
QUIZ 5 SOLUTIONS

CS152 – Spring 2008
Krste Asanovic

May 6, 2008

Problem Q5.1 How is vertical waste

caused by long latency

instructions reduced?

How is horizontal waste

caused by wide issue

widths reduced?

Where and by what is most

parallelism extracted (e.g.,

programmer, compiler,

hardware)?

Name a limitation or

disadvantage as compared

to a simple in-order

execution RISC machine

Out-of-Order

Execution

VLIW

Vector

Multithreading

Simultaneous

Multithreading

Problem Q5.2: Predication and VLIW 15 Points

Problem M5.2.A

 l.s f1, 0(r1) ; f1 = *r1

 seq.s r5, f10, f1 ; r5 = (f10==f1)

 cmpnez p1, r5 ; p1 = (r5!=0)

 (p1) add.s f2, f1, f11 ; if (p1) f2 = f1+f11

 (!p1) add.s f2, f1, f12 ; if(!p1) f2 = f1+f12

 s.s f2, 0(r2) ; *r2 = f2

Problem Q5.3: Multithreaded architectures

Problem Q5.3.A

4, largest latency for any instruction is 4

Problem Q5.3.B

2/12 = 0.17 flops/cycle (two flops per loop, on average we complete a loop every 12

cycles)

Problem Q5.3.C

Yes, we can hide the latency of the floating point instructions by moving the add

instructions in between floating point and store instructions – we’d only need 3 threads.

Moving the third load up to follow the second load would further reduce thread

requirement to only 2.

Problem Q5.4: Vectorization 15 Points

State whether each of the following loops could be successfully vectorized and explain

your answer. In all cases, you should assume that arrays A, B, C do not overlap in

memory.

for (i=0; i<N; i++)

 B[i] = A[i] + C;

Yes.

C was supposed to be considered a scalar value. Scalars

can be added to vectors by adding the value to each

element of the vector. These additions are all

independent.

for (i=1; i<N; i++)

 B[i] = A[i] + B[i-1];

No.

To vectorize this, we would have to create vectors out of

arrays A and B, and then operate on all elements in

parallel. However, the value assigned to each element of

B is dependent on the value assigned to the previous

elements, i.e. there is a dependency. Chaining does not

solve this problem because it works only between

consecutive vector instructions, not between the elements

of a single vector instruction.

for (i=0; i<N-1; i++)

 B[i] = A[i] + B[i+1];

Yes.

 Could be done by creating a vector from the elements of

B from 1 to N, adding this to a vector created from the

elements of A from 0 to N-1, and then writing back the

result. In other words, reads and writes to B do not have

to be interleaved so there are no dependencies limiting

vectorization.

for (i=0; i<N; i++)

 C[i] = A[B[i]];

Yes, by using a gather operations. See lecture slides.

for (i=0; i<N; i++)

 if(C[i] != 0)

 B[i] = A[i] + D;

Yes, by using flags/vector masks. See lecture slides.

