
Name ___________________________________

Computer Architecture and Engineering

 CS152 Quiz #5

April 27th, 2016

Professor George Michelogiannakis

Name: _____<ANSWER KEY>_____

This is a closed book, closed notes

exam. 80 Minutes

19 pages

Notes:

 Not all questions are of equal difficulty, so look over the entire exam

and budget your time carefully.

 Please carefully state any assumptions you make.

 Please write your name on every page in the quiz.
 You must not discuss a quiz’s contents with other students who have not taken

the quiz. If you have inadvertently been exposed to a quiz prior to taking it,

you must tell the instructor or TA.

 You will get no credit for selecting multiple-choice answers without

giving explanations if the instruction ask you to explain your choice.

Writing name on each sheet ________________ 1 Point

Question 1 ________________ 30 Points

Question 2 ________________ 32 Points

Question 3 ________________ 21 Points

Question 4 ________________ 16 Points
 Total ________________ 100 Points

 2

Name ___________________________________

Question 1: Memory Models [30 points]

In this question, we will consumer the scenario of a variable number producer threads (as

questions specify) with one consumer. Producer threads run the same code to generate two

elements of 8 each bytes for the consumer. The consumer is thread C. An example with two

producers:

Communication for each thread is handled by a FIFO. There is only one FIFO for all. Producers

put the new elements at the location pointed by the tail (in adjacent locations). The consumer

reads one element at the location pointed by the head and then increments it.

The code is as follows (you can’t change or reorder intructions):

Producer code: Consumer code:

(1) Load Rtail, 0(tail) (1) Load Rhead, 0(head)

(2) Store 0(Rtail), x spin: (2) Load Rtail, 0(tail)

 (3) if Rhead == Rtail goto spin

(3) Rtail = Rtail + 1 (4) Load R, 0(Rhead)

(4) Store 0(Rtail), y

(5) Rtail = Rtail + 1 (5) Rhead = Rhead + 1

(6) Store 0(tail), Rtail (6) Store 0(head), Rhead

(7) process(R)

A

B

C

Producer Producer Consumer

 3

Name ___________________________________

Q1.A Adversary Effects and Fences [6 points]

Lets first assume a system with quiescent consistency, where there are no guarantees of the

order in which loads and stores are made visible, even those from the same processor. The

only guarantee is provided by adding fences. Also, we have only one producer and one

consumer thread.

First explain what can go wrong in the above code without fences using quiescent consistency

(i.e., what is the correctness problem). Be specific by providing an example erroneous

outcome. Then, describe where you would add fence(s) to ensure correctness.

With no guarantees instruction 6 in the producer can happen before 4 or 2 in the producer.

There are similar adverse scenarios with the consumer with Rhead and the value that is read.

To fix this, we have to add a fence after instruction 5 in the producer, and after 3 in the

consumer. Two fences total.

Q1.B Optimization With Fences [5 points]

Still with one producer and one consumer thread and quiescent consistency, re-write the consumer’s

code such that it consumes two elements and uses one fence. Include the fence in your code. Don’t

write or modify the code for the producer.

Load Rhead, 0(head)

Load Rtail, 0(tail)

if Rhead == Rtail || Rhead == Rtail - 1 goto spin

FENCE

Load R1, 0(Rhead)

Load R2, 1(Rhead)
Rhead = Rhead + 2

Store 0(head), Rhead

process(R)

 4

Name ___________________________________

Q1.C Thread Safety [9 points]
Now we will revert to the original code (ignore your modification in Q1.B). We maintain

quiescent consistency, but now we’ll have two producer threads and one consumer. Further

assume that the architecture provides an atomic instruction:

Rewrite the producer’s code to ensure correctness.

 Spin: Load Rtail, 0(tail)

 Addi Rtail2, Rtail, 2

 Swap(tail), Rtail2

 if Rtail2 != Rtail goto spin

 Store 0(Rtail), x

 Store 1(Rtail), y

Name ___________________________________

Swap (m), R:

R
t
 <= M[m];

M[m] <= R;

R <= R
t
;

 5

Q1.D Optimization [6 points]

In Q1.C, how many memory (or cache) accesses does each failed attempt to enter the critical section

produce? Pick one of the following alternative atomic operations and describe how you would

use it to reduce the number of memory or cache accesses. You do not have to write the code as long

as your explanation is clear (but you can if you wish).

Each failed attempt causes one memory access for the swap and one for the load, so two total.

Fetch and add is the answer here because we can use it to replace the code’s original load of Rtail and

the two next instructions (instruction 1, 2, and 3). So the code has no extra loads for synchronization

with fetch and add.

