
Name ___________________________________

 Page 1 of 16

Computer Architecture and Engineering

CS152 Quiz #2

March 5th, 2013

Professor Krste Asanović

Name: _____<ANSWER KEY>_____

This is a closed book, closed notes exam.
80 Minutes

16 pages

Notes:

• Not all questions are of equal difficulty, so look over the entire exam and
budget your time carefully.

• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz’s contents with other students who have not taken

the quiz. If you have inadvertently been exposed to a quiz prior to taking it,
you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving
explanations if the instructions ask you to explain your choice.

 Writing name on each sheet ________________ 1 Point
 Question 1 ________________ 25 Points
 Question 2 ________________ 26 Points
 Question 3 ________________ 12 Points
 Question 4 ________________ 16 Points
 TOTAL ________________ 80 Points
!

Name ___________________________________

 Page 2 of 16

Question 1: Sub-blocked Cache [25 points]

In this problem we analyze two different proposals for a cache to be used in a processor. We care
about both the cycle time (which is limited by the cache hit access time) and the miss rate.

The first proposal is to use a regular direct-mapped cache (see Appendix A). The second design
is to use a sub-blocked cache (see below). A sub-blocked cache reduces the tag overhead by
increasing the line size, but adds an individual valid bit to every sub-block to avoid increasing
the miss penalty. The extra valid bits are stored in the tag array (more specifically in the status
bits). Both caches are write back caches with write allocate.

The baseline cache (i.e., without sub-blocking) is a direct-mapped 32KB data cache with 32-byte
lines. We will consider the impact of sub-blocking by keeping the same capacity but increasing
the cache line size to 64-bytes with an individual valid bit on every 32-byte sub-block. Addresses
are 32 bits long. Figure 1, below, show the modified hardware of the sub-blocked cache.

Figure 1: A sub-blocked cache implementation

Tag Index

Data
Decoder

Tag
Decoder

Tag Status

MUX=

Valid Bits

Comparator

Data
Output
Driver

2b: cache line size (bytes)
2b-1: sub-block cache line size (bytes)Input Address

2b-3 data words

Valid
Output
Driver

b

sub-block
Index

MUX sub-block
Index

Name ___________________________________

 Page 3 of 16

Q1.A Three C’s of Cache Misses [5 points]
State which of the 3C’s of cache misses are affected by sub-blocking the cache, and how. How
will the cache miss rate compare to the baseline? Explain your reasoning to receive credit.

Conflict misses can increase, as sub-blocking reduces the number of sets (when the capacity is
kept the same). Compulsory, and Capacity misses don’t change.

Q1.B Cache Parameters [4 points]
Fill out the following table showing how many bits are in each of the caches.

 Baseline Sub-blocked

tag array bits
(17+1+1) * 2^10 = 19Kbits

-0.5 if missed dirty bit

-0.5 if you didn’t multiply 2^10

(17+2+1) * 2^9 = 10Kbits

-0.5 if missed dirty bit

-0.5 if you didn’t multiply 2^9

data array bits 32*8*2^10 = 256Kbits

-0.5 if you didn’t multiply 2^10

64*8*2^9 = 256Kbits

-0.5 if you didn’t multiply 2^9

!

Name ___________________________________

 Page 4 of 16

Q1.C Critical Path [7 points]
Using Figure 1, Figure A-1 (found in Appendix A), determine and explain what the critical path
is for both the baseline cache and the sub-blocked cache. Also, determine the cache access time
(ns) for both configurations (i.e., the delay through the critical path).

Component Delay Equation (in ps) Baseline Sub-blocked

Decoder 30 × (# of index bits) + 50
Tag 350 320

Data 350 350

Memory array
30 × !"#!(# of rows) +
20 × !"#!(# of bits in a row) +
50

Tag 430 400

Data 510 510

Comparator 20 × (# of tag bits) + 100 440 440

N-to-1 Mux 50 × !"#!! + 100
Tag N/A 150

Data 250 250

2-input AND 50 50 50

Data output driver 50 x (associativity) + 100 150 150

Valid output driver 100 100 100
Table is worth 5 points. -0.4 for incorrect box.

