
The RISC-V Instruction Set Manual
Volume I: User-Level ISA

Version 2.0

Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanović
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Preface

This is the second release of the user ISA specification, and we intend the specification of the
base user ISA plus general extensions (i.e., IMAFD) to remain fixed for future development. The
following changes have been made since Version 1.0 [25] of this ISA specification.

• The ISA has been divided into an integer base with several standard extensions.

• The instruction formats have been rearranged to make immediate encoding more efficient.

• The base ISA has been defined to have a little-endian memory system, with big-endian or
bi-endian as non-standard variants.

• Load-Reserved/Store-Conditional (LR/SC) instructions have been added in the atomic in-
struction extension.

• AMOs and LR/SC can support the release consistency model.

• The FENCE instruction provides finer-grain memory and I/O orderings.

• An AMO for fetch-and-XOR (AMOXOR) has been added, and the encoding for AMOSWAP
has been changed to make room.

• The AUIPC instruction, which adds a 20-bit upper immediate to the PC, replaces the RDNPC
instruction, which only read the current PC value. This results in significant savings for
position-independent code.

• The JAL instruction has now moved to the U-Type format with an explicit destination
register, and the J instruction has been dropped being replaced by JAL with rd=x0. This
removes the only instruction with an implicit destination register and removes the J-Type
instruction format from the base ISA. There is an accompanying reduction in JAL reach, but
a significant reduction in base ISA complexity.

• The static hints on the JALR instruction have been dropped. The hints are redundant with
the rd and rs1 register specifiers for code compliant with the standard calling convention.

• The JALR instruction now clears the lowest bit of the calculated target address, to simplify
hardware and to allow auxiliary information to be stored in function pointers.

• The MFTX.S and MFTX.D instructions have been renamed to FMV.X.S and FMV.X.D,
respectively. Similarly, MXTF.S and MXTF.D instructions have been renamed to FMV.S.X
and FMV.D.X, respectively.

• The MFFSR and MTFSR instructions have been renamed to FRCSR and FSCSR, respec-
tively. FRRM, FSRM, FRFLAGS, and FSFLAGS instructions have been added to individu-
ally access the rounding mode and exception flags subfields of the fcsr.

• The FMV.X.S and FMV.X.D instructions now source their operands from rs1, instead of rs2.
This change simplifies datapath design.

• FCLASS.S and FCLASS.D floating-point classify instructions have been added.
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• A simpler NaN generation and propagation scheme has been adopted.

• For RV32I, the system performance counters have been extended to 64-bits wide, with separate
read access to the upper and lower 32 bits.

• Canonical NOP and MV encodings have been defined.

• Standard instruction-length encodings have been defined for 48-bit, 64-bit, and >64-bit in-
structions.

• Description of a 128-bit address space variant, RV128, has been added.

• Major opcodes in the 32-bit base instruction format have been allocated for user-defined
custom extensions.

• A typographical error that suggested that stores source their data from rd has been corrected
to refer to rs2.
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Chapter 1

Introduction

RISC-V (pronounced “risk-five”) is a new instruction set architecture (ISA) that was originally
designed to support computer architecture research and education, but which we now hope will
become a standard open architecture for industry implementations. Our goals in defining RISC-V
include:

• A completely open ISA that is freely available to academia and industry.

• A real ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

• An ISA that avoids “over-architecting” for a particular microarchitecture style (e.g., mi-
crocoded, in-order, decoupled, out-of-order) or implementation technology (e.g., full-custom,
ASIC, FPGA), but which allows efficient implementation in any of these.

• An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support general-
purpose software development.

• Support for the revised 2008 IEEE-754 floating-point standard [8].

• An ISA supporting extensive user-level ISA extensions and specialized variants.

• Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

• An ISA with support for highly-parallel multicore or manycore implementations, including
heterogeneous multiprocessors.

• Optional variable-length instructions to both expand available instruction encoding space and
to support an optional dense instruction encoding for improved performance, static code size,
and energy efficiency.

• A fully virtualizable ISA to ease hypervisor development.

• An ISA that simplifies experiments with new supervisor-level and hypervisor-level ISA de-
signs.

Commentary on our design decisions is formatted as in this paragraph, and can be skipped if the
reader is only interested in the specification itself.

The name RISC-V was chosen to represent the fifth major RISC ISA design from UC Berkeley
(RISC-I [16], RISC-II [9], SOAR [23], and SPUR [12] were the first four). We also pun on the

1
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use of the Roman numeral “V” to signify “variations” and “vectors”, as support for a range of
architecture research, including various data-parallel accelerators, is an explicit goal of the ISA
design.

We developed RISC-V to support our own needs in research and education, where our group is
particularly interested in actual hardware implementations of research ideas (we have completed
eight different silicon fabrications of RISC-V since the first edition of this specification), and in
providing real implementations for students to explore in classes (RISC-V processor RTL de-
signs have been used in multiple undergraduate and graduate classes at Berkeley). In our current
research, we are especially interested in the move towards specialized and heterogeneous accel-
erators, driven by the power constraints imposed by the end of conventional transistor scaling.
We wanted a highly flexible and extensible base ISA around which to build our research effort.

A question we have been repeatedly asked is “Why develop a new ISA?” The biggest obvious
benefit of using an existing commercial ISA is the large and widely supported software ecosystem,
both development tools and ported applications, which can be leveraged in research and teaching.
Other benefits include the existence of large amounts of documentation and tutorial examples.
However, our experience of using commercial instruction sets for research and teaching is that
these benefits are smaller in practice, and do not outweigh the disadvantages:

• Commercial ISAs are proprietary. Except for SPARC V8, which is an open IEEE
standard [1], most owners of commercial ISAs carefully guard their intellectual property
and do not welcome freely available competitive implementations. This is much less of an
issue for academic research and teaching using only software simulators, but has been a
major concern for groups wishing to share actual RTL implementations. It is also a major
concern for entities who do not want to trust the few sources of commercial ISA imple-
mentations, but who are prohibited from creating their own clean room implementations.
We cannot guarantee that all RISC-V implementations will be free of third-party patent
infringements, but we can guarantee we will not attempt to sue a RISC-V implementor.

• Commercial ISAs are only popular in certain market domains. The most obvious
examples at time of writing are that the ARM architecture is not well supported in the server
space, and the Intel x86 architecture (or for that matter, almost every other architecture)
is not well supported in the mobile space, though both Intel and ARM are attempting to
enter each other’s market segments. Another example is ARC and Tensilica, which provide
extensible cores but are focused on the embedded space. This market segmentation dilutes
the benefit of supporting a particular commercial ISA as in practice the software ecosystem
only exists for certain domains, and has to be built for others.

• Commercial ISAs come and go. Previous research infrastructures have been built
around commercial ISAs that are no longer popular (SPARC, MIPS) or even no longer
in production (Alpha). These lose the benefit of an active software ecosystem, and the
lingering intellectual property issues around the ISA and supporting tools interfere with the
ability of interested third parties to continue supporting the ISA. An open ISA might also
lose popularity, but any interested party can continue using and developing the ecosystem.

• Popular commercial ISAs are complex. The dominant commercial ISAs (x86 and
ARM) are both very complex to implement in hardware to the level of supporting common
software stacks and operating systems. Worse, nearly all the complexity is due to bad, or
at least outdated, ISA design decisions rather than features that truly improve efficiency.

• Commercial ISAs alone are not enough to bring up applications. Even if we
expend the effort to implement a commercial ISA, this is not enough to run existing appli-
cations for that ISA. Most applications need a complete ABI (application binary interface)
to run, not just the user-level ISA. Most ABIs rely on libraries, which in turn rely on
operating system support. To run an existing operating system requires implementing the
supervisor-level ISA and device interfaces expected by the OS. These are usually much less
well-specified and considerably more complex to implement than the user-level ISA.
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• Popular commercial ISAs were not designed for extensibility. The dominant
commercial ISAs were not particularly designed for extensibility, and as a consequence have
added considerable instruction encoding complexity as their instruction sets have grown.
Companies such as Tensilica (acquired by Cadence) and ARC (acquired by Synopsys) have
built ISAs and toolchains around extensibility, but have focused on embedded applications
rather than general-purpose computing systems.

• A modified commercial ISA is a new ISA. One of our main goals is to support ar-
chitecture research, including major ISA extensions. Even small extensions diminish the
benefit of using a standard ISA, as compilers have to be modified and applications rebuilt
from source code to use the extension. Larger extensions that introduce new architectural
state also require modifications to the operating system. Ultimately, the modified commer-
cial ISA becomes a new ISA, but carries along all the legacy baggage of the base ISA.

Our philosophy is that the ISA is perhaps the most important interface in a computing
system, and there is no reason that such an important interface should be proprietary. The
dominant commercial ISAs are based on instruction set concepts that were already well known
over 30 years ago. Software developers should be able to target an open standard hardware target,
and commercial processor designers should compete on implementation quality.

We are far from the first to contemplate an open ISA design suitable for hardware imple-
mentation. We also considered other existing open ISA designs, of which the closest to our
goals was the OpenRISC architecture [15]. We decided against adopting the OpenRISC ISA for
several technical reasons:

• OpenRISC has condition codes and branch delay slots, which complicate higher performance
implementations.

• OpenRISC uses a fixed 32-bit encoding and 16-bit immediates, which precludes a denser
instruction encoding and limits space for later expansion of the ISA.

• OpenRISC does not support the 2008 revision to the IEEE 754 floating-point standard.

• The OpenRISC 64-bit design had not been completed when we began.

By starting from a clean slate, we could design an ISA that met all of our goals, though of
course, this took far more effort than we had planned at the outset. We have now invested con-
siderable effort in building up the RISC-V ISA infrastructure, including documentation, compiler
tool chains, operating system ports, reference ISA simulators, FPGA implementations, efficient
ASIC implementations, architecture test suites, and teaching materials. We will continue to
work on building out the support software and will share our results under open licenses (either
modified BSD or GPL/LGPL as appropriate) at the www.riscv.org website in the hope that we
can build a larger open-source community around this ISA.

The RISC-V manual is structured in two volumes. This volume covers the user-level ISA design,
including optional ISA extensions. The second volume provides examples of supervisor-level ISA
design.

In this user-level manual, we aim to remove any dependence on particular microarchitectural
features or on supervisor-level details. This is both for clarity and to allow maximum flexibility
for alternative implementations.

1.1 RISC-V ISA Overview

The RISC-V ISA is defined as a base integer ISA, which must be present in any implementation,
plus optional extensions to the base ISA. The base integer ISA is very similar to that of the early
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RISC processors except with no branch delay slots and with support for optional variable-length
instruction encodings. The base is carefully restricted to a minimal set of instructions sufficient
to provide a reasonable target for compilers, assemblers, linkers, and operating systems (with
additional supervisor-level operations), and so provides a convenient ISA and software toolchain
“skeleton” around which more customized processor ISAs can be built.

Each base integer instruction set is characterized by the width of the integer registers and the
corresponding size of the user address space. There are two base integer variants, RV32I and
RV64I, described in Chapters 2 and 3, which provide 32-bit or 64-bit user-level address spaces
respectively. Hardware implementations and operating systems might provide only one or both of
RV32I and RV64I for user programs. Chapter 17 describes a future RV128I variant of the base
integer instruction set supporting a flat 128-bit user address space.

Although 64-bit address spaces are a requirement for larger systems, we believe 32-bit address
spaces will remain adequate for many embedded and client devices for decades to come and will
be desirable to lower memory traffic and energy consumption. In addition, 32-bit address spaces
are sufficient for educational purposes. A larger flat 128-bit address space might eventually be
required, so we ensured this could be accommodated within the RISC-V ISA framework.

The base integer ISA may be subset by a hardware implementation, but opcode traps and software
emulation by a supervisor layer must then be used to implement functionality not provided by
hardware.

Subsets of the base integer ISA might be useful for pedagogical purposes, but the base has been
defined such that there should be little incentive to subset a real hardware implementation beyond
omitting support for misaligned memory accesses and treating all SYSTEM instructions as a
single trap.

RISC-V has been designed to support extensive customization and specialization. The base integer
ISA can be extended with one or more optional instruction-set extensions, but the base integer
instructions cannot be redefined. We divide RISC-V instruction-set extensions into standard and
non-standard extensions. Standard extensions should be generally useful and should not conflict
with other standard extensions. Non-standard extensions may be highly specialized, or may conflict
with other standard or non-standard extensions. Instruction-set extensions may provide slightly
different functionality depending on the width of the base integer instruction set. Chapter 9 de-
scribes various ways of extending the RISC-V ISA. We have also developed a naming convention
for RISC-V base instructions and instruction-set extensions, described in detail in Chapter 10.

To support more general software development, a set of standard extensions are defined to provide
integer multiply/divide, atomic operations, and single and double-precision floating-point arith-
metic. The base integer ISA is named “I” (prefixed by RV32 or RV64 depending on integer reg-
ister width), and contains integer computational instructions, integer loads, integer stores, and
control-flow instructions, and is mandatory for all RISC-V implementations. The standard integer
multiplication and division extension is named “M”, and adds instructions to multiply and divide
values held in the integer registers. The standard atomic instruction extension, denoted by “A”,
adds instructions that atomically read, modify, and write memory for inter-processor synchroniza-
tion. The standard single-precision floating-point extension, denoted by “F”, adds floating-point
registers, single-precision computational instructions, and single-precision loads and stores. The
standard double-precision floating-point extension, denoted by “D”, expands the floating-point
registers, and adds double-precision computational instructions, loads, and stores. An integer base
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plus these four standard extensions (“IMAFD”) is given the abbreviation “G” and provides a
general-purpose scalar instruction set. RV32G and RV64G are currently the default target of our
compiler toolchains. Later chapters describe these and other planned standard RISC-V extensions.

Beyond the base integer ISA and the standard extensions, it is rare that a new instruction will
provide a significant benefit for all applications, although it may be very beneficial for a certain
domain. As energy efficiency concerns are forcing greater specialization, we believe it is important to
simplify the required portion of an ISA specification. Whereas other architectures usually treat their
ISA as a single entity, which changes to a new version as instructions are added over time, RISC-V
will endeavor to keep the base and each standard extension constant over time, and instead layer
new instructions as further optional extensions. For example, the base integer ISAs will continue
as fully supported standalone ISAs, regardless of any subsequent extensions.

