how big
is a “Big Page” (how much memory can a program fit into a single “Big Page”)? What
is the TLB reach using only “Big Pages”, for a TLB with 64 entries?

The big page has an offset of 22 bits, so it can address 2^22 bytes, or 4 MB. If the TLB holds 64
entries, each of 4MB, then the TLB reach is 256 MB.

“Big Page” size__4 MB__

TLB reach_256 MB__

Name __________(answer key)________

Page 10 of 12

Q3.F: Unit-Striding through Big Pages (6 points)
Because “Big Pages” only have enough space for the Level 1 page table index,
translating from the “Big Page”’s virtual page number to its physical page number
requires only looking at the level 1 page table. This means that the level 1 page table
holds either the base address pointing to the Level 2 page table (for use by a small page)
or it holds the physical page number for a “Big Page”.

Let’s return to Q3.D again, but now you use only “Big Pages” when allocating user data.
If you are performing a series of sequential (unit-stride) accesses through 4 GB of
memory, how many TLB misses occur? How many individual memory accesses to the
page table occur? (TLB is still 64 entries and direct-mapped, and page table entries are
still not stored in the cache).

Because there is greater TLB reach, there will be far fewer TLB misses (4GB/4MB). Also, since
the L1 page table points directly to the base address of the big page, there is only 1 access per

TLB miss required.

TLB misses __ 1024__

accesses __ 1024__

Name __________(answer key)________

Page 11 of 12

Q3.G: TLB Design for Big and Small Pages (3 points)
Consider a direct-mapped TLB design which holds 32 entries for small page address
translations and 32 entries for “Big Page” address translations. In terms of area and
power, is this design cheaper, equal to, or more expensive than a direct-mapped TLB with
64 entries of only small page address translations.. Only consider the design of the TLB
itself in answering this question.

Tag is smaller

0 for saying equal bits
-2 for saying complex logic dominates the smaller tag.

END OF QUIZ

Name __________(answer key)________

Page 12 of 12