Baseline cache critical path (in ns): (1 point)
Tag: 350 + 430 + 440 + 50 + 100 = 1370ps = 1.37ns
Data: 350 + 510 + 250 + 150 = 1260ps = 1.26ns
Critical path = 1.37ns
+0.5 if you got the tag critical path right (decoder + memory array + comparator + 2-input-AND
+ valid output driver)
-0.1 if trivial math error

Sub-blocked cache critical path (in ns): (1 point)
Tag path through comparator: 320 + 400 + 440 + 50 + 100 = 1310ps = 1.31ns
Tag path through valid mux: 320 + 400 + 150 + 50 + 100 = 1020ps = 1.02ns
Data: 350 + 510 + 250 + 150 = 1260ps = 1.26ns
Critical path = 1.31ns
+0.5 if you got the tag critical path right (decoder + memory array + comparator + 2-input-AND
+ valid output driver)
-0.1 if trivial math error
Some people added the 2-to-1 mux path to the critical path, but the 2-to-1 mux is evaluated
parallel with the comparator, so it shouldn’t be added to the critical path

Name ___________________________________

 Page 5 of 16

Q1.D AMAT [4 points]
Temporarily assume that both the baseline cache and the sub-blocked cache have the same hit
rate, 75%, and the same average miss penalty, 20ns. Using the cycle times computed in Q1.C as
the hit time, compute the average memory access time for both caches.

Baseline cache AMAT (in ns):

AMAT = hit time + miss rate * miss penalty = 1.37 + 0.25 * 20 = 6.37ns

Didn’t penalize you if you got Q1.C wrong
-0.5 for trivial math error

Sub-blocked cache AMAT (in ns):

AMAT = hit time + miss rate * miss penalty = 1.31 + 0.25 * 20 = 6.31ns

Didn’t penalize you if you got Q1.C wrong
-0.5 for trivial math error

Q1.E Crossover Point in Performance [5 points]
If the baseline cache miss rate is 5%, how much greater must the miss rate for the sub-blocked
cache be to give worse overall performance as measured by AMAT? Assume the miss penalty is
20ns in both cases.

1.37 + 0.05 * 20 = 1.31 + MP * 20
20MP = 1.06
MP = 0.053

Sub-blocked cache will perform worse than the baseline cache if the miss rate is 0.3% greater.

Didn’t penalize you if you got Q1.C wrong
-1 for trivial math error

Name ___________________________________

 Page 6 of 16

Question 2: Page Tables [26 points]

For this question, you are going to study a 64-bit RISC-V machine that uses a 4-level page table
scheme. Virtual addresses are 64-bits long, but the system requires and enforces that the upper
11-bits of a valid virtual address are always 0. This 64-bit RISC-V machine uses 8KB pages,
and hence the page offset is 13-bits in size. A PTE or page-table entry is 8-bytes long, and hence
level-1, 2, 3, and 4 page table indices are 10 bits each. Please see Figure 2 and 3 for the virtual
address, and page-table entry breakdown. Assume that the operating system is smart enough to
only allocate the minimal needed physical memory.

11 bits 10 bits 10 bits 10 bits 10 bits 13 bits
All zeros L1 page index L2 page index L3 page index L4 page index Page offset

Figure 2. Virtual Address Breakdown (MSB on the left, LSB on the right)

21 bits 30 bits 9 bits 1 1 1 1

reserved PPN reserved R W X V
R = read permission bit, W = write permission bit, X = execute permission bit, V = valid bit

Figure 3. Page-table Entry Breakdown (MSB on the left, LSB on the right)

Q2.A DRAM Size [4 points]
Given that 30 bits are allocated for the PPN in a PTE, what is the largest amount of DRAM that
we can usefully put in a system?

2^30 * 2^13 = 2^43 = 8TB

Q2.B Time for a TLB Refill [4 points]
Assume that the AMAT during a page table walk is 2ns. How long (in ns) would it take for a
TLB refill?

2ns * 4 = 8ns

Name ___________________________________

 Page 7 of 16

To reduce the TLB refill time, let’s assume you have decided to implement a hashed page table.

On a TLB miss, the first hash function is used to map a VPN to a hash table slot that has 8 PTE’s
<VPN, PPN> that are searched in parallel. If the first hash probe fails, a second hash function is
used to look in another hash table slot. If both hash probes fail, a backup page table is read using
a full hierarchical page table walk as before. Figure 4 and 5 summarizes this process:

Figure 4: Walking a Hashed Page Table

Figure 5: Searching a Hashed Page Table

VPN Page Offset
51 bits 13 bits

Hash

Base of Table

+offset

Physical
Address
of PTE

Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN
Valid VPN PPN

Hashed Page Table in
DRAM

Access TLB

Return PPN Search Hash Table
Using the First Hash Function

Search Hash Table
Using the Second Hash Function

Return PPN

Walk Hierarchical
Page Table

Return PPN

hit miss

found not found

found not found

Name ___________________________________

 Page 8 of 16

Assume the following: 1) the first hash probe has a 95% hit rate, 2) the time to search a hashed
page table is dominated by the memory access time, 3) AMAT of a hash table probe (fetching all
8 slot entries) is 4ns, 4) AMAT during a hierarchical page table walk is 100ns, since portions of
the backup page table are likely to be swapped out to disk.