With this 2.0 release of the user ISA specification, we intend the “IMAFD” base and standard
extensions (aka. “G”) to remain constant for future development.

1.2 Instruction Length Encoding

The base RISC-V ISA has fixed-length 32-bit instructions that must be naturally aligned on 32-bit
boundaries. However, the standard RISC-V encoding scheme is designed to support ISA extensions
with variable-length instructions, where each instruction can be any number of 16-bit instruction
parcels in length and parcels are naturally aligned on 16-bit boundaries. The standard compressed
ISA extension described in Chapter 13 reduces code size by providing compressed 16-bit instructions
and relaxes the alignment constraints to allow all instructions (16 bit and 32 bit) to be aligned on
any 16-bit boundary to improve code density.

Figure 1.1 illustrates the standard RISC-V instruction-length encoding convention. All the 32-bit
instructions in the base ISA have their lowest two bits set to 11. The optional compressed 16-bit
instruction-set extensions have their lowest two bits equal to 00, 01, or 10. Standard instruction-
set extensions encoded with more than 32 bits have additional low-order bits set to 1, with the
conventions for 48-bit and 64-bit lengths shown in Figure 1.1. Instruction lengths between 80 bits
and 304 bits are encoded using a 4-bit field giving the number of 16-bit words in addition to the
first 5×16-bit words. Encodings with 11 or more low-order opcode bits set to 1 are reserved for
future longer instruction encodings.

Given the code size and energy savings of a compressed format, we wanted to build in support
for a compressed format to the ISA encoding scheme rather than adding this as an afterthought,
but to allow simpler implementations we didn’t want to make the compressed format mandatory.
We also wanted to optionally allow longer instructions to support experimentation and larger
instruction-set extensions. Although our encoding convention required a tighter encoding of the
core RISC-V ISA, this has several beneficial effects.

An implementation of the standard G ISA need only hold the most-significant 30 bits in
instruction caches (a 6.25% saving). On instruction cache refills, any instructions encountered
with either low bit clear should be recoded into illegal 30-bit instructions before storing in the
cache to preserve illegal instruction trap behavior.

Perhaps more importantly, by condensing our base ISA into a subset of the 32-bit instruction
word, we leave more space available for custom extensions. In particular, the base RV32I ISA
uses less than 1/8 of the encoding space in the 32-bit instruction word. As described in Chap-
ter 9, an implementation that does not require support for the standard compressed instruction
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extension can map 3 additional 30-bit instruction spaces into the 32-bit fixed-width format, while
preserving support for standard >=32-bit instruction-set extensions. Further, if the implemen-
tation also does not need instructions >32-bits in length, it can recover a further four major
opcodes.

We consider it a feature that any length of instruction containing all zero bits is not legal, as
this quickly traps erroneous jumps into zeroed memory regions.

The base RISC-V ISA has a little-endian memory system, but non-standard variants can provide
a big-endian or bi-endian memory system. Instructions are stored in memory with each 16-bit
parcel stored in a memory halfword according to the implementation’s natural endianness. Parcels
comprising one instruction are stored at increasing halfword addresses, with the lowest addressed
parcel holding the lowest numbered bits in the instruction specification, i.e., instructions are always
stored in a little-endian sequence of parcels regardless of the memory system endianness. The code
sequence in Figure 1.2 will store a 32-bit instruction to memory correctly regardless of memory
system endianness.

We chose little-endian byte ordering for the RISC-V memory system because little-endian sys-
tems are currently dominant commercially (all x86 systems; iOS, Android, and Windows for
ARM). A minor point is that we have also found little-endian memory systems to be more nat-
ural for hardware designers. However, certain application areas, such as IP networking, operate
on big-endian data structures, and so we leave open the possibility of non-standard big-endian
or bi-endian systems.

We have to fix the order in which instruction parcels are stored in memory, independent
of memory system endianness, to ensure that the length-encoding bits always appear first in
halfword address order. This allows the length of a variable-length instruction to be quickly
determined by an instruction fetch unit by examining only the first few bits of the first 16-bit
instruction parcel. Once we had decided to fix on a little-endian memory system and instruction
parcel ordering, this naturally led to placing the length-encoding bits in the LSB positions of the
instruction format to avoid breaking up opcode fields.

1.3 Exceptions, Traps, and Interrupts

We use the term exception to refer to an unusual condition occurring at run time. We use the term
trap to refer to the synchronous transfer of control to a supervisor environment when caused by
an exceptional condition occurring within a RISC-V thread. We use the term interrupt to refer to
the asynchronous transfer of control to a supervisor environment caused by an event outside of the
current RISC-V thread.

The instruction descriptions in following chapters describe conditions that raise an exception dur-
ing execution. Whether and how these are converted into traps is dependent on the execution
environment, though the expectation is that most environments will take a precise trap when an
exception is signaled (except for floating-point exceptions, which, in the standard floating-point
extensions, do not cause traps).

Our use of “exception” and “trap” matches that in the IEEE-754 floating-point standard.
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xxxxxxxxxxxxxxaa 16-bit (aa 6= 11)

xxxxxxxxxxxxxxxx xxxxxxxxxxxbbb11 32-bit (bbb 6= 111)

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxxx011111 48-bit

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxxxxx0111111 64-bit

· · ·xxxx xxxxxxxxxxxxxxxx xxxxxnnnn1111111 (80+16*nnnn)-bit, nnnn6=1111

· · ·xxxx xxxxxxxxxxxxxxxx xxxxx11111111111 Reserved for ≥320-bits

Byte Address: base+4 base+2 base

Figure 1.1: RISC-V instruction length encoding.

// Store 32-bit instruction in x2 register to location pointed to by x3.

sh x2, 0(x3) // Store low bits of instruction in first parcel.

srli x2, x2, 16 // Move high bits down to low bits, overwriting x2.

sh x2, 2(x3) // Store high bits in second parcel.

Figure 1.2: Recommended code sequence to store 32-bit instruction from register to memory.
Operates correctly on both big- and little-endian memory systems and avoids misaligned accesses
when used with variable-length instruction-set extensions.
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Chapter 2

RV32I Base Integer Instruction Set

This chapter describes the RV32I base integer instruction set. Much of the commentary also applies
to the RV64I variant.

RV32I was designed to be sufficient to form a compiler target and to support modern operating
system environments. The ISA was also designed to reduce the hardware required in a minimal
implementation. RV32I contains 47 unique instructions, though an implementation might cover
the eight SCALL/SBREAK/RD* instructions with a single SYSTEM hardware instruction that
always traps, reducing hardware instruction count to 40 total. RV32I can emulate almost any
other ISA extension (except the A extension, which requires additional hardware support for
atomicity).

2.1 Programmers’ Model for Base Integer Subset

Figure 2.1 shows the user-visible state for the base integer subset. There are 31 general-purpose
registers x1–x31, which hold integer values. Register x0 is hardwired to the constant 0. There is
no hardwired subroutine return address link register, but the standard software calling convention
uses register x1 to hold the return address on a call. For RV32, the x registers are 32 bits wide,
and for RV64, they are 64 bits wide. This document uses the term XLEN to refer to the current
width of an x register in bits (either 32 or 64).

There is one additional user-visible register: the program counter pc holds the address of the current
instruction.

The number of available architectural registers can have large impacts on code size, performance,
and energy consumption. Although 16 registers would arguably be sufficient for an integer ISA
running compiled code, it is impossible to encode a complete ISA with 16 registers in 16-bit
instructions using a 3-address format. Although a 2-address format would be possible, it would
increase instruction count and lower efficiency. We wanted to avoid intermediate instruction
sizes, such as Xtensa’s 24-bit instructions, to simplify base hardware implementations, and once
a 32-bit instruction size was adopted, it was straightforward to support 32 integer registers.

For the base ISA, we chose a conventional size of 32 integer registers for these reasons and
based on the behavior of standard compilers on existing code and on our experience generating

9
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high-performance routines using autotuning. Dynamic register usage tends to be dominated
by a few frequently accessed registers, and regfile implementations can be optimized to reduce
access energy for the frequently accessed registers. The optional compressed 16-bit instruction
format mostly only accesses 8 registers and hence can provide a dense instruction encoding,
while additional instruction-set extensions could support a much larger register space (either flat
or hierarchical) if desired.

For resource-constrained embedded applications, it would be possible to define a non-standard
subset integer RISC-V ISA with 16 registers using the existing instruction encoding and small
modifications to the compiler and calling convention.

XLEN-1 0

x0 / zero

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

XLEN
XLEN-1 0

pc

XLEN

Figure 2.1: RISC-V user-level base integer register state.
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2.2 Base Instruction Formats

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 2.2. All are
a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An instruction
address misaligned exception is generated if the pc is not four-byte aligned on an instruction fetch.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 2.2: RISC-V base instruction formats.

The RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same position
in all formats to simplify decoding. Immediates are packed towards the leftmost available bits in
the instruction and have been allocated to reduce hardware complexity. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed sign-extension circuitry.

Decoding register specifiers is usually on the critical paths in implementations, and so the in-
struction format was chosen to keep all register specifiers at the same position in all formats at
the expense of having to move immediate bits across formats (a property shared with RISC-IV
aka. SPUR [12]).

In practice, most immediates are either small or require all XLEN bits. We chose an asym-
metric immediate split (12 bits in regular instructions plus a special load upper immediate in-
struction with 20 bits) to increase the opcode space available for regular instructions. In addition,
the ISA only has sign-extended immediates. We did not observe a benefit to using zero-extension
for some immediates and wanted to keep the ISA as simple as possible.

2.3 Immediate Encoding Variants

There are a further two variants of the instruction formats (SB/UJ) based on the handling of
immediates, as shown in Figure 2.3.

In Figure 2.3 each immediate subfield is labeled with the bit position (imm[x ]) in the immediate
value being produced, rather than the bit position within the instruction’s immediate field as is
usually done. Figure 2.4 shows the immediates produced by each of the base instruction formats,
and is labeled to show which instruction bit (inst[y ]) produces each bit of the immediate value.

The only difference between the S and SB formats is that the 12-bit immediate field is used to encode
branch offsets in multiples of 2 in the SB format. Instead of shifting all bits in the instruction-
encoded immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1])
and sign bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order
bit in SB format.
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31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11] imm[10:5] imm[4:1] imm[0] rs1 funct3 rd opcode I-type

imm[11] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode SB-type

imm[31] imm[30:20] imm[19:15] imm[14:12] rd opcode U-type

imm[20] imm[10:5] imm[4:1] imm[11] imm[19:15] imm[14:12] rd opcode UJ-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

31 30 20 19 12 11 10 5 4 1 0

— inst[31] — inst[30:25] inst[24:21] inst[20] I-immediate

— inst[31] — inst[30:25] inst[11:8] inst[7] S-immediate

— inst[31] — inst[7] inst[30:25] inst[11:8] 0 B-immediate

inst[31] inst[30:20] inst[19:12] — 0 — U-immediate

— inst[31] — inst[19:12] inst[20] inst[30:25] inst[24:21] 0 J-immediate

Figure 2.4: Types of immediate produced by RISC-V instructions. The fields are labeled with the
instruction bits used to construct their value. Sign extension always uses inst[31].

Similarly, the only difference between the U and UJ formats is that the 20-bit immediate is shifted
left by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction
bits in the U and UJ format immediates is chosen to maximize overlap with the other formats and
with each other.

Sign-extension is one of the most critical operations on immediates (particularly in RV64I), and
in RISC-V the sign bit for all immediates is always held in bit 31 of the instruction to allow
sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and jump
calculations and so not benefit from keeping the location of immediate bits constant across types of
instruction, we wanted to reduce the hardware cost of the simplest implementations. By rotating
bits in the instruction encoding of B and J immediates instead of using dynamic hardware
muxes to multiply the immediate by 2, we reduce instruction signal fanout and immediate mux
costs by around a factor of 2. The scrambled immediate encoding will add negligible time to
static or ahead-of-time compilation. For dynamic JIT generation of instructions there is some
small additional overhead, but the most common short forward branches have straightforward
immediate encodings.
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2.4 Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in the integer register
file. Integer computational instructions are either encoded as register-immediate operations using
the I-type format or as register-register operations using the R-type format. The destination is
register rd for both register-immediate and register-register instructions. No integer computational
instructions cause arithmetic exceptions.

We did not include special instruction set support for overflow checks on integer arithmetic
operations. Most popular programming languages do not support checks for integer overflow,
partly because most architectures impose a significant runtime penalty to check for overflow on
integer arithmetic and partly because modulo arithmetic is sometimes the desired behavior.

Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
I-immediate[11:0] src ADDI/SLTI[U] dest OP-IMM
I-immediate[11:0] src ANDI/ORI/XORI dest OP-IMM

ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow is ignored and
the result is simply the low 32-bits of the result. ADDI rd, rs1, 0 is used to implement the MV rd,
rs1 assembler pseudo-instruction.

SLTI (set less than immediate) places the value 1 in register rd if register rs1 is less than the
sign-extended immediate when both are treated as signed numbers, else 0 is written to rd. SLTIU
is similar but compares the values as unsigned numbers (i.e., the immediate is first sign-extended
to 32-bits then treated as an unsigned number). Note, SLTIU rd, rs1, 1 sets rd to 1 if rs1 equals
zero, otherwise sets rd to 0 (assembler pseudo-op SEQZ rd, rs).

ANDI, ORI, XORI are logical operations that perform bitwise AND, OR, and XOR on register rs1
and the sign-extended 12-bit immediate and place the result in rd. Note, XORI rd, rs1, -1 performs
a bitwise logical inversion of register rs1 (assembler pseudo-instruction NOT rd, rs).

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] imm[4:0] rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 shamt[4:0] src SLLI dest OP-IMM
0000000 shamt[4:0] src SRLI dest OP-IMM
0100000 shamt[4:0] src SRAI dest OP-IMM

Shifts by a constant are encoded as a specialization of the I-type format. The operand to be shifted
is in rs1, and the shift amount is encoded in the lower 5 bits of the I-immediate field. The right
shift type is encoded in a high bit of the I-immediate. SLLI is a logical left shift (zeros are shifted
into the lower bits); SRLI is a logical right shift (zeros are shifted into the upper bits); and SRAI
is an arithmetic right shift (the original sign bit is copied into the vacated upper bits).
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31 12 11 7 6 0

imm[31:12] rd opcode

20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI
places the U-immediate value in the top 20 bits of the destination register rd, filling in the lowest
12 bits with zeros.

