
Last updated:
5/7/2008 8:55 PM

Page 1 of 1

QUIZ 6 SOLUTIONS

Problem M4.4: Implementing Directories

Problem M4.4.A

Overhead for a 4-processor system: 4 bits / 32 bytes = 4 / (32 * 8) = 1/64

Overhead for a 64-processor system: 64 bits / 32 bytes = 64 / (32 * 8) = 1/4

Problem M4.4.B

Sequence 1 bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B 0 1
Processor #0 reads B 0 1

For the bit-vector scheme: No invalidate-requests are sent.

For the single-sharer scheme:
1 invalidate-request is sent to P0 when P1 reads B.
1 invalidate-request is sent to P1 when P0 reads B the second time.

Sequence 2 bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B 0 1
Processor #2 writes B 2 1

For the bit-vector scheme:
1 invalidate-request is sent to each shared processor (P0 and P1) when P2 writes B.
-> 2 invalidate-requests are sent.

For the single-sharer scheme:
1 invalidate-request is sent to P0 when P1 reads B.
1 invalidate-request is sent to the only sharer (P1) when P2 writes B.

Last updated:
5/7/2008 8:55 PM

Page 2 of 2

Problem M4.4.C

Sequence 1 global-bit scheme

of invalidate-requests
Processor #0 reads B 0
Processor #1 reads B 0
Processor #0 reads B 0

For the global-bit scheme: No invalidate-requests are sent.

Sequence 2 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B 0
Processor #2 writes B 64

For the global-bit scheme:
1 invalidate-request is sent to each of the 64 processors because the global bit is set when P2
writes B. -> 64 invalidate-requests are sent.

Note: If the protocol is optimized, no invalidate-request would be sent to P2 and the number of
invalidate-requests would be 63 instead of 64.

Last updated:
5/7/2008 8:55 PM

Page 3 of 3

Problem M4.4.D

In Tr(all), all is the set containing all the processors.

No. Current State Message
Received Next State Action

1 R(dir) & (dir = ε) ShReq R({k}) ShRep->k

2 R(dir) & (dir = ε) ExReq W(k) ExRep->k

3 R(dir) & (dir ≠ ε) ShReq R(all)

ShRep->k

4 R(all) ShReq R(all)

ShRep->k

5 R(dir) & (dir ≠ ε) ExReq Tr(dir)

InvReq->dir
(dir has only one entry.)

6 R(all) ExReq Tr(all)

InvReq->all

7 W(id) ShReq Tw(id) WbReq->id

8 Tr(dir) & (id ∈ dir) InvRep Tr(dir - {id}) nothing

9 Tr(dir) & (dir = {k}) InvRep W(j)

ExRep->j

10 Tw(id) FlushRep R(ε)

Data->memory

Table M4.4-1: Partial List of Home Directory State Transitions

Last updated:
5/7/2008 8:55 PM

Page 4 of 4

Problem M4.8: Snoopy Cache Coherent Shared Memory [? Hours]

Problem M4.8.A

Fill out the state transition table for the new COS state:

initial state other
cached

ops actions by this
cache

final
state

COS yes none none COS
 CPU read none COS
 CPU write CI OE
 replace none I
 CR CCI COS
 CRI CCI I
 CI none I
 Impossible

WR
Or: none COS

 CWI none I

Note that WR is not necessary during replace because the line is clean.
Also, an incoming WR operations is Impossible because other caches can only have the block in
the CS state, but (none, COS) was also accepted as a correct answer.

Problem M4.8.B

state for data block B

cache transaction
source
for data cache 1 cache 2 cache 3 cache 4

0. initial state — I I I I
1. cache 1 reads data block B memory CE I I I
2. cache 2 reads data block B CCI COS CS I I
3. cache 3 reads data block B CCI COS CS CS I
4. cache 1 replaces block B - I CS CS I
5.cache 4 reads data block B memory I CS CS CS

Problem M4.8.C

When the CPU does a write, it can change a cache block from CE to OE with no bus operation,
but to transition from COS to OE it must first broadcast a CI on the bus to invalidate any shared
(CS) copies of the block.

Last updated:
5/7/2008 8:55 PM

Page 5 of 5

Problem M4.11: Relaxed Memory Models [? Hours]

We will study the interaction between two processes on different processors on such a system:

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

Problem M4.11.A

memory contents
M[R8] 7
M[R9] 6

Yes No

P1.1 P2.1 P1.2 P1.3 P2.2 P2.3

Problem M4.11.B

memory Contents
M[R8] 6
M[R9] 7

Yes No

The result would require that the memory contents don’t change. Since each thread reads a data
value and writes it to another address, this simply impossible here.

Problem M4.11.C

Is it possible for M[R8] to hold 0?

Yes No

The only way that M[R8] could end up with 0 is if P2.3 is completed before P2.1 and P2.2. This
violates Weak Ordering, so it is not possible.

Now consider the same program, but with two MEMBAR instructions.

Last updated:
5/7/2008 8:55 PM

Page 6 of 6

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We want to compare execution of the two programs on our system.

Problem M4.11.D

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Following sequence works with and without MEMBAR instructions:
P1.1 -> P1.2 -> P2.1 -> P2.2 -> P1.3 -> P2.3

Problem M4.11.E

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

If M[R8] and M[R9] are to end up with 7, we have to execute P2.3 before we execute P1.1 Since
P1.3 has to come after P1.1 (Weak Ordering), R3, has to end up with 7 not 6.

Last updated:
5/7/2008 8:55 PM

Page 7 of 7

Problem M4.11.F

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

P2.2 P1.1 P1.2 P2.1 P2.3 P1.3

With MEMBAR instructions? Yes No

The sequence above violates the MEMBAR in P2—P2.2 executes before P2.1. That is
the only way to get 8 into both memory locations, thus the result is impossible with
MEMBARs insterted.