Q2.C Hashed Page Tables [8 points]
Given the assumptions above, calculate the minimum hit rate of the second hash probe required
for the hashed page table to improve TLB refill time compared to the hierarchical page table in
Q2.B.

4 + 0.05 * (4 + (1-HR) * 400) < 8
4 + 0.2 + 20 – 20*HR < 8
20*HR > 16.2
HR > 0.81 or 81%

-2 if used 100ns rather than 400ns
-4 if you came up with a slightly wrong formula

Name ___________________________________

 Page 9 of 16

Q2.D Overheads of Hierarchical Page Table [5 points]
Assume we have 100 processes running, and 4GB of physical memory. Calculate the minimum
physical memory required to hold the hierarchical page tables needed to map contiguous 4GB
virtual memory spaces for all 100 processes.

To hold 4GB of virtual memory, you need 2^32/2^13 = 2^19 pages.
To hold 2^19 pages, you need 2^19/2^10 = 2^9 L4 page tables.
To hold 2^9 L4 page tables, you need 1 L3 page table.
To hold 1 L3 page table, you need 1 L2 page table.
To hold 1 L2 page table, you need 1 L1 page table.

You need 2^9 + 3 pages to map 4GB of virtual memory space per process.

Total amount of physical memory to hold all hierarchical page tables for 100 processes
= 100 * (2^9 + 3) * 8KB
= 100 * 515 * 8KB
= 412 MB

+2 if you got # of L4 page tables correct
+1 if you got # of L3 page tables correct
+1 if you got # of L2 page tables correct
+1 if you got # of L1 page tables correct

Q2.E Overheads of Hashed Page Table [5 points]
To reduce hash table conflicts, the hash table is sized with 4 times more PTEs than the number of
physical pages. Each entry in the hash table is 16 bytes long. Assume we have 100 processes,
and 4GB of physical memory. Calculate the physical memory required for the hashed page table
(ignore the backup hierarchical page table).

Total number of physical pages = 2^32/2^13 = 2^19 pages.
of PTEs in hash table = 2^19 * 4 = 2^21 PTEs.

Total amount of physical memory to hold hash table
= 2^21 PTEs * 16 bytes/PTE
= 2^25 bytes
= 32 MB

Name ___________________________________

 Page 10 of 16

Question 3: AMAT [12 points]

Mark whether the following modifications to an L1 cache will cause each of the categories to increase, decrease, or whether the modification will
have no effect. You can assume the baseline cache is direct-mapped and that all other cache parameters remain unchanged in each case. Explain
your reasoning to receive credit.

 L1 Hit Time L1 Miss Rate L1 Miss Penalty

A Add a sub-
blocking
scheme (Divide
line
into sub-blocks
with a
valid bit for
each sub-block)
(line size
constant)

OK - Same, as can forward data value
from same size data array, with

tag/valid check off critical path, as
cache is direct mapped.

OK (not as good as above, but no
deduction) - Increases very slightly,

as need to also check valid bit, and tag
array is slightly larger.

Increases, as less prefetching of data.

Reduces, as less data brought in on
miss.

B Add an L2
cache

Stays the same, as L1 unchanged.

Stays the same, as L1 unchanged.

Reduces, due to hits in L2.

Name ___________________________________

 Page 11 of 16

C Add a victim
cache

(All parts had
to have
consistent view
of whether VC
considered part
of L1 or
not. Graded
using view that
gave maximum
points.)

If VC considered part of L1 (usual
answer), hit time increases as hits in
victim cache are slower than hits in

regular cache. [-0.5 is said hit time
unchanged but considered VC

part of L1]

If VC not considered part of L1:

L1 hit time unchanged.

If VC considered part of L1, miss rate
drops due to victim cache providing
effectively more associativity.

If VC not considered part of L1:

L1 miss rate unchanged.

If VC considered part of L1, unchanged
(VC access penalty folded into

hit time).

If VC not considered part of L1:

L1 miss penalty reduced due to hits in
VC. OK to say miss penalty

stays the same, if miss fetched in
parallel with checking victim

cache.