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type
format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest 12 bits with
zeros, adds this offset to the pc, then places the result in register rd.

The AUIPC instruction supports two-instruction sequences to access arbitrary offsets from the
PC for both control-flow transfers and data accesses. The combination of an AUIPC and the
12-bit immediate in a JALR can transfer control to any 32-bit PC-relative address, while an
AUIPC plus the 12-bit immediate offset in regular load or store instructions can access any
32-bit PC-relative data address.

The current PC can be obtained by setting the U-immediate to 0. Although a JAL +4
instruction could also be used to obtain the PC, it might cause pipeline breaks in simpler mi-
croarchitectures or pollute the BTB structures in more complex microarchitectures.

Integer Register-Register Operations

RV32I defines several arithmetic R-type operations. All operations read the rs1 and rs2 registers
as source operands and write the result into register rd. The funct7 and funct3 fields select the
type of operation.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 src2 src1 ADD/SLT/SLTU dest OP
0000000 src2 src1 AND/OR/XOR dest OP
0000000 src2 src1 SLL/SRL dest OP
0100000 src2 src1 SUB/SRA dest OP

ADD and SUB perform addition and subtraction respectively. Overflows are ignored and the low
32 bits of results are written to the destination. SLT and SLTU perform signed and unsigned
compares respectively, writing 1 to rd if rs1 < rs2, 0 otherwise. Note, SLTU rd, x0, rs2 sets rd to 1
if rs2 is not equal to zero, otherwise sets rd to zero (assembler pseudo-op SNEZ rd, rs). AND, OR,
and XOR perform bitwise logical operations.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in
register rs1 by the shift amount held in the lower 5 bits of register rs2.
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NOP Instruction

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
0 0 ADDI 0 OP-IMM

The NOP instruction does not change any user-visible state, except for advancing the pc. NOP is
encoded as ADDI x0, x0, 0.

NOPs can be used to align code segments to microarchitecturally significant address boundaries,
or to leave space for inline code modifications. Although there are many possible ways to encode
a NOP, we define a canonical NOP encoding to allow microarchitectural optimizations as well
as for more readable disassembly output.

2.5 Control Transfer Instructions

RV32I provides two types of control transfer instructions: unconditional jumps and conditional
branches. Control transfer instructions in RV32I do not have architecturally visible delay slots.

Unconditional Jumps

The jump and link (JAL) instruction uses the UJ-type format, where the J-immediate encodes a
signed offset in multiples of 2 bytes. The offset is sign-extended and added to the pc to form the
jump target address. Jumps can therefore target a ±1 MiB range. JAL stores the address of the
instruction following the jump (pc+4) into register rd. The standard software calling convention
uses x1 as the return address register.

Plain unconditional jumps (assembler pseudo-op J) are encoded as a JAL with rd=x0.

31 30 21 20 19 12 11 7 6 0

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode

1 10 1 8 5 7
offset[20:1] dest JAL

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the 12-bit signed I-immediate to the register rs1, then setting the
least-significant bit of the result to zero. The address of the instruction following the jump (pc+4)
is written to register rd. Register x0 can be used as the destination if the result is not required.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base 0 dest JALR
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The unconditional jump instructions all use PC-relative addressing to help support position-
independent code. The JALR instruction was defined to enable a two-instruction sequence to
jump anywhere in a 32-bit absolute address range. A LUI instruction can first load rs1 with the
upper 20 bits of a target address, then JALR can add in the lower bits. Similarly, AUIPC then
JALR can jump anywhere in a 32-bit pc-relative address range.

Note that the JALR instruction does not treat the 12-bit immediate as multiples of 2 bytes,
unlike the conditional branch instructions. This avoids one more immediate format in hardware,
and also reuses the same linker relocation format for JALR as for global loads. In practice, most
uses of JALR will have either a zero immediate or be paired with a LUI or AUIPC, so the slight
reduction in range is not significant.

The JALR instruction ignores the lowest bit of the calculated target address. This both
simplifies the hardware slightly and allows the low bit of function pointers to be used to store
auxiliary information. Although there is potentially a slight loss of error checking in this case,
in practice jumps to an incorrect instruction address will usually quickly raise an exception.

Return-address prediction stacks are a common feature of high-performance instruction-fetch
units. We note that rd and rs1 can be used to guide an implementation’s instruction-fetch pre-
diction logic, indicating whether JALR instructions should push (rd=x1), pop (rd=x0, rs1=x1),
or not touch (otherwise) a return-address stack. Similarly, a JAL instruction should push the
return address onto the return-address stack only when rd=x1.

When used with a base rs1=x0, JALR can be used to implement a single instruction subrou-
tine call to the lowest 2KiB or highest 2KiB address region from anywhere in the address space,
which could be used to implement fast calls to a small runtime library.

Conditional Branches

All branch instructions use the SB-type instruction format. The 12-bit B-immediate encodes signed
offsets in multiples of 2, and is added to the current pc to give the target address. The conditional
branch range is ±4 KiB.

31 30 25 24 20 19 15 14 12 11 8 7 6 0

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode

1 6 5 5 3 4 1 7
offset[12,10:5] src2 src1 BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 src1 BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 src1 BGE[U] offset[11,4:1] BRANCH

Branch instructions compare two registers. BEQ and BNE take the branch if registers rs1 and rs2
are equal or unequal respectively. BLT and BLTU take the branch if rs1 is less than rs2, using
signed and unsigned comparison respectively. BGE and BGEU take the branch if rs1 is greater
than or equal to rs2, using signed and unsigned comparison respectively. Note, BGT, BGTU,
BLE, and BLEU can be synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU,
respectively.

Software should be optimized such that the sequential code path is the most common path, with
less-frequently taken code paths placed out of line. Software should also assume that backward
branches will be predicted taken and forward branches as not taken, at least the first time they are
encountered. Dynamic predictors should quickly learn any predictable branch behavior.
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Unlike some other architectures, the RISC-V jump (JAL with rd=x0) instruction should always
be used for unconditional branches instead of a conditional branch instruction with an always-
true condition. RISC-V jumps are also PC-relative and support a much wider offset range than
branches, and will not pressure conditional branch prediction tables.

The conditional branches were designed to include arithmetic comparison operations between
two registers (as also done in PA-RISC and Xtensa ISA), rather than use condition codes (x86,
ARM, SPARC, PowerPC), or to only compare one register against zero (Alpha, MIPS), or
two registers only for equality (MIPS). This design was motivated by the observation that a
combined compare-and-branch instruction fits into a regular pipeline, avoids additional condition
code state or use of a temporary register, and reduces static code size and dynamic instruction
fetch traffic. Another point is that comparisons against zero require non-trivial circuit delay
(especially after the move to static logic in advanced processes) and so are almost as expensive as
arithmetic magnitude compares. Another advantage of a fused compare-and-branch instruction
is that branches are observed earlier in the front-end instruction stream, and so can be predicted
earlier. There is perhaps an advantage to a design with condition codes in the case where multiple
branches can be taken based on the same condition codes, but we believe this case to be relatively
rare.

We considered but did not include static branch hints in the instruction encoding. These
can reduce the pressure on dynamic predictors, but require more instruction encoding space and
software profiling for best results, and can result in poor performance if production runs do not
match profiling runs.

We considered but did not include conditional moves or predicated instructions, which can
effectively replace unpredictable short forward branches. Conditional moves are the simpler of
the two, but are difficult to use with conditional code that might cause exceptions (memory
accesses and floating-point operations). Predication adds additional flag state to a system, addi-
tional instructions to set and clear flags, and additional encoding overhead on every instruction.
Both conditional move and predicated instructions add complexity to out-of-order microarchitec-
tures, adding an implicit third source operand due to the need to copy the original value of the
destination architectural register into the renamed destination physical register if the predicate
is false. Also, static compile-time decisions to use predication instead of branches can result
in lower performance on inputs not included in the compiler training set, especially given that
unpredictable branches are rare, and becoming rarer as branch prediction techniques improve.

We note that various microarchitectural techniques exist to dynamically convert unpredictable
short forward branches into internally predicated code to avoid the cost of flushing pipelines
on a branch mispredict [7, 11, 10] and have been implemented in commercial processors [20].
The simplest techniques just reduce the penalty of recovering from a mispredicted short forward
branch by only flushing instructions in the branch shadow instead of the entire fetch pipeline,
or by fetching instructions from both sides using wide instruction fetch or idle instruction fetch
slots. More complex techniques for out-of-order cores add internal predicates on instructions in
the branch shadow, with the internal predicate value written by the branch instruction, allowing
the branch and following instructions to be executed speculatively and out-of-order with respect
to other code [20].

2.6 Load and Store Instructions

RV32I is a load-store architecture, where only load and store instructions access memory and
arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit user address space
that is byte-addressed and little-endian. The execution environment will define what portions of
the address space are legal to access.
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31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base width dest LOAD

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

Load and store instructions transfer a value between the registers and memory. Loads are encoded
in the I-type format and stores are S-type. The effective byte address is obtained by adding register
rs1 to the sign-extended 12-bit offset. Loads copy a value from memory to register rd. Stores copy
the value in register rs2 to memory.

The LW instruction loads a 32-bit value from memory into rd. LH loads a 16-bit value from memory,
then sign-extends to 32-bits before storing in rd. LHU loads a 16-bit value from memory but then
zero extends to 32-bits before storing in rd. LB and LBU are defined analogously for 8-bit values.
The SW, SH, and SB instructions store 32-bit, 16-bit, and 8-bit values from the low bits of register
rs2 to memory.

For best performance, the effective address for all loads and stores should be naturally aligned
for each data type (i.e., on a four-byte boundary for 32-bit accesses, and a two-byte boundary for
16-bit accesses). The base ISA supports misaligned accesses, but these might run extremely slowly
depending on the implementation. Furthermore, naturally aligned loads and stores are guaranteed
to execute atomically, whereas misaligned loads and stores might not, and hence require additional
synchronization to ensure atomicity.

Misaligned accesses are occasionally required when porting legacy code, and are essential for good
performance on many applications when using any form of packed-SIMD extension. Our ratio-
nale for supporting misaligned accesses via the regular load and store instructions is to simplify
the addition of misaligned hardware support. One option would have been to disallow misaligned
accesses in the base ISA and then provide some separate ISA support for misaligned accesses,
either special instructions to help software handle misaligned accesses or a new hardware address-
ing mode for misaligned accesses. Special instructions are difficult to use, complicate the ISA,
and often add new processor state (e.g., SPARC VIS align address offset register) or complicate
access to existing processor state (e.g., MIPS LWL/LWR partial register writes). In addition,
for loop-oriented packed-SIMD code, the extra overhead when operands are misaligned motivates
software to provide multiple forms of loop depending on operand alignment, which complicates
code generation and adds to loop startup overhead. New misaligned hardware addressing modes
take considerable space in the instruction encoding or require very simplified addressing modes
(e.g., register indirect only).

We do not mandate atomicity for misaligned accesses so simple implementations can just
use a machine trap and software handler to handle misaligned accesses. If hardware misaligned
support is provided, software can exploit this by simply using regular load and store instructions.
Hardware can then automatically optimize accesses depending on whether runtime addresses are
aligned.
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2.7 Memory Model

The base RISC-V ISA supports multiple concurrent threads of execution within a single user address
space. Each RISC-V thread has its own user register state and program counter, and executes an
independent sequential instruction stream. The execution environment will define how RISC-V
threads are created and managed. RISC-V threads can communicate and synchronize with other
threads either via calls to the execution environment, which are documented separately in the
specification for each execution environment, or directly via the shared memory system.

In the base RISC-V ISA, each RISC-V thread observes its own memory operations as if they
executed sequentially in program order. RISC-V has a relaxed memory model between threads,
requiring an explicit FENCE instruction to guarantee any specific ordering between memory oper-
ations from different RISC-V threads. Chapter 5 describes the optional atomic memory instruction
extensions “A”, which provide additional synchronization operations in the shared memory space.

31 28 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0

0 PI PO PR PW SI SO SR SW rs1 funct3 rd opcode

4 1 1 1 1 1 1 1 1 5 3 5 7
0 predecessor successor 0 FENCE 0 MISC-MEM

The FENCE instruction is used to order device I/O and memory accesses as viewed by other RISC-
V threads and external devices or coprocessors. Any combination of device input (I), device output
(O), memory reads (R), and memory writes (W) may be ordered with respect to any combination
of the same. Informally, no other RISC-V thread or external device can observe any operation
in the successor set following a FENCE before any operation in the predecessor set preceding the
FENCE. The execution environment will define what I/O operations are possible, and in particular,
which load and store instructions might be treated and ordered as device input and device output
operations respectively rather than memory reads and writes. For example, memory-mapped I/O
devices will typically be accessed with uncached loads and stores that are ordered using the I and O
bits rather than the R and W bits. Instruction-set extensions might also describe new coprocessor
I/O instructions that will also be ordered using the I and O bits in a FENCE.

We chose a relaxed memory model to allow high performance from simple machine implementa-
tions. A relaxed memory model is also most compatible with likely future coprocessor or accelera-
tor extensions. We separate out I/O ordering from memory R/W ordering to avoid unnecessary
serialization within a device-driver thread and also to support alternative non-memory paths
to control added coprocessors or I/O devices. Encoding space is reserved to allow finer-grain
FENCE instructions in optional extensions. A base implementation should ignore the zeroed
fields in a FENCE instruction (imm[11:8], rs1, and rd) to provide forwards compatibility with
finer-grain fences. Simple implementations may additionally ignore the predecessor and succes-
sor fields and always execute a conservative global fence.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
0 0 FENCE.I 0 MISC-MEM
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The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-V does
not guarantee that stores to instruction memory will be made visible to instruction fetches on
the same RISC-V thread until a FENCE.I instruction is executed. A FENCE.I instruction only
ensures that a subsequent instruction fetch on a RISC-V thread will see any previous data stores
already visible to the same RISC-V thread. FENCE.I does not ensure that other RISC-V threads’
instruction fetches will observe the local thread’s stores in a multiprocessor system. To make a
store to instruction memory visible to all RISC-V threads, the writing thread has to execute a data
FENCE before requesting that all remote RISC-V threads execute a FENCE.I.