Test&Set (m), R:

R <= M[m];

if R==0 then

 M[m] <= 1;

Fetch&Add (m), R
V
, R:

R <= M[m];

M[m] <= R + R
V
;

Compare&Swap(m), R
t
, R

s
:

 if (R
t
==M[m])

 then M[m]=R
s
;

R

s
=R

t
;

status <= success;

 else status <= fail;

 6

Name ___________________________________

Q1.E Sequential Consistency [4 points]

Now lets assume an architecture that provides sequential consistency. Describe what you need to do to

ensure correctness with the original code as described in the beginning of this question and:

(a) One producer and one consumer.

(b) Two producers and one consumer.

Does the sequential consistency machine need atomic operations?

(a) The sequential consistency machine does not need fenches nor their latency.

(b) The sequential consistency machine does not operate correctly with the original code. It needs

locks. Or it can provide correctness without atomic operations, but algorithms for doing so are

complex.

 7

Name ___________________________________

Question 2: Snoopy Cache Coherence [32 points]

In class we discussed MSI and MESI cache coherence protocols on a bus-based processor. We

will assume 3 cores in a processor. Each core has one snoopy write-back cache and is

connected to the bus. There is also a memory controller and a DMA engine connected to an

array of hard disk drives. The bus has a latency of one cycle.

For this question, we will consider an extended version of MESI, the simplified MOESI

protocol. The MOESI protocol has five states for each cache line as follows (states are

explained from the viewpoint of a single cache):

 Invalid (I): Cache line is not valid (does not exist).

 Shared (S): A shared cache line may exist in other caches. A line in shared state can be

read, but not written to without causing a transition to a new state. The value in the

cache is the same as the value in main memory.

 Exclusive (E): The value is the same as the value in main memory. This line is not

cached in any other cache (other caches have it as invalid).

 Modified (M): The value in the cache line has been modified. Therefore, it is different

than the value in main memory. This line is not in any other cache.

 Owned (O): Cache line is dirty (has been modified). Thus, it is different than the value

in main memory. In this state, the cache line exists in other caches. Only one cache can

have the line in the owned state, and that contains the most up to date data. Other caches

may have the line in the shared state. If the cache line in the owned state is updated

(written), the cache must broadcast the new value to all other caches.

As a default, if a line is written, the MOESI protocol jumps to the modified (M) state if that line

does not exist in other caches. Otherwise, it jumps to the owned (O) state.

The state transition diagram for MESI is provided in the appendix.

 8

Name ___________________________________

Q2.A Transitions to the Owned State [7 points]

To make use of the new state, we need to define transitions to and from it. For each of the

possible transitions, define if they are allowed. If they are, explain what is the trigger (i.e., a local

cache update, remote read, etc), the condition (e.g., other sharers exist), and if there is an action

(e.g., writeback). Do not answer for (O) -> (M) in this question.

(I) -> (O): Trigger: local cache writes the cache line. Condition: Other sharers exist. Action:

Broadcast up to date value

(O) -> (I): Not allowed. If another sharer writes, it will go to owned and the local cache would

transition to shared.

(S) -> (O): Trigger: local cache writes. Condition: Other sharers exist (which is most likely).

Action: broadcast up to date value.

(O) -> (S): Trigger: another cache writes. No condition or action.

(E) -> (O): Not allowed. While in E no other cache has a copy so just transition to M instead.

(O) -> (E): Not allowed.

(M) -> (O): Trigger: Another cache reads. Action: Broadcast modified value.

(O) -> (M): Do not answer this.

 9

Name ___________________________________

Q2.B Why MOESI [3 points]

Why would we choose MOESI over MESI? Do many loads favor MESI or MOESI? Do many

stores many MESI or MOESI?

MOESI has the advantage that one cache can write a line and still allow other caches to be in

the shared state. With MESI, each write would invalidate the line in all other caches that would

cause future cache misses. Many loads favor MOESI. Many stores favor MESI the owned state

causes a broadcast for each store.

Q2.C Owned to Modified [5 points]

Lets focus on the transition from owned (O) to modified (M) in MOESI. If a cache writes a

cache line that is in the owned state (O), should the transition be taken or should the cache line

remain owned? If the transition from owned (O) to modified (M) is taken, an invalidate is sent

to all other caches. To answer, use the example of (a) code with a small number of writes

(stores) and many reads and (b) code with a large number of writes and few reads. The same

code runs on all cores. Is your answer based on correctness, or is it a matter of improving

performance such as by increasing the cache’s hit rate or decreasing the number of messages?

Correctness is not violated in either case. The key is that while in owned (O) state, each write to

the cache triggers a broadcast to all other caches. The benefit is that other caches can be in

shared. In case (a) with few writes, we prefer to stay in owned because the expensive operation

(writes) is infrequent, and we have many reads so we prefer to have them stay in shared. In case

(b), we prefer to transition to modified (M).