D Add hardware
prefetching

Unchanged.

Reduced, as data prefetched into L1.
(Assume prefetching beneficial.)

OK - Remains the same.

OK - to say reduced, if might have
started prefetch of line before

demand miss.

OK - to say increase, if additional
prefetch traffic slows demand

fetches.

Name ___________________________________

 Page 12 of 16

Question 4: Code Optimizations [16 points]

Will the following transformations to C code increase, or decrease performance? Assume all
arrays are 4-byte integer arrays. Carefully explain how the transformation impacts
performance to receive credit.

Q4.A [4 points]
before:
for (i=0; i<M; i++) {
 for (j=0; j<N; j++) {
 x[i*N+j] = 2 * x[i*N+j];
 }
}

after:
for (j=0; j<N; j++) {
 for (i=0; i<M; i++) {
 x[i*N+j] = 2 * x[i*N+j];
 }
}

Decrease: Unit strided loads and stores are transformed to strided loads and stores. This
transformation reduces spatial locality.

Q4.B [4 points]
before:
for (i=0; i<N; i++)
 a[i] = b[i] * c[i];
for (i=0; i<N; i++)
 d[i] = a[i] * c[i];

after:
for (i=0; i<N; i++) {
 a[i] = b[i] * c[i];
 d[i] = a[i] * c[i];
}

Increase: Loop fusion increases temporal locality (accessing array a and c).

Name ___________________________________

 Page 13 of 16

Q4.C [4 points]
before:
for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 B[j*N+i] = A[i*N+j];

after:
int BS=8;
for (i=0; i<N; i+=BS)
 for (j=0; j<N; j++)
 for (k=0; k<BS; k++)
 B[j*N+(i+k)] = A[(i+k)*N+j];

Increase: Cache blocking/tiling effectively reduces the working set size. In other words, cache
blocking/tiling ensures that cache lines are reused before getting evicted.

Q4.D [4 points]
before:
for (i=0; i<N; i++)
 c[i] = a[i] + b[i];

after:
int P=1;
for (i=0; i<N; i++) {
 prefetch(&a[i+P]);
 prefetch(&b[i+P]);
 prefetch(&c[i+P]);
 c[i] = a[i] + b[i];
}

Decrease: Prefetching too close will likely slow down the execution, as prefetch instructions
become pure overhead. Also prefetech instructions take up space in the I$.

END OF QUIZ

Name ___________________________________

 Page 14 of 16

THIS PAGE WAS INTENTIONALLY LEFT BLANK

Name ___________________________________

 Page 15 of 16

Appendix A. Direct-mapped Cache

The following diagram shows how a direct-mapped cache is organized. To read a word from the
cache, the input address is set by the processor. Then the index portion of the address is decoded
to access the proper row in the tag memory array and in the data memory array. The selected tag
is compared to the tag portion of the input address to determine if the access is a hit or not. At the
same time, the corresponding cache block is read and the proper line is selected through a MUX.

Figure A-1: A direct-mapped cache implementation

In the tag and data array, each row corresponds to a line in the cache. For example, a row in the
tag memory array contains one tag and two status bits (valid and dirty) for the cache line. For
direct-mapped caches, a row in the data array holds one cache line.

YOU MAY DETACH THIS PAGE

Tag Index

Data
Decoder

Tag
Decoder

Tag Status

MUX=
Valid Bit

Comparator

Data
Output
Driver

2b: cache line size (bytes)
Input Address

2b-2 data words

Valid
Output
Driver

Name ___________________________________

 Page 16 of 16

Appendix B. Two-way Set-associative Cache

The implementation of a 2-way set-associative cache is shown in the following diagram. (An n-
way set-associative cache can be implemented in a similar manner.) The index part of the input
address is used to find the proper row in the data memory array and the tag memory array. In this
case, each row (set) corresponds to two cache lines (two ways). A row in the data memory holds
two cache lines (for 32-bytes cache lines, 64 bytes), and a row in the tag memory array contains
two tags and status bits for those tags (2 bits per cache line). The tag memory and the data
memory are accessed in parallel, but the output data driver is enabled only if there is a cache hit.

Figure B-1: A 2-way set-associative cache implementation

YOU MAY DETACH THIS PAGE
!

Tag Index 0 0

MUX

Data
Decoder

Tag
Decoder

=

S TT S 2x2b-2 data words

MUX=

Valid
Output Driver

Buffer Driver

Valid Bit

Comparator

Data
Output Drivers

2b: cache line size (bytes)
Input Address