The FENCE.I instruction was designed to support a wide variety of implementations. A sim-
ple implementation can flush the local instruction cache and the instruction pipeline when the
FENCE.I is executed. A more complex implementation might snoop the instruction (data) cache
on every data (instruction) cache miss, or use an inclusive unified private L2 cache to invalidate
lines from the primary instruction cache when they are being written by a local store instruction.
If instruction and data caches are kept coherent in this way, then only the pipeline needs to be
flushed at a FENCE.I.

Extensions might define finer-grain FENCE.I instructions targeting specific instruction ad-
dresses, so a base implementation should ignore the zeroed fields in a FENCE.I instruction and
simply execute a conservative local FENCE.I to provide forwards compatibility.

We considered but did not include a “store instruction word” instruction (as in MAJC [22]).
JIT compilers may generate a large trace of instructions before a single FENCE.I, and amor-
tize any instruction cache snooping/invalidation overhead by writing translated instructions to
memory regions that are known not to reside in the I-cache.
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2.8 System Instructions

SYSTEM instructions are used to access system functionality that might require privileged access
and are encoded using the I-type instruction format.

The SYSTEM instructions are defined to allow simpler implementations to always trap to a
single software trap handler. More sophisticated implementations might execute more of each
system instruction in hardware.

SCALL and SBREAK

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode

12 5 3 5 7
SCALL 0 PRIV 0 SYSTEM

SBREAK 0 PRIV 0 SYSTEM

The SCALL instruction is used to make a request to the operating system environment. The ABI
for the operating system will define how parameters for the OS request are passed, but usually
these will be in defined locations in the integer register file.

The SBREAK instruction is used by debuggers to cause control to be transferred back to the
debugging environment.

Timers and Counters

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode

12 5 3 5 7
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM

RDINSTRET[H] 0 CSRRS dest SYSTEM

RV32I provides a number of 64-bit counters, which are accessed in 32-bit pieces using different
instructions.

The RDCYCLE instruction writes integer register rd with a count of the number of clock cycles
executed by the processor on which the hardware thread is running from an arbitrary start time in
the past, modulo 2XLEN . RDCYCLEH is an RV32I-only instruction that writes integer register rd
with bits 63–32 of the same cycle counter. Together, these instructions provide a 64-bit counter,
which should never overflow in practice. The rate at which the cycle counter advances will depend
on the implementation and operating environment. The software environment should provide a
means to determine the current rate (cycles/second) at which the cycle counter is incrementing.

The RDTIME instruction writes integer register rd with an integer value corresponding to the wall-
clock real time that has passed from an arbitrary start time in the past, modulo 2XLEN . RDTIMEH
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is an RV32I-only instruction that writes integer register rd with bits 63–32 of the same real-time
counter. Together, these instructions provide a 64-bit counter, which should never overflow in
practice. The software environment should provide a means of determining the period of the real-
time counter (seconds/tick). The period must be constant and should be no longer than 100 ns (at
least 10 MHz rate). The real-time clocks of all hardware threads in a single user application should
be synchronized to within one tick of the real-time clock. The environment should provide a means
to determine the accuracy of the clock.

The RDINSTRET instruction writes integer register rd with the number of instructions retired by
this hardware thread from some arbitrary start point in the past, modulo 2XLEN . RDINSTRETH
is an RV32I-only instruction that writes integer register rd with bits 63–32 of the same instruction
counter. Together, these instructions provide a 64-bit counter that should never overflow in practice.

The following code sequence will read a valid 64-bit cycle counter value into x3:x2, even if the
counter overflows between reading its upper and lower halves.

again:

rdcycleh x3

rdcycle x2

rdcycleh x4

bne x3, x4, again

Figure 2.5: Sample code for reading the 64-bit cycle counter in RV32.

We mandate these basic counters be provided in all implementations as they are essential for
basic performance analysis, adaptive and dynamic optimization, and to allow an application to
work with real-time streams. Additional counters should be provided to help diagnose performance
problems and these should be made accessible from user-level application code with low overhead.

We required the counters be 64 bits wide, even on RV32, as otherwise it is very difficult for
software to determine if values have overflowed. For a low-end implementation, the upper 32
bits of each counter can be implemented using software counters incremented by a trap handler
triggered by overflow of the lower 32 bits. The sample code described above shows how the full
64-bit width value can be safely read using the individual 32-bit instructions.

In some applications, it is important to be able to read multiple counters at the same instant
in time. When run under a multitasking environment, a user thread can suffer a context switch
while attempting to read the counters. One solution is for the user thread to read the real-time
counter before and after reading the other counters to determine if a context switch occurred in
the middle of the sequence, in which case the reads can be retried. We considered adding output
latches to allow a user thread to snapshot the counter values atomically, but this would increase
the size of the user context especially for implementations with a richer set of counters.



Chapter 3

RV64I Base Integer Instruction Set

This chapter describes the RV64I base integer instruction set, which builds upon the RV32I variant
described in the previous chapter. This chapter presents only the differences with RV32I, so should
be read in conjunction with the earlier chapter.

3.1 Register State

RV64I widens the integer registers and supported user address space to 64 bits (XLEN=64 in
Figure 2.1).

3.2 Integer Computational Instructions

Additional instruction variants are provided to manipulate 32-bit values in RV64I, indicated by a
‘W’ suffix to the opcode. These “*W” instructions ignore the upper 32 bits of their inputs and
always produce 32-bit signed values, i.e. bits XLEN-1 through 31 are equal. They cause an illegal
instruction exception in RV32I.

The compiler and calling convention maintain an invariant that all 32-bit values are held in a
sign-extended format in 64-bit registers. Even 32-bit unsigned integers extend bit 31 into bits 63
through 32. Consequently, conversion between unsigned and signed 32-bit integers is a no-op,
as is conversion from a signed 32-bit integer to a signed 64-bit integer. Existing 64-bit wide
SLTU and unsigned branch compares still operate correctly on unsigned 32-bit integers under
this invariant. Similarly, existing 64-bit wide logical operations on 32-bit sign-extended integers
preserve the sign-extension property. A few new instructions (ADD[I]W/SUBW/SxxW) are
required for addition and shifts to ensure reasonable performance for 32-bit values.

23
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Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
I-immediate[11:0] src ADDIW dest OP-IMM-32

ADDIW is an RV64I-only instruction that adds the sign-extended 12-bit immediate to register rs1
and produces the proper sign-extension of a 32-bit result in rd. Overflows are ignored and the
result is the low 32 bits of the result sign-extended to 64 bits. Note, ADDIW rd, rs1, 0 writes the
sign-extension of the lower 32 bits of register rs1 into register rd (assembler pseudo-op SEXT.W).

31 26 25 24 20 19 15 14 12 11 7 6 0

imm[11:6] imm[5] imm[4:0] rs1 funct3 rd opcode

6 1 5 5 3 5 7
000000 shamt[5] shamt[4:0] src SLLI dest OP-IMM
000000 shamt[5] shamt[4:0] src SRLI dest OP-IMM
010000 shamt[5] shamt[4:0] src SRAI dest OP-IMM
000000 0 shamt[4:0] src SLLIW dest OP-IMM-32
000000 0 shamt[4:0] src SRLIW dest OP-IMM-32
010000 0 shamt[4:0] src SRAIW dest OP-IMM-32

Shifts by a constant are encoded as a specialization of the I-type format using the same instruction
opcode as RV32I. The operand to be shifted is in rs1, and the shift amount is encoded in the lower
6 bits of the I-immediate field for RV64I. The right shift type is encoded in bit 30. SLLI is a
logical left shift (zeros are shifted into the lower bits); SRLI is a logical right shift (zeros are shifted
into the upper bits); and SRAI is an arithmetic right shift (the original sign bit is copied into the
vacated upper bits). For RV32I, SLLI, SRLI, and SRAI generate an illegal instruction exception if
imm[5] 6= 0.

SLLIW, SRLIW, and SRAIW are RV64I-only instructions that are analogously defined but operate
on 32-bit values and produce signed 32-bit results. SLLIW, SRLIW, and SRAIW generate an illegal
instruction exception if imm[5] 6= 0.

31 12 11 7 6 0

imm[31:12] rd opcode

20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) uses the same opcode as RV32I. LUI places the 20-bit U-immediate
into bits 31–12 of register rd and places zero in the lowest 12 bits. For RV64I, the 32-bit result is
sign-extended to 64 bits.

AUIPC (add upper immediate to pc) uses the same opcode as RV32I. AUIPC (add upper immediate
to pc) is used to build pc-relative addresses and uses the U-type format. AUIPC sign-extends the
20-bit U-immediate to 64 bits, adds it to the pc, then places the result in register rd.
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Integer Register-Register Operations

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
0000000 src2 src1 SLL/SRL dest OP
0100000 src2 src1 SRA dest OP
0000000 src2 src1 ADDW dest OP-32
0000000 src2 src1 SLLW/SRLW dest OP-32
0100000 src2 src1 SUBW/SRAW dest OP-32

ADDW and SUBW are RV64I-only instructions that are defined analogously to ADD and SUB
but operate on 32-bit values and produce signed 32-bit results. Overflows are ignored, and the low
32-bits of the result is sign-extended to 64-bits and written to the destination register.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value
in register rs1 by the shift amount held in register rs2. In RV64I, only the low 6 bits of rs2 are
considered for the shift amount.

SLLW, SRLW, and SRAW are RV64I-only instructions that are analogously defined but operate
on 32-bit values and produce signed 32-bit results. The shift amount is given by rs2[4:0].

3.3 Load and Store Instructions

RV64I extends the address space to 64 bits. The execution environment will define what portions
of the address space are legal to access.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7
offset[11:0] base width dest LOAD

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

The LD instruction loads a 64-bit value from memory into register rd for RV64I.

The LW instruction loads a 32-bit value from memory and sign-extends this to 64 bits before storing
it in register rd for RV64I. The LWU instruction, on the other hand, zero-extends the 32-bit value
from memory for RV64I. LH and LHU are defined analogously for 16-bit values, as are LB and
LBU for 8-bit values. The SD, SW, SH, and SB instructions store 64-bit, 32-bit, 16-bit, and 8-bit
values from the low bits of register rs2 to memory.
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3.4 System Instructions

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode

12 5 3 5 7
RDCYCLE 0 CSRRS dest SYSTEM
RDTIME 0 CSRRS dest SYSTEM

RDINSTRET 0 CSRRS dest SYSTEM

The RDCYCLE instruction writes integer register rd with a count of the number of clock cycles
executed by the processor on which the hardware thread is running from an arbitrary start time in
the past. In RV64I, this will return a 64-bit unsigned integer value, which should never overflow.
The rate at which the cycle counter advances will depend on the implementation and operating
environment. The software environment should provide a means to determine the current rate
(cycles/second) at which the cycle counter is incrementing.

The RDTIME instruction writes integer register rd with an integer value corresponding to the wall-
clock real time that has passed from an arbitrary start time in the past. In RV64I, this will return
a 64-bit unsigned integer value, which should never overflow. The software environment should
provide a means of determining the period of the real-time counter (seconds/tick). The period
must be constant and should be no longer than 100 ns (at least 10 MHz rate). The real-time clocks
of all hardware threads in a single user application should be synchronized to within one tick of the
real-time clock. The environment should provide a means to determine the accuracy of the clock.

The RDINSTRET instruction writes integer register rd with the number of instructions retired
by this hardware thread from some arbitrary start point in the past. In RV64I, this returns an
unsigned 64-bit integer value that should never overflow.



Chapter 4

“M” Standard Extension for Integer
Multiplication and Division

This chapter describes the standard integer multiplication and division instruction extension, which
is named “M” and contains instructions that multiply or divide values held in two integer registers.

We separate integer multiply and divide our from the base to simplify low-end implementations,
or for applications where integer multiply and divide operations are either infrequent or better
handled in attached accelerators.

4.1 Multiplication Operations

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
MULDIV multiplier multiplicand MUL/MULH[[S]U] dest OP
MULDIV multiplier multiplicand MULW dest OP-32

MUL performs an XLEN-bit×XLEN-bit multiplication and places the lower XLEN bits in the
destination register. MULH, MULHU, and MULHSU perform the same multiplication but return
the upper XLEN bits of the full 2×XLEN-bit product, for signed×signed, unsigned×unsigned, and
signed×unsigned multiplication respectively. If both the high and low bits of the same product
are required, then the recommended code sequence is: MULH[[S]U] rdh, rs1, rs2; MUL rdl, rs1,
rs2 (source register specifiers must be in same order and rdh cannot be the same as rs1 or rs2).
Microarchitectures can then fuse these into a single multiply operation instead of performing two
separate multiplies.

MULW is only valid for RV64, and multiplies the lower 32 bits of the source registers, placing the
sign-extension of the lower 32 bits of the result into the destination register. MUL can be used to
obtain the upper 32 bits of the 64-bit product, but signed arguments must be proper 32-bit signed
values, whereas unsigned arguments must have their upper 32 bits clear.
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4.2 Division Operations

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7
MULDIV divisor dividend DIV[U]/REM[U] dest OP
MULDIV divisor dividend DIV[U]W/REM[U]W dest OP-32

DIV and DIVU perform signed and unsigned integer division of XLEN bits by XLEN bits. REM
and REMU provide the remainder of the corresponding division operation. If both the quotient
and remainder are required from the same division, the recommended code sequence is: DIV[U]
rdq, rs1, rs2; REM[U] rdr, rs1, rs2 (rdq cannot be the same as rs1 or rs2). Microarchitectures can
then fuse these into a single divide operation instead of performing two separate divides.

DIVW and DIVUW instructions are only valid for RV64, and divide the lower 32 bits of rs1 by
the lower 32 bits of rs2, treating them as signed and unsigned integers respectively, placing the
32-bit quotient in rd, sign-extended to 64 bits. REMW and REMUW instructions are only valid
for RV64, and provide the corresponding signed and unsigned remainder operations respectively.
Both REMW and REMUW sign-extend the 32-bit result to 64 bits.

The semantics for division by zero and division overflow are summarized in Table 4.1. The quotient
of division by zero has all bits set, i.e. 2XLEN − 1 for unsigned division or −1 for signed division.
The remainder of division by zero equals the dividend. Signed division overflow occurs only when
the most-negative integer, −2XLEN−1, is divided by −1. The quotient of signed division overflow
is equal to the dividend, and the remainder is zero. Unsigned division overflow cannot occur.