 10

Name ___________________________________

Q2.D Sequential Consistency [3 points]

Does cache coherency guarantee sequential consistency? Explain your answer.

It does not. A system with an out-of-order cache and coherency still does not guarantee

sequential consistency.

Q2.E Snoopy Bus Avoids Transients [3 points]

The finite state machines for MOESI and MESI have no transient states with the snoopy bus,

but they do with directories. What is the property of the bus that lets us avoid transient states?

The bus has to provide atomicity. This means that once a message enters, it reaches all other

caches and any replies to that message enter the bus and complete, before any other request can

enter the bus.

 11

Name ___________________________________

Q2.F Coherency Misses [11 points]

Consider the following code running in two cores. For this question we will use the original

MESI protocol instead of MOESI. The state diagram for MESI can be found in the appendix.

(1) LW x1, 0(x5)

(2) LW x2, 0(x6)

(3) SW x3, 0(x6)

(4) SW x2, 0(x5)

(5) LW x1, 0(x6)

Do not optimize or re-order the code. Assume the processor guarantees sequential consistency.

Also, the addresses in x5 and x6 map to different cache lines.

Assume the following execution sequence:

A.1, A.2, B.1, B.2, A.3, B.3, B.4, A.4, A.5, B.5 (A and B are the two cores)

Fill in the table below with the states of the cache lines at every step. Also, count the number of

communication events. A communication event is a message sent from the cache as part of the

transition, and is part of certain transitions. For example, shared to owned causes

communication to broadcast the new value. Assume invalid to exclusive does not cause

communication (i.e., we assume the cache knows there is no other sharer), but invalid to shared

does only if another cache has the line as exclusive. The initial state of both cache lines in both

caches is invalid.

Core: Instruction State x5 cache

line in core A

State x6 cache

line in core A

State x5 cache

line in core B

State x6 cache

line in core B

A: LW x1, 0(x5) E I I I

A: LW x2, 0(x6) E E I I

B: LW x1, 0(x5) S E S I

B: LW x2, 0(x6) S S S S

A: SW x3, 0(x6) S M S I

B: SW x3, 0(x6) S I S M

B: SW x2, 0(x5) I I M M

A: SW x2, 0(x5) M I I M

A: LW x1, 0(x6) M S I S

B: LW x1, 0(x6) M S I S

7 communication events.

 12

Name ___________________________________

Question 3: Directory Protocols [21 points]

Even directory-based coherence is not easy to scale to large core counts. For this question, we

will use this processor architecture as a baseline, as we have seen in the lectures:

For simplicity, we assume that there is only one directory. In the above figure, we show 6

cores. However, for this problem we will discuss how things change as we scale up to 2048

cores. Assume the MSI protocol where cache lines can be in 6 states including transients in the

caches, and 13 states in the directory.

Q3.A Size of Entries [4 points]

For each cache line, the directory maintains state and a bit vector to record which of the cores

have that cache line. For example with 6 cores, a bit vector of “100011” means that cores 1, 5,

and 6 have that cache line.

If a cache line has 64 bytes of data, how many bits of the coherence protocol in the directory,

and how many bits for coherency in a cache? Answer first for 6 cores and then for 2048 cores.

Ignore the tag.

With 6 cores we have log2(6) bits in every cache line for every 64 bytes of data. So log2(6) bits.

The answer is the same for 2048 cores.

For the directory the answer changes. For every 64 bytes of data, we have log2(13) + 6 bits for

6 cores, and log2(13) + 2048 bits for 2048 cores.

 13

Name ___________________________________

Q3.B Alternatives to Bit Vectors [7 points]

From your answer above, it should be apparent that the bit vector each directory maintains

in each cache line quickly becomes a problem as we scale the number of cores. One

alternative is to replace the bit vector with a linked list of core IDs. In that case, if cores 2

and 10 share a cache line, the directory contains the numbers “2” and “10” for that cache

line. With 2048 cores, each of those numbers needs 11 bits. Assume no other overhead for

the linked list.

First determine how many core IDs we can store if we limit the space for the list to 1024

bits. Then, propose a mechanism to deal with the case where we have more cores than your

answer sharing the line. For example, if you answer that we can keep up to 10 sharers, how

would we deal with 12 sharers? In your answer, state how and when a cache line can revert

back to “normal” operation, when the number of sharers drop.

Do not worry about performance in your solution, just correctness. Also, do not add extra

directories. Maintain one directory for the entire processor.

We can store 1024 / 11 rounded down = 93 core IDs. If we get more than 93 sharers, we

would have to force the directory to broadcast any messages to sharers of that line to all

cores, whether they share it or not. That means we no longer have to keep track of what

cores share this line, but the expense is that now we have to broadcast until that line is

evicted from the directory or a core modifies the line (which forces all other sharers to

invalidate so we know there is only one core that has the line at that point).