Condition Dividend Divisor DIVU REMU DIV REM

Division by zero x 0 2XLEN − 1 x −1 x
Overflow (signed only) −2XLEN−1 −1 – – −2XLEN−1 0

Table 4.1: Semantics for division by zero and division overflow.

We considered raising exceptions on integer divide by zero, with these exceptions causing a trap in
most execution environments. However, this would be the only arithmetic trap in the standard
ISA (floating-point exceptions set flags and write default values, but do not cause traps) and
would require language implementors to interact with the execution environment’s trap handlers
for this case. Further, where language standards mandate that a divide-by-zero exception must
cause an immediate control flow change, only a single branch instruction needs to be added to
each divide operation, and this branch instruction can be inserted after the divide and should
normally be very predictably not taken, adding little runtime overhead.



Chapter 5

“A” Standard Extension for Atomic
Instructions

The standard atomic instruction extension is denoted by instruction subset name “A”, and con-
tains instructions that atomically read-modify-write memory to support synchronization between
multiple RISC-V threads running in the same memory space. The two forms of atomic instruction
provided are load-reserved/store-conditional instructions and atomic fetch-and-op memory instruc-
tions. Both types of atomic instruction support various memory consistency orderings including
unordered, acquire, release, and sequentially consistent semantics. These instructions allow RISC-V
to support the RCsc memory consistency model [4].

After much debate, the language community and architecture community appear to have finally
settled on release consistency as the standard memory consistency model and so the RISC-V
atomic support is built around this model.

5.1 Specifying Ordering of Atomic Instructions

The base RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose
additional ordering constraints. To provide more efficient support for release consistency [4], each
atomic instruction has two bits, aq and rl, used to specify additional memory ordering constraints
as viewed by other RISC-V threads. If both bits are clear, no additional ordering constraints are
imposed on the atomic memory operation. If only the aq bit is set, the atomic memory operation
is treated as an acquire access, i.e., no following memory operations on this RISC-V thread can be
observed to take place before the acquire memory operation. If only the rl bit is set, the atomic
memory operation is treated as a release access, i.e., the release memory operation can not be
observed to take place before any earlier memory operations on this RISC-V thread. If both the aq
and rl bits are set, the atomic memory operation is sequentially consistent and cannot be observed
to happen before any earlier memory operations or after any later memory operations in the same
RISC-V thread, and can only be observed by any other thread in the same global order of all
sequentially consistent atomic memory operations.

Theoretically, the definition of the aq and rl bits allows for implementations without global store
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atomicity. When both aq and rl bits are set, however, we require full sequential consistency for
the atomic operation which implies global store atomicity in addition to both acquire and release
semantics. In practice, hardware systems are usually implemented with global store atomicity,
embodied in local processor ordering rules together with single-writer cache coherence protocols.

5.2 Load-Reserved/Store-Conditional Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 aq rl rs2 rs1 funct3 rd opcode

5 1 1 5 5 3 5 7
LR ordering 0 addr width dest AMO
SC ordering src addr width dest AMO

Complex atomic memory operations on a single memory word are performed with the load-reserved
(LR) and store-conditional (SC) instructions. LR loads a word from the address in rs1, places the
sign-extended value in rd, and registers a reservation on the memory word. SC writes a word in
rs2 to the address in rs1, provided a valid reservation still exists on that address. SC writes zero
to rd on success or a nonzero code on failure, e.g. a conflicting memory access occurred or there
was an intervening context switch.

Both compare-and-swap (CAS) and LR/SC can be used to build lock-free data structures. After
extensive discussion, we opted for LR/SC for several reasons: 1) CAS suffers from the ABA
problem, which LR/SC avoids because it monitors all accesses to the address rather than only
checking for changes in the data value; 2) CAS would also require a new integer instruction for-
mat to support three source operands (address, compare value, swap value) as well as a different
memory system message format, which would complicate microarchitectures; 3) Furthermore,
to avoid the ABA problem, other systems provide a double-wide CAS (DW-CAS) to allow a
counter to be tested and incremented along with a data word. This requires reading five regis-
ters and writing two in one instruction, and also a new larger memory system message type,
further complicating implementations; 4) LR/SC provides a more efficient implementation of
many primitives as it only requires one load as opposed to two with CAS (one load before the
CAS instruction to obtain a value for speculative computation, then a second load as part of the
CAS instruction to check if value is unchanged before updating).

The main disadvantage of LR/SC over CAS is livelock, which we avoid with an architected
guarantee of eventual forward progress as described below. Another concern is whether the influ-
ence of the current x86 architecture, with its DW-CAS, will complicate porting of synchronization
libraries and other software that assumes DW-CAS is the basic machine primitive. A possible
mitigating factor is the recent addition of transactional memory instructions to x86, which might
cause a move away from DW-CAS.

The failure code with value 1 is reserved to encode an unspecified failure. Other failure codes are
reserved at this time, and portable software should only assume the failure code will be non-zero.
LR and SC operate on naturally-aligned 64-bit (RV64 only) or 32-bit words in memory. Misaligned
addresses will generate misaligned address exceptions.

We reserve a failure code of 1 to mean “unspecified” so that simple implementations may return
this value using the existing mux required for the SLT/SLTU instructions. More specific failure
codes might be defined in future versions or extensions to the ISA.
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In the standard A extension, certain constrained LR/SC sequences are guaranteed to succeed
eventually. The static code for the LR/SC sequence plus the code to retry the sequence in case
of failure must comprise at most 16 integer instructions placed sequentially in memory. For the
sequence to be guaranteed to eventually succeed, the dynamic code executed between the LR and
SC instructions can only contain other instructions from the base “I” subset, excluding loads,
stores, backward jumps or taken backward branches, FENCE, or SYSTEM instructions. The code
to retry a failing LR/SC sequence can contain backward jumps and/or branches to repeat the
LR/SC sequence, but otherwise has the same constraints. LR/SC routines that do not meet these
constraints might complete on some attempts on some implementations, but there is no guarantee
of eventual success.

One advantage of CAS is that it guarantees that some thread eventually makes progress, whereas
an LR/SC atomic sequence could livelock indefinitely on some systems. To avoid this concern,
we added an architectural guarantee of forward progress to LR/SC atomic sequences. The re-
strictions on LR/SC sequence contents allows an implementation to capture a cache line on the
LR and complete the LR/SC sequence by holding off remote cache interventions for a bounded
short time. Interrupts and TLB misses might cause the reservation to be lost, but eventually
the atomic sequence can complete. We restricted the length of LR/SC sequences to fit within
64 contiguous instruction bytes in the base ISA to avoid undue restrictions on instruction cache
and TLB size and associativity. Similarly, we disallowed other loads and stores within the se-
quences to avoid restrictions on data cache associativity. The restrictions on branches and jumps
limits the time that can be spent in the sequence. Floating-point operations and integer multi-
ply/divide were disallowed to simplify the operating system’s emulation of these instructions on
implementations lacking appropriate hardware support.

LR/SC can be used to construct lock-free data structures. An example using LR/SC to implement
a compare-and-swap function is shown in Figure 5.1. If inlined, compare-and-swap functionality
need only take three instructions.

# a0 holds address of memory location

# a1 holds expected value

# a2 holds desired value

# v0 return value, 0 if successful, !0 otherwise

cas:

lr.w v1, (a0) # Load original value

li v0, 1 # Preset return to fail

bne v1, a1, return # Doesn’t match, so fail

sc.w v0, a2, (a0) # Try to update

return:

jr ra # Return.

Figure 5.1: Sample code for compare-and-swap function using LR/SC.

An SC instruction can never be observed by another RISC-V thread before the immediately preced-
ing LR. Due to the atomic nature of the LR/SC sequence, no memory operations from any thread
can be observed to have occurred inbetween the LR and a successful SC. The LR/SC sequence can
be given acquire semantics by setting the aq bit on the SC instruction. The LR/SC sequence can
be given release semantics by setting the rl bit on the LR instruction. Setting both aq and rl bits
on the LR instruction, and setting the aq bit on the SC instruction makes the LR/SC sequence
sequentially consistent with respect to other sequentially consistent atomic operations.
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If neither bit is set on both LR and SC, the LR/SC sequence can be observed to occur before or
after surrounding memory operations from the same RISC-V thread. This can be appropriate when
the LR/SC sequence is used to implement a parallel reduction operation.

In general, a multi-word atomic primitive is desirable but there is still considerable debate about
what form this should take, and guaranteeing forward progress adds complexity to a system. Our
current thoughts are to include a small limited-capacity transactional memory buffer along the
lines of the original transactional memory proposals as an optional standard extension “T”.

5.3 Atomic Memory Operations

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 aq rl rs2 rs1 funct3 rd opcode

5 1 1 5 5 3 5 7
operation ordering src addr width dest AMO

The atomic memory operation (AMO) instructions perform read-modify-write operations for mul-
tiprocessor synchronization and are encoded with an R-type instruction format. These AMO in-
structions atomically load a data value from the address in rs1, place the value into register rd,
apply a binary operator to the loaded value and the value in rs2, then store the result back to the
address in rs1. AMOs can either operate on 64-bit (RV64 only) or 32-bit words in memory. For
RV64, 32-bit AMOs always sign-extend the value placed in rd. The address held in rs1 must be
naturally aligned to the size of the operand (i.e., eight-byte aligned for 64-bit words and four-byte
aligned for 32-bit words). If the address is not naturally aligned, a misaligned address exception
will be generated.

The operations supported are swap, integer add, logical AND, logical OR, logical XOR, and signed
and unsigned integer maximum and minimum. Without ordering constraints, these AMOs can
be used to implement parallel reduction operations, where typically the return value would be
discarded by writing to x0.

We provided fetch-and-op style atomic primitives as they scale to highly parallel systems better
than LR/SC or CAS. A simple microarchitecture can implement AMOs using the LR/SC prim-
itives. More complex implementations might also implement AMOs at memory controllers, and
can optimize away fetching the original value when the destination is x0.

To help implement multiprocessor synchronization, the AMOs optionally provide release consis-
tency semantics. If the aq bit is set, then no later memory operations in this RISC-V thread can be
observed to take place before the AMO or memory operations preceding the AMO in this thread.
Conversely, if the rl bit is set, then other RISC-V threads will not observe the AMO before memory
accesses preceding the AMO in this RISC-V thread.

The AMOs were designed to implement the C11 and C++11 memory models efficiently. Al-
though the FENCE R, RW instruction suffices to implement the acquire operation and FENCE
RW, W suffices to implement release, both imply additional unnecessary ordering as compared
to AMOs with the corresponding aq or rl bit set.
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AMOs can also be used to provide sequentially consistent loads and stores. A sequentially consistent
load can be implemented as an AMOADD of x0 with both aq and rl set. A sequentially consistent
store can be implemented as an AMOSWAP that writes the old value to x0 and has both aq and
rl set.

An example code sequence for a critical section guarded by a test-and-set spinlock is shown in
Figure 5.2. Note the first AMO is marked aq to order the lock acquisition before the critical section,
and the second AMO is marked rl to order the critical section before the lock relinquishment.

li v0, 1 # Initialize swap value.

again:

amoswap.w.aq v0, v0, (a0) # Attempt to acquire lock.

bnez v0, again # Retry if held.

# ...

# Critical section.

# ...

amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.

Figure 5.2: Sample code for mutual exclusion. a0 contains the address of the lock.

We recommend the use of AMOs for both lock acquire and release to simplify the implementation
of speculative lock elision [18].
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Chapter 6

“F” Standard Extension for
Single-Precision Floating-Point

This chapter describes the standard instruction-set extension for single-precision floating-point,
which is named “F” and adds single-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard.

6.1 F Register State

The F extension adds 32 floating-point registers, f0–f31, each 32 bits wide, and a floating-point
control and status register fcsr, which contains the operating mode and exception status of the
floating-point unit. This additional state is shown in Figure 6.1. We use the term FLEN to
describe the width of the floating-point registers in the RISC-V ISA, and FLEN=32 for the F
single-precision floating-point extension. Most floating-point instructions operate on values in the
floating-point register file. Floating-point load and store instructions transfer floating-point values
between registers and memory. Instructions to transfer values to and from the integer register file
are also provided.

We considered a unified register file for both integer and floating-point values as this simplifies
software register allocation and calling conventions, and reduces total user state. However,
a split organization increases the total number of registers accessible with a given instruction
width, simplifies provision of enough regfile ports for wide superscalar issue, supports decoupled
floating-point unit architectures, and simplifies use of internal floating-point encoding techniques.
Compiler support and calling conventions for split register file architectures are well understood,
and using dirty bits on floating-point register file state can reduce context-switch overhead.
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Figure 6.1: RISC-V standard F extension single-precision floating-point state.
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6.2 Floating-Point Control and Status Register

The floating-point control and status register is an instance of a RISC-V control and status register
(CSR), which live in a separate 12-bit CSR address space as defined in the privileged architecture
manual. The following generic CSR access instructions are provided:

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode

12 5 3 5 7
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest zimm[4:0] CSRRWI dest SYSTEM
source/dest zimm[4:0] CSRRSI dest SYSTEM
source/dest zimm[4:0] CSRRCI dest SYSTEM

The CSRRW (Atomic Read/Write CSR) instruction atomically swaps values in the CSRs and
integer registers. CSRRW reads the old value of the CSR, zero-extends the value to XLEN bits,
then writes it to integer register rd. The initial value in rs1 is written to the CSR.

The CSRRS (Atomic Read and Set Bit in CSR) instruction reads the value of the CSR, zero-extends
the value to XLEN bits, and writes it to integer register rd. The initial value in integer register rs1
specifies bit positions to be set in the CSR. Any bit that is high in rs1 will cause the corresponding
bit to be set in the CSR, if that CSR bit is writable. Other bits in the CSR are unaffected (though
CSRs might have side effects when written).

The CSRRC (Atomic Read and Clear Bit in CSR) instruction reads the value of the CSR, zero-
extends the value to XLEN bits, and writes it to integer register rd. The initial value in integer
register rs1 specifies bit positions to be cleared in the CSR. Any bit that is high in rs1 will cause
the corresponding bit to be cleared in the CSR, if that CSR bit is writable. Other bits in the CSR
are unaffected.

The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC re-
spectively, except they update the CSR using a 5-bit zero-extended immediate (zimm[4:0]) encoded
in the rs1 field instead of a value from an integer register.

The assembler pseudo-instruction to read a CSR, CSRR rd, csr, is encoded as CSRRS rd, csr, x0.
The assembler pseudo-instruction to write a CSR, CSRW csr, rs1, is encoded as CSRRW x0, csr,
rs1, while CSRWI csr, zimm, is encoded as CSRRWI x0, csr, zimm.

Further assembler pseudo-instructions are defined to set and clear bits in the CSR when the old
value is not required: CSRS/CSRC csr, rs1; CSRSI/CSRCI csr, zimm.

The fcsr register is a 32-bit read/write register that selects the dynamic rounding mode for floating-
point arithmetic operations and holds the accrued exception flags, as shown in Figure 6.2.

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are
assembler pseudo-ops built on the underlying CSR access instructions. FRCSR reads fcsr by
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31 8 7 5 4 3 2 1 0

0 Rounding Mode (frm) Accrued Exceptions (fflags)

NV DZ OF UF NX
24 3 1 1 1 1 1

Figure 6.2: Floating-point control and status register.

copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value
into integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudo-ops are defined for these accesses. The FRRM instruction reads the
Rounding Mode field frm and copies it into integer register rd. FSRM swaps the value in frm by
copying the original value into integer register rd, and then writing a new value obtained from
integer register rs1 into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued
Exception Flags field fflags. Additional pseudo-instructions FSRMI and FSFLAGSI swap values
using an immediate value instead of register rs1.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic
rounding mode held in frm. Rounding modes are encoded as shown in Table 6.1. A value of 111 in
the instruction’s rm field selects the dynamic rounding mode held in frm. If frm is set to an invalid
value (101–111), any subsequent attempt to execute a floating-point operation with a dynamic
rounding mode will cause an illegal instruction trap. Some instructions that have the rm field are
nevertheless unaffected by the rounding mode; they should have their rm field set to RNE (000).

The C99 language standard effectively mandates the provision of a dynamic rounding mode
register.
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Rounding Mode Mnemonic Meaning
000 RNE Round to Nearest, ties to Even
001 RTZ Round towards Zero
010 RDN Round Down (towards −∞)
011 RUP Round Up (towards +∞)
100 RMM Round to Nearest, ties to Max Magnitude
101 Invalid. Reserved for future use.
110 Invalid. Reserved for future use.
111 In instruction’s rm field, selects dynamic rounding mode;

In Rounding Mode register, Invalid.

Table 6.1: Rounding mode encoding.

The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software, as shown in Table 6.2.

Flag Mnemonic Flag Meaning
NV Invalid Operation
DZ Divide by Zero
OF Overflow
UF Underflow
NX Inexact

Table 6.2: Accrued exception flag encoding.

As allowed by the standard, we do not support traps on floating-point exceptions in the base ISA,
but instead require explicit checks of the flags in software. We are contemplating addition of a
branch controlled directly by the contents of the floating-point accrued exception flags to support
fast user-level exception handling. This branch would always be predicted not-taken.

6.3 NaN Generation and Propagation

If a floating-point operation is invalid, e.g.
√
−1.0, the result is the canonical NaN, which has all

bits set. As the MSB of the significand (aka. the quiet bit) is set, the canonical NaN is quiet.

For FMIN and FMAX, if at least one input is a signaling NaN, or if both inputs are quiet NaNs,
the result is the canonical NaN. If one operand is a quiet NaN and the other is not a NaN, the
result is the non-NaN operand.

If a NaN value is converted to a different floating-point type, the result is the canonical NaN of the
new type.

We require implementations to return the standard-mandated default values in the case of excep-
tional conditions, without any further intervention on the part of user-level software (unlike the
Alpha ISA floating-point trap barriers). We believe full hardware handling of exceptional cases
will become more common, and so wish to avoid complicating the user-level ISA to optimize
other approaches. Implementations can always trap to software handlers to provide exceptional
default values.
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6.4 Single-Precision Load and Store Instructions

Floating-point loads and stores use the same base+offset addressing mode as the integer base ISA,
with a base address in register rs1 and a 12-bit signed byte offset. The FLW instruction loads
a single-precision floating-point value from memory into floating-point register rd. FSW stores a
single-precision value from floating-point register rs2 to memory.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 width rd opcode

12 5 3 5 7
offset[11:0] base W dest LOAD-FP

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 width imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base W offset[4:0] STORE-FP

6.5 Single-Precision Floating-Point Computational Instructions

Floating-point arithmetic instructions with one or two source operands use the R-type format
with the OP-FP major opcode. FADD.S, FSUB.S, FMUL.S, and FDIV.S perform single-precision
floating-point addition, subtraction, multiplication, and division, respectively, between rs1 and rs2,
writing the result to rd. FMIN.S and FMAX.S write, respectively, the smaller or larger of rs1 and
rs2 to rd. FSQRT.S computes the square root of rs1 and writes the result to rd.

The 2-bit floating-point format field fmt is encoded as shown in Table 6.3. It is set to S (00) for all
instructions in the F extension.

fmt field Mnemonic Meaning
00 S 32-bit single-precision
01 D 64-bit double-precision
10 - reserved
11 Q 128-bit quad-precision

Table 6.3: Format field encoding.

All floating-point operations that perform rounding can select the rounding mode using the rm
field with the encoding shown in Table 6.1.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FADD/FSUB S src2 src1 RM dest OP-FP
FMUL/FDIV S src2 src1 RM dest OP-FP
FMIN-MAX S src2 src1 MIN/MAX dest OP-FP

FSQRT S 0 src RM dest OP-FP
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Floating-point fused multiply-add instructions require a new standard instruction format. R4-
type instructions specify three source registers (rs1, rs2, and rs3) and a destination register (rd).
This format is only used by the floating-point fused multiply-add instructions. Fused multiply-add
instructions multiply the values in rs1 and rs2, optionally negate the result, then add or subtract
the value in rs3 to or from that result. FMADD.S computes rs1×rs2+rs3; FMSUB.S computes
rs1×rs2-rs3; FNMSUB.S computes -(rs1×rs2-rs3); and FNMADD.S computes -(rs1×rs2+rs3).

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
src3 S src2 src1 RM dest F[N]MADD/F[N]MSUB

6.6 Single-Precision Floating-Point Conversion and Move Instruc-
tions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the
OP-FP major opcode space. FCVT.W.S or FCVT.L.S converts a floating-point number in floating-
point register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer register rd. FCVT.S.W
or FCVT.S.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rs1 into a
floating-point number in floating-point register rd. FCVT.WU.S, FCVT.LU.S, FCVT.S.WU, and
FCVT.S.LU variants convert to or from unsigned integer values. FCVT.L[U].S and FCVT.S.L[U]
are illegal in RV32.

All floating-point to integer and integer to floating-point conversion instructions round according
to the rm field. A floating-point register can be initialized to floating-point positive zero using
FCVT.S.W rd, x0, which will never raise any exceptions.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.int.fmt S W[U]/L[U] src RM dest OP-FP
FCVT.fmt.int S W[U]/L[U] src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.S, FSGNJN.S, and FSGNJX.S,
produce a result that takes all bits except the sign bit from rs1. For FSGNJ, the result’s sign bit is
rs2’s sign bit; for FSGNJN, the result’s sign bit is the opposite of rs2’s sign bit; and for FSGNJX,
the sign bit is the XOR of the sign bits of rs1 and rs2. Sign-injection instructions do not set floating-
point exception flags. Note, FSGNJ.S rx, ry, ry moves ry to rx (assembler pseudo-op FMV.S rx,
ry); FSGNJN.S rx, ry, ry moves the the negation of ry to rx (assembler pseudo-op FNEG.S rx, ry);
and FSGNJX.S rx, ry, ry moves the absolute value of ry to rx (assembler pseudo-op FABS.S rx,
ry).

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FSGNJ S src2 src1 J[N]/JX dest OP-FP
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Instructions are provided to move bit patterns between the floating-point and integer registers.
FMV.X.S moves the single-precision value in floating-point register rs1 represented in IEEE 754-
2008 encoding to the lower 32 bits of integer register rd. For RV64, the higher 32 bits of the
destination register are filled with copies of the floating-point number’s sign bit. FMV.S.X moves
the single-precision value encoded in IEEE 754-2008 standard encoding from the lower 32 bits of
integer register rs1 to the floating-point register rd.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FMV.X.fmt S 0 src 000 dest OP-FP
FMV.fmt.X S 0 src 000 dest OP-FP

The base floating-point ISA was defined so as to allow implementations to employ an internal
recoding of the floating-point format in registers to simplify handling of subnormal values and
possibly to reduce functional unit latency. To this end, the base ISA avoids representing integer
values in the floating-point registers by defining conversion and comparison operations that read
and write the integer register file directly. This also removes many of the common cases where
explicit moves between integer and floating-point registers are required, reducing instruction count
and critical paths for common mixed-format code sequences.

6.7 Single-Precision Floating-Point Compare Instructions

Floating-point compare instructions perform the specified comparison (equal, less than, or less
than or equal) between floating-point registers rs1 and rs2 and record the Boolean result in integer
register rd.

FLT.S and FLE.S perform what the IEEE 754-2008 standard refers to as signaling comparisons:
that is, an Invalid Operation exception is raised if either input is NaN. FEQ.S performs a quiet com-
parison: only signaling NaN inputs cause an Invalid Operation exception. For all three instructions,
the result is 0 if either operand is NaN.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCMP S src2 src1 EQ/LT/LE dest OP-FP

6.8 Single-Precision Floating-Point Classify Instruction

The FCLASS.S instruction examines the value in floating-point register rs1 and writes to integer
register rd a 10-bit mask that indicates the class of the floating-point number. The format of the
mask is described in Table 6.4. The corresponding bit in rd will be set if the the property is true
and clear otherwise. All other bits in rd are cleared. Note that exactly one bit in rd will be set.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCLASS S 0 src 001 dest OP-FP

rd bit Meaning
0 rs1 is −∞.
1 rs1 is a negative normal number.
2 rs1 is a negative subnormal number.
3 rs1 is −0.
4 rs1 is +0.
5 rs1 is a positive subnormal number.
6 rs1 is a positive normal number.
7 rs1 is +∞.
8 rs1 is a signaling NaN.
9 rs1 is a quiet NaN.

Table 6.4: Format of result of FCLASS instruction.
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Chapter 7

“D” Standard Extension for
Double-Precision Floating-Point

This chapter describes the standard double-precision floating-point instruction-set extension, which
is named “D” and adds double-precision floating-point computational instructions compliant with
the IEEE 754-2008 arithmetic standard. The D extension depends on the base single-precision
instruction subset F.

7.1 D Register State

The D extension widens the 32 floating-point registers, f0–f31, to 64 bits (FLEN=64 in Figure 6.1).

7.2 Double-Precision Load and Store Instructions

The FLD instruction loads a double-precision floating-point value from memory into floating-point
register rd. FSD stores a double-precision value from the floating-point registers to memory.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 width rd opcode

12 5 3 5 7
offset[11:0] base D dest LOAD-FP

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 width imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base D offset[4:0] STORE-FP

If a floating-point register holds a single-precision value, it is guaranteed that a FSD of that register
will place a value into memory that when reloaded with a FLD will recreate the original single-

45
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precision value in a register. The data format that is stored in memory is undefined beyond having
this property.

User-level code might not know the current type of data stored in a floating-point register but
has to be able to save and restore the register values. A common case is for callee-save registers,
but this is also essential to implement varargs and user-level threading libraries.

7.3 Double-Precision Floating-Point Computational Instructions

The double-precision floating-point computational instructions are defined analogously to their
single-precision counterparts, but operate on double-precision operands and produce double-
precision results.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FADD/FSUB D src2 src1 RM dest OP-FP
FMUL/FDIV D src2 src1 RM dest OP-FP
FMIN-MAX D src2 src1 MIN/MAX dest OP-FP

FSQRT D 0 src RM dest OP-FP

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
src3 D src2 src1 RM dest F[N]MADD/F[N]MSUB

7.4 Double-Precision Floating-Point Conversion and Move In-
structions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the
OP-FP major opcode space. FCVT.W.D or FCVT.L.D converts a double-precision floating-point
number in floating-point register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer
register rd. FCVT.D.W or FCVT.D.L converts a 32-bit or 64-bit signed integer, respectively,
in integer register rs1 into a double-precision floating-point number in floating-point register rd.
FCVT.WU.D, FCVT.LU.D, FCVT.D.WU, and FCVT.D.LU variants convert to or from unsigned
integer values. FCVT.L[U].D and FCVT.D.L[U] are illegal in RV32.

All floating-point to integer and integer to floating-point conversion instructions round according
to the rm field. Note FCVT.D.W[U] always produces an exact result and is unaffected by rounding
mode.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.int.fmt D W[U]/L[U] src RM dest OP-FP
FCVT.fmt.int D W[U]/L[U] src RM dest OP-FP

The double-precision to single-precision and single-precision to double-precision conversion instruc-
tions, FCVT.S.D and FCVT.D.S, are encoded in the OP-FP major opcode space and both the
source and destination are floating-point registers. The rs2 field encodes the datatype of the
source, and the fmt field encodes the datatype of the destination. FCVT.S.D rounds according to
the RM field; FCVT.D.S will never round.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.fmt.fmt S D src RM dest OP-FP
FCVT.fmt.fmt D S src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.D, FSGNJN.D, and FSGNJX.D
are defined analogously to the single-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FSGNJ D src2 src1 J[N]/JX dest OP-FP

For RV64 only, instructions are provided to move bit patterns between the floating-point and
integer registers. FMV.X.D moves the double-precision value in floating-point register rs1 to a
representation in IEEE 754-2008 standard encoding in integer register rd. FMV.D.X moves the
double-precision value encoded in IEEE 754-2008 standard encoding from the integer register rs1
to the floating-point register rd.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FMV.X.fmt D 0 src 000 dest OP-FP
FMV.fmt.X D 0 src 000 dest OP-FP

7.5 Double-Precision Floating-Point Compare Instructions

The double-precision floating-point compare instructions are defined analogously to their single-
precision counterparts, but operate on double-precision operands.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCMP D src2 src1 EQ/LT/LE dest OP-FP

7.6 Double-Precision Floating-Point Classify Instruction

The double-precision floating-point classify instruction, FCLASS.D, is defined analogously to its
single-precision counterpart, but operates on double-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCLASS D 0 src 001 dest OP-FP



Chapter 8

RV32/64G Instruction Set Listings

One goal of the RISC-V project is that it be used as a stable software development target. For this
purpose, we define a combination of a base ISA (RV32I or RV64I) plus selected standard extensions
(IMAFD) as a “general-purpose” ISA, and we use the abbreviation G for the IMAFD combination
of instruction set extensions. This chapter presents opcode maps and instruction set listings for
RV32G and RV64G.

inst[4:2] 000 001 010 011 100 101 110 111
inst[6:5] (> 32b)

00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 48b

01 STORE STORE-FP custom-1 AMO OP LUI OP-32 64b

10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128 48b

11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128 ≥ 80b

Table 8.1: RISC-V base opcode map, inst[1:0]=11

Table 8.1 shows a map of the major opcodes for RVG. Major opcodes with 3 or more lower bits
set are reserved for instruction lengths greater than 32 bits. Opcodes marked as reserved should be
avoided for custom instruction set extensions as they might be used by future standard extensions.
Major opcodes marked as custom-0 and custom-1 will be avoided by future standard extensions and
are recommended for use by custom instruction-set extensions within the base 32-bit instruction
format. The opcodes marked custom-2/rv128 and custom-3/rv128 are reserved for future use by
RV128, but will otherwise be avoided for standard extensions and so can also be used for custom
instruction-set extensions.