 14

Name ___________________________________

Q3.C More Directories [7 points]

Based on the possible performance losses from solutions that still keep one directory, now we

would like to add a hierarchy of directories. Hierarchical directories work much like a hierarchy

of caches. We will assume only two levels of directories. In the first level, we have one

directory every 16 cores (128 directories for 2048 cores). In the second level, we still have a

single directory. A core’s cache sends a message to its first-level directory. If that cache line is

only shared within the group of processors that this first-level directory serves, the request is

satisfied and an answer is returned. Otherwise, the request is further propagated to the second-

level directory, which then forwards messages to any first-level directories that serve cores

which have that cache line. The second-level directory does not send messages to cores directly,

and treats groups as a single domain. I.e., is a core in a group shares a line, the second-level

directory does not need to know which caches(s) is that group the line is in.

What is the advantage of this design that helps scalability?

Then, at a high level, describe the sequence of events and messages if core A has a line in the

shared state and wants to write to it. Core B is in the same 16-core group and has the same line in

the shared state. Also, core C has it in shared, but is in a different 16-core group.

The advantage is that first-level directories only maintain sharer state (e.g., the bit vector) for 16

cores. The second-level directory only maintains a bit vector for 128 first-level directories.

In that scenario, core A sends a message to its first-level directory. That directory then sends a

message to invalidate core B’s copy, and also propagates the message to the second-level

directory. That then sends it to the first-level directory that serves core C, which forwards it to

core C. The acknowledgment from core C is sent via the same directories to core A’s first-level

directory which also waits for the acknowledgment from core B. Then, core A’s first-level

directory sends the final acknowledgment to core A which then transitions that line to the

modified state.

16

cores

16

cores

L1 Dir L1 Dir

L2 Dir

 15

Name ___________________________________

Q3.D More Levels [3 points]

Name one advantage and one disadvantage of increasing the levels of our directory hierarchy to

three from two. Does having a hierarchy of directories affect where we want to place cores that

tend to share data (e.g., producer – consumer)?

One advantage: less state required per directory. This makes directories smaller and thus can be

clocked faster. Disadvantage: more messages between directories. Having groups motivates

placing cores that share data in the same group to reduce communication outside the group.

 16

Name ___________________________________

Question 4: Potpourri [16 points]

Q4.A Measure of Performance [5 points]

Suppose we write a parallel program with a critical section. We provide mutual exclusion with a

store conditional, as the example below for the consumer, as we have seen in the lectures:

Is CPI (clocks per instruction) an accurate measure of performance? Can you propose a more

accurate measure of performance for parallel applications?

The problem with CPI in this example (same as with locks) is that a core can be executing

instructions but not be making forward progress. In the above example, trying again after failing

the store conditional increases the instruction count, but is not helping the code make progress. A

more accurate measurement will be completion time. That is, the time is takes for the slowest

thread of the same application to complete.

 17

Name ___________________________________

Q4.B Sequential Consistency with Out-of-Order Cores [3 points]

Can an out-of-order execute and out-of-order commit core be used in a sequential consistent

system? How about an out-of-order execute but in-order commit?

No to the first and yes to the second. The key is what order loads and stores are made visible

outside of the core and to the cache. Out-of-order commit cores violate sequential consistency in

the order loads and stores arrive to the cache.

Q4.C Misses with Coherence [4 points]

In a uniprocessor system, we previously discussed that keeping the number of lines constant in a

cache and increasing the cache line size tends to decrease the number of cache misses. In a cache

coherent system executing a parallel program with locks and critical sections, is increasing the

cache line size always a win?

No. Cache coherence applies in a cache line granularity. Especially with locks, small 4 or 8 byte

values will frequently be accessed by different threads. If those values are different but map to

the same cache line, they will cause false sharing coherence misses, caused by the coherence

protocol invalidating entire lines.

 18

Name ___________________________________

Q4.D Multiple Synchronization Primitives [4 points]

In class and in problem 1 of this quiz, we mentioned multiple synchronization primitives

such as test&set, fetch&add, compare&swap, etc. Why do modern ISAs provide these many

primitives even though only one is enough to guarantee correctness, such as by

implementing locks?

Multiple reasons. ISAs need to provide different alternatives because the underlying

hardware or architectural decisions can make one of these primitives more efficient. Also,

the same is true for characteristics of program behavior such as the number of writes and

contention. In addition, different primitives can be used for different needs. For example,

non-blocking functions need non-blocking promitives (such as compare&swap) for

example.

 19

Appendix

The state machine for the unmodified MESI protocol:

YOU MAY DETACH THIS PAGE