We believe RV32G and RV64G provide simple but complete instruction sets for a broad range of
general-purpose computing. The optional compressed instruction set described in Chapter 13 can
be added (forming RV32GC and RV64GC) to improve performance, code size, and energy efficiency,
though with some additional hardware complexity.

As we move beyond IMAFDC into further instruction set extensions, the added instructions tend
to be more domain-specific and only provide benefits to a restricted class of applications, e.g., for
multimedia or security. Unlike most commercial ISAs, the RISC-V ISA design clearly separates
the base ISA and broadly applicable standard extensions (IMAFDC) from these more specialized
additions. Chapter 9 has a more extensive discussion of ways to add extensions to the RISC-V ISA.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode SB-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode UJ-type

RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI rd,imm
imm[31:12] rd 0010111 AUIPC rd,imm

imm[20|10:1|11|19:12] rd 1101111 JAL rd,imm
imm[11:0] rs1 000 rd 1100111 JALR rd,rs1,imm

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ rs1,rs2,imm
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE rs1,rs2,imm
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT rs1,rs2,imm
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE rs1,rs2,imm
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU rs1,rs2,imm
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU rs1,rs2,imm

imm[11:0] rs1 000 rd 0000011 LB rd,rs1,imm
imm[11:0] rs1 001 rd 0000011 LH rd,rs1,imm
imm[11:0] rs1 010 rd 0000011 LW rd,rs1,imm
imm[11:0] rs1 100 rd 0000011 LBU rd,rs1,imm
imm[11:0] rs1 101 rd 0000011 LHU rd,rs1,imm

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB rs1,rs2,imm
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH rs1,rs2,imm
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW rs1,rs2,imm

imm[11:0] rs1 000 rd 0010011 ADDI rd,rs1,imm
imm[11:0] rs1 010 rd 0010011 SLTI rd,rs1,imm
imm[11:0] rs1 011 rd 0010011 SLTIU rd,rs1,imm
imm[11:0] rs1 100 rd 0010011 XORI rd,rs1,imm
imm[11:0] rs1 110 rd 0010011 ORI rd,rs1,imm
imm[11:0] rs1 111 rd 0010011 ANDI rd,rs1,imm

0000000 shamt rs1 001 rd 0010011 SLLI rd,rs1,shamt
0000000 shamt rs1 101 rd 0010011 SRLI rd,rs1,shamt
0100000 shamt rs1 101 rd 0010011 SRAI rd,rs1,shamt
0000000 rs2 rs1 000 rd 0110011 ADD rd,rs1,rs2
0100000 rs2 rs1 000 rd 0110011 SUB rd,rs1,rs2
0000000 rs2 rs1 001 rd 0110011 SLL rd,rs1,rs2
0000000 rs2 rs1 010 rd 0110011 SLT rd,rs1,rs2
0000000 rs2 rs1 011 rd 0110011 SLTU rd,rs1,rs2
0000000 rs2 rs1 100 rd 0110011 XOR rd,rs1,rs2
0000000 rs2 rs1 101 rd 0110011 SRL rd,rs1,rs2
0100000 rs2 rs1 101 rd 0110011 SRA rd,rs1,rs2
0000000 rs2 rs1 110 rd 0110011 OR rd,rs1,rs2
0000000 rs2 rs1 111 rd 0110011 AND rd,rs1,rs2

0000 pred succ 00000 000 00000 0001111 FENCE
0000 0000 0000 00000 001 00000 0001111 FENCE.I

000000000000 00000 000 00000 1110011 SCALL
000000000001 00000 000 00000 1110011 SBREAK
110000000000 00000 010 rd 1110011 RDCYCLE rd
110010000000 00000 010 rd 1110011 RDCYCLEH rd
110000000001 00000 010 rd 1110011 RDTIME rd
110010000001 00000 010 rd 1110011 RDTIMEH rd
110000000010 00000 010 rd 1110011 RDINSTRET rd
110010000010 00000 010 rd 1110011 RDINSTRETH rd
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funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV64I Base Instruction Set (in addition to RV32I)
imm[11:0] rs1 110 rd 0000011 LWU rd,rs1,imm
imm[11:0] rs1 011 rd 0000011 LD rd,rs1,imm

imm[11:5] rs2 rs1 011 imm[4:0] 0100011 SD rs1,rs2,imm
000000 shamt rs1 001 rd 0010011 SLLI rd,rs1,shamt
000000 shamt rs1 101 rd 0010011 SRLI rd,rs1,shamt
010000 shamt rs1 101 rd 0010011 SRAI rd,rs1,shamt

imm[11:0] rs1 000 rd 0011011 ADDIW rd,rs1,imm
0000000 shamt rs1 001 rd 0011011 SLLIW rd,rs1,shamt
0000000 shamt rs1 101 rd 0011011 SRLIW rd,rs1,shamt
0100000 shamt rs1 101 rd 0011011 SRAIW rd,rs1,shamt
0000000 rs2 rs1 000 rd 0111011 ADDW rd,rs1,rs2
0100000 rs2 rs1 000 rd 0111011 SUBW rd,rs1,rs2
0000000 rs2 rs1 001 rd 0111011 SLLW rd,rs1,rs2
0000000 rs2 rs1 101 rd 0111011 SRLW rd,rs1,rs2
0100000 rs2 rs1 101 rd 0111011 SRAW rd,rs1,rs2

RV32M Standard Extension
0000001 rs2 rs1 000 rd 0110011 MUL rd,rs1,rs2
0000001 rs2 rs1 001 rd 0110011 MULH rd,rs1,rs2
0000001 rs2 rs1 010 rd 0110011 MULHSU rd,rs1,rs2
0000001 rs2 rs1 011 rd 0110011 MULHU rd,rs1,rs2
0000001 rs2 rs1 100 rd 0110011 DIV rd,rs1,rs2
0000001 rs2 rs1 101 rd 0110011 DIVU rd,rs1,rs2
0000001 rs2 rs1 110 rd 0110011 REM rd,rs1,rs2
0000001 rs2 rs1 111 rd 0110011 REMU rd,rs1,rs2

RV64M Standard Extension (in addition to RV32M)
0000001 rs2 rs1 000 rd 0111011 MULW rd,rs1,rs2
0000001 rs2 rs1 100 rd 0111011 DIVW rd,rs1,rs2
0000001 rs2 rs1 101 rd 0111011 DIVUW rd,rs1,rs2
0000001 rs2 rs1 110 rd 0111011 REMW rd,rs1,rs2
0000001 rs2 rs1 111 rd 0111011 REMUW rd,rs1,rs2

RV32A Standard Extension
00010 aq rl 00000 rs1 010 rd 0101111 LR.W rd,rs1
00011 aq rl rs2 rs1 010 rd 0101111 SC.W rd,rs1,rs2
00001 aq rl rs2 rs1 010 rd 0101111 AMOSWAP.W rd,rs1,rs2
00000 aq rl rs2 rs1 010 rd 0101111 AMOADD.W rd,rs1,rs2
00100 aq rl rs2 rs1 010 rd 0101111 AMOXOR.W rd,rs1,rs2
01100 aq rl rs2 rs1 010 rd 0101111 AMOAND.W rd,rs1,rs2
01000 aq rl rs2 rs1 010 rd 0101111 AMOOR.W rd,rs1,rs2
10000 aq rl rs2 rs1 010 rd 0101111 AMOMIN.W rd,rs1,rs2
10100 aq rl rs2 rs1 010 rd 0101111 AMOMAX.W rd,rs1,rs2
11000 aq rl rs2 rs1 010 rd 0101111 AMOMINU.W rd,rs1,rs2
11100 aq rl rs2 rs1 010 rd 0101111 AMOMAXU.W rd,rs1,rs2
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funct7 rs2 rs1 funct3 rd opcode R-type
rs3 funct2 rs2 rs1 funct3 rd opcode R4-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV64A Standard Extension (in addition to RV32A)
00010 aq rl 00000 rs1 011 rd 0101111 LR.D rd,rs1
00011 aq rl rs2 rs1 011 rd 0101111 SC.D rd,rs1,rs2
00001 aq rl rs2 rs1 011 rd 0101111 AMOSWAP.D rd,rs1,rs2
00000 aq rl rs2 rs1 011 rd 0101111 AMOADD.D rd,rs1,rs2
00100 aq rl rs2 rs1 011 rd 0101111 AMOXOR.D rd,rs1,rs2
01100 aq rl rs2 rs1 011 rd 0101111 AMOAND.D rd,rs1,rs2
01000 aq rl rs2 rs1 011 rd 0101111 AMOOR.D rd,rs1,rs2
10000 aq rl rs2 rs1 011 rd 0101111 AMOMIN.D rd,rs1,rs2
10100 aq rl rs2 rs1 011 rd 0101111 AMOMAX.D rd,rs1,rs2
11000 aq rl rs2 rs1 011 rd 0101111 AMOMINU.D rd,rs1,rs2
11100 aq rl rs2 rs1 011 rd 0101111 AMOMAXU.D rd,rs1,rs2

RV32F Standard Extension
imm[11:0] rs1 010 rd 0000111 FLW rd,rs1,imm

imm[11:5] rs2 rs1 010 imm[4:0] 0100111 FSW rs1,rs2,imm
rs3 00 rs2 rs1 rm rd 1000011 FMADD.S rd,rs1,rs2,rs3
rs3 00 rs2 rs1 rm rd 1000111 FMSUB.S rd,rs1,rs2,rs3
rs3 00 rs2 rs1 rm rd 1001011 FNMSUB.S rd,rs1,rs2,rs3
rs3 00 rs2 rs1 rm rd 1001111 FNMADD.S rd,rs1,rs2,rs3

0000000 rs2 rs1 rm rd 1010011 FADD.S rd,rs1,rs2
0000100 rs2 rs1 rm rd 1010011 FSUB.S rd,rs1,rs2
0001000 rs2 rs1 rm rd 1010011 FMUL.S rd,rs1,rs2
0001100 rs2 rs1 rm rd 1010011 FDIV.S rd,rs1,rs2
0101100 00000 rs1 rm rd 1010011 FSQRT.S rd,rs1
0010000 rs2 rs1 000 rd 1010011 FSGNJ.S rd,rs1,rs2
0010000 rs2 rs1 001 rd 1010011 FSGNJN.S rd,rs1,rs2
0010000 rs2 rs1 010 rd 1010011 FSGNJX.S rd,rs1,rs2
0010100 rs2 rs1 000 rd 1010011 FMIN.S rd,rs1,rs2
0010100 rs2 rs1 001 rd 1010011 FMAX.S rd,rs1,rs2
1100000 00000 rs1 rm rd 1010011 FCVT.W.S rd,rs1
1100000 00001 rs1 rm rd 1010011 FCVT.WU.S rd,rs1
1110000 00000 rs1 000 rd 1010011 FMV.X.S rd,rs1
1010000 rs2 rs1 010 rd 1010011 FEQ.S rd,rs1,rs2
1010000 rs2 rs1 001 rd 1010011 FLT.S rd,rs1,rs2
1010000 rs2 rs1 000 rd 1010011 FLE.S rd,rs1,rs2
1110000 00000 rs1 001 rd 1010011 FCLASS.S rd,rs1
1101000 00000 rs1 rm rd 1010011 FCVT.S.W rd,rs1
1101000 00001 rs1 rm rd 1010011 FCVT.S.WU rd,rs1
1111000 00000 rs1 000 rd 1010011 FMV.S.X rd,rs1

000000000011 00000 010 rd 1110011 FRCSR rd
000000000010 00000 010 rd 1110011 FRRM rd
000000000001 00000 010 rd 1110011 FRFLAGS rd
000000000011 rs1 001 rd 1110011 FSCSR rd,rs1
000000000010 rs1 001 rd 1110011 FSRM rd,rs1
000000000001 rs1 001 rd 1110011 FSFLAGS rd,rs1
000000000010 00000 101 rd 1110011 FSRMI rd,imm
000000000001 00000 101 rd 1110011 FSFLAGSI rd,imm
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funct7 rs2 rs1 funct3 rd opcode R-type
rs3 funct2 rs2 rs1 funct3 rd opcode R4-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV64F Standard Extension (in addition to RV32F)
1100000 00010 rs1 rm rd 1010011 FCVT.L.S rd,rs1
1100000 00011 rs1 rm rd 1010011 FCVT.LU.S rd,rs1
1101000 00010 rs1 rm rd 1010011 FCVT.S.L rd,rs1
1101000 00011 rs1 rm rd 1010011 FCVT.S.LU rd,rs1

RV32D Standard Extension
imm[11:0] rs1 011 rd 0000111 FLD rd,rs1,imm

imm[11:5] rs2 rs1 011 imm[4:0] 0100111 FSD rs1,rs2,imm
rs3 01 rs2 rs1 rm rd 1000011 FMADD.D rd,rs1,rs2,rs3
rs3 01 rs2 rs1 rm rd 1000111 FMSUB.D rd,rs1,rs2,rs3
rs3 01 rs2 rs1 rm rd 1001011 FNMSUB.D rd,rs1,rs2,rs3
rs3 01 rs2 rs1 rm rd 1001111 FNMADD.D rd,rs1,rs2,rs3

0000001 rs2 rs1 rm rd 1010011 FADD.D rd,rs1,rs2
0000101 rs2 rs1 rm rd 1010011 FSUB.D rd,rs1,rs2
0001001 rs2 rs1 rm rd 1010011 FMUL.D rd,rs1,rs2
0001101 rs2 rs1 rm rd 1010011 FDIV.D rd,rs1,rs2
0101101 00000 rs1 rm rd 1010011 FSQRT.D rd,rs1
0010001 rs2 rs1 000 rd 1010011 FSGNJ.D rd,rs1,rs2
0010001 rs2 rs1 001 rd 1010011 FSGNJN.D rd,rs1,rs2
0010001 rs2 rs1 010 rd 1010011 FSGNJX.D rd,rs1,rs2
0010101 rs2 rs1 000 rd 1010011 FMIN.D rd,rs1,rs2
0010101 rs2 rs1 001 rd 1010011 FMAX.D rd,rs1,rs2
0100000 00001 rs1 rm rd 1010011 FCVT.S.D rd,rs1
0100001 00000 rs1 rm rd 1010011 FCVT.D.S rd,rs1
1010001 rs2 rs1 010 rd 1010011 FEQ.D rd,rs1,rs2
1010001 rs2 rs1 001 rd 1010011 FLT.D rd,rs1,rs2
1010001 rs2 rs1 000 rd 1010011 FLE.D rd,rs1,rs2
1110001 00000 rs1 001 rd 1010011 FCLASS.D rd,rs1
1100001 00000 rs1 rm rd 1010011 FCVT.W.D rd,rs1
1100001 00001 rs1 rm rd 1010011 FCVT.WU.D rd,rs1
1101001 00000 rs1 rm rd 1010011 FCVT.D.W rd,rs1
1101001 00001 rs1 rm rd 1010011 FCVT.D.WU rd,rs1

RV64D Standard Extension (in addition to RV32D)
1100001 00010 rs1 rm rd 1010011 FCVT.L.D rd,rs1
1100001 00011 rs1 rm rd 1010011 FCVT.LU.D rd,rs1
1110001 00000 rs1 000 rd 1010011 FMV.X.D rd,rs1
1101001 00010 rs1 rm rd 1010011 FCVT.D.L rd,rs1
1101001 00011 rs1 rm rd 1010011 FCVT.D.LU rd,rs1
1111001 00000 rs1 000 rd 1010011 FMV.D.X rd,rs1

Table 8.2: Instruction listing for RISC-V



54 Volume I: RISC-V User-Level ISA V2.0



Chapter 9

Extending RISC-V

In addition to supporting standard general-purpose software development, another goal of RISC-V
is to provide a basis for more specialized instruction-set extensions or more customized accelerators.
The instruction encoding spaces and optional variable-length instruction encoding are designed to
make it easier to leverage software development effort for the standard ISA toolchain when building
more customized processors. For example, the intent is to continue to provide full software support
for implementations that only use the standard I base, perhaps together with many non-standard
instruction-set extensions.

This chapter describes various ways in which the base RISC-V ISA can be extended, together
with the scheme for managing instruction-set extensions developed by independent groups. This
volume only deals with the user-level ISA, although the same approach and terminology is used for
supervisor-level extensions described in the second volume.

9.1 Extension Terminology

This section defines some standard terminology for describing RISC-V extensions.

Standard versus Non-Standard Extension

Any RISC-V processor implementation must support a base integer ISA (RV32I or RV64I). In
addition, an implementation may support one or more extensions. We divide extensions into two
broad categories: standard versus non-standard.

• A standard extension is one that is generally useful and that is designed to not conflict with
any other standard extension. Currently, “MAFDQLCBTP”, described in other chapters of
this manual, are either complete or planned standard extensions.

• A non-standard extension may be highly specialized and may conflict with other standard
or non-standard extensions. We anticipate a wide variety of non-standard extensions will be
developed over time, with some eventually being promoted to standard extensions.

55
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Instruction Encoding Spaces and Prefixes

An instruction encoding space is some number of instruction bits within which a base ISA or
ISA extension is encoded. RISC-V supports varying instruction lengths, but even within a single
instruction length, there are various sizes of encoding space available. For example, the base ISA
is defined within a 30-bit encoding space (bits 31–2 of the 32-bit instruction), while the atomic
extension “A” fits within a 25-bit encoding space (bits 31–7).

We use the term prefix to refer to the bits to the right of an instruction encoding space (since
RISC-V is little-endian, the bits to the right are stored at earlier memory addresses, hence form a
prefix in instruction-fetch order). The prefix for the standard base ISA encoding is the two-bit “11”
field held in bits 1–0 of the 32-bit word, while the prefix for the standard atomic extension “A”
is the seven-bit “0101111” field held in bits 6–0 of the 32-bit word representing the AMO major
opcode. A quirk of the encoding format is that the 3-bit funct3 field used to encode a minor opcode
is not contiguous with the major opcode bits in the 32-bit instruction format, but is considered
part of the prefix for 22-bit instruction spaces.

Although an instruction encoding space could be of any size, adopting a smaller set of common
sizes simplifies packing independently developed extensions into a single global encoding. Table 9.1
gives the suggested sizes for RISC-V.

Size Usage # Available in standard instruction length
16-bit 32-bit 48-bit 64-bit

14-bit Quadrant of compressed 16-bit encoding 3

22-bit Minor opcode in base 32-bit encoding 28 220 235

25-bit Major opcode in base 32-bit encoding 32 217 232

30-bit Quadrant of base 32-bit encoding 1 212 227

32-bit Minor opcode in 48-bit encoding 210 225

37-bit Major opcode in 48-bit encoding 32 220

40-bit Quadrant of 48-bit encoding 4 217

45-bit Sub-minor opcode in 64-bit encoding 212

48-bit Minor opcode in 64-bit encoding 29

52-bit Major opcode in 64-bit encoding 32

Table 9.1: Suggested standard RISC-V instruction encoding space sizes.

Greenfield versus Brownfield Extensions

We use the term greenfield extension to describe an extension that begins populating a new in-
struction encoding space, and hence can only cause encoding conflicts at the prefix level. We
use the term brownfield extension to describe an extension that fits around existing encodings in
a previously defined instruction space. A brownfield extension is necessarily tied to a particular
greenfield parent encoding, and there may be multiple brownfield extensions to the same greenfield
parent encoding. For example, the base ISAs are greenfield encodings of a 30-bit instruction space,
while the FDQ floating-point extensions are all brownfield extensions adding to the parent base
ISA 30-bit encoding space.
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Note that we consider the standard A extension to have a greenfield encoding as it defines a new
previously empty 25-bit encoding space in the leftmost bits of the full 32-bit base instruction
encoding, even though its standard prefix locates it within the 30-bit encoding space of the base
ISA. Changing only its single 7-bit prefix could move the A extension to a different 30-bit encoding
space while only worrying about conflicts at the prefix level, not within the encoding space itself.

Adds state No new state

Greenfield RV32I(30), RV64I(30) A(25)

Brownfield F(I), D(F), Q(D) M(I)

Table 9.2: Two-dimensional characterization of standard instruction-set extensions.

Table 9.2 shows the bases and standard extensions placed in a simple two-dimensional taxonomy.
One axis is whether the extension is greenfield or brownfield, while the other axis is whether the
extension adds architectural state. For greenfield extensions, the size of the instruction encoding
space is given in parentheses. For brownfield extensions, the name of the extension (greenfield or
brownfield) it builds upon is given in parentheses. Additional user-level architectural state usually
implies changes to the supervisor-level system or possibly to the standard calling convention.

Note that RV64I is not considered an extension of RV32I, but a different complete base encoding.

Standard-Compatible Global Encodings

A complete or global encoding of an ISA for an actual RISC-V implementation must allocate a
unique non-conflicting prefix for every included instruction encoding space. The bases and every
standard extension have each had a standard prefix allocated to ensure they can all coexist in a
global encoding.

A standard-compatible global encoding is one where the base and every included standard extension
have their standard prefixes. A standard-compatible global encoding can include non-standard
extensions that do not conflict with the included standard extensions. A standard-compatible
global encoding can also use standard prefixes for non-standard extensions if the associated standard
extensions are not included in the global encoding. In other words, a standard extension must use
its standard prefix if included in a standard-compatible global encoding, but otherwise its prefix is
free to be reallocated. These constraints allow a common toolchain to target the standard subset
of any RISC-V standard-compatible global encoding.

9.2 RISC-V Extension Design Philosophy

We intend to support a large number of independently developed extensions by encouraging ex-
tension developers to operate within instruction encoding spaces, and by providing tools to pack
these into a standard-compatible global encoding by allocating unique prefixes. Some extensions
are more naturally implemented as brownfield augmentations of existing extensions, and will share
whatever prefix is allocated to their parent greenfield extension. The standard extension prefixes
avoid spurious incompatibilities in the encoding of core functionality, while allowing custom packing
of more esoteric extensions.
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This capability of repacking RISC-V extensions into different standard-compatible global encodings
can be used in a number of ways.

One use-case is developing highly specialized custom accelerators, designed to run kernels from
important application domains. These might want to drop all but the base integer ISA and add
in only the extensions that are required for the task in hand. The base ISA has been designed to
place minimal requirements on a hardware implementation, and has been encoded to use only a
small fraction of a 32-bit instruction encoding space.

Another use-case is to build a research prototype for a new type of instruction-set extension. The
researchers might not want to expend the effort to implement a variable-length instruction-fetch
unit, and so would like to prototype their extension using a simple 32-bit fixed-width instruction
encoding. However, this new extension might be too large to coexist with standard extensions in
the 32-bit space. If the research experiments do not need all of the standard extensions, a standard-
compatible global encoding might drop the unused standard extensions and reuse their prefixes to
place the proposed extension in a non-standard location to simplify engineering of the research
prototype. Standard tools will still be able to target the base and any standard extensions that are
present to reduce development time. Once the instruction-set extension has been evaluated and
refined, it could then be made available for packing into a larger variable-length encoding space to
avoid conflicts with all standard extensions.

The following sections describe increasingly sophisticated strategies for developing implementations
with new instruction-set extensions.

9.3 Extensions within fixed-width 32-bit instruction format

In this section, we discuss adding extensions to implementations that only support the base fixed-
width 32-bit instruction format.

We anticipate the simplest fixed-width 32-bit encoding will be popular for many restricted accel-
erators and research prototypes.

Available 30-bit instruction encoding spaces

In the standard encoding, three of the available 30-bit instruction encoding spaces (those with 2-bit
prefixes 00, 01, and 10) are used to enable the optional compressed instruction extension. However,
if the compressed instruction-set extension is not required, then these three further 30-bit encoding
spaces become available. This quadruples the available encoding space within the 32-bit format.

Available 25-bit instruction encoding spaces

A 25-bit instruction encoding space corresponds to a major opcode in the base and standard
extension encodings.
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There are four major opcodes expressly reserved for custom extensions (Table 8.1), each of which
represents a 25-bit encoding space. Two of these are reserved for eventual use in the RV128 base
encoding (will be OP-IMM-64 and OP-64), but can be used for standard or non-standard extensions
for RV32 and RV64.

The two opcodes reserved for RV64 (OP-IMM-32 and OP-32) can also be used for standard and
non-standard extensions to RV32 only.

If an implementation does not require floating-point, then the seven major opcodes reserved for
standard floating-point extensions (LOAD-FP, STORE-FP, MADD, MSUB, NMSUB, NMADD,
OP-FP) can be reused for non-standard extensions. Similarly, the AMO major opcode can be
reused if the standard atomic extensions are not required.

If an implementation does not require instructions longer than 32-bits, then an additional four
major opcodes are available (those marked in gray in Table 8.1).

The base RV32I encoding uses only 11 major opcodes plus 3 reserved opcodes, leaving up to 18
available for extensions. The base RV64I encoding uses only 13 major opcodes plus 3 reserved
opcodes, leaving up to 16 available for extensions.

Available 22-bit instruction encoding spaces

A 22-bit encoding space corresponds to a funct3 minor opcode space in the base and standard
extension encodings. Several major opcodes have a funct3 field minor opcode that is not completely
occupied, leaving available several 22-bit encoding spaces.

Usually a major opcode selects the format used to encode operands in the remaining bits of the
instruction, and ideally, an extension should follow the operand format of the major opcode to
simplify hardware decoding.

Other spaces

Smaller spaces are available under certain major opcodes, and not all minor opcodes are entirely
filled.

9.4 Adding aligned 64-bit instruction extensions

The simplest approach to provide space for extensions that are too large for the base 32-bit fixed-
width instruction format is to add naturally aligned 64-bit instructions. The implementation must
still support the 32-bit base instruction format, but can require that 64-bit instructions are aligned
on 64-bit boundaries to simplify instruction fetch, with a 32-bit NOP instruction used as alignment
padding where necessary.

To simplify use of standard tools, the 64-bit instructions should be encoded as described in Fig-
ure 1.1. However, an implementation might choose a non-standard instruction-length encoding for
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64-bit instructions, while retaining the standard encoding for 32-bit instructions. For example, if
compressed instructions are not required, then a 64-bit instruction could be encoded using one or
more zero bits in the first two bits of an instruction.

We anticipate processor generators that produce instruction-fetch units capable of automatically
handling any combination of supported variable-length instruction encodings.

9.5 Supporting VLIW encodings

Although RISC-V was not designed as a base for a pure VLIW machine, VLIW encodings can be
added as extensions using several alternative approaches. In all cases, the base 32-bit encoding has
to be supported to allow use of any standard software tools.

Fixed-size instruction group

The simplest approach is to define a single large naturally aligned instruction format (e.g., 128 bits)
within which VLIW operations are encoded. In a conventional VLIW, this approach would tend
to waste instruction memory to hold NOPs, but a RISC-V-compatible implementation would have
to also support the base 32-bit instructions, confining the VLIW code size expansion to VLIW-
accelerated functions.

Encoded-Length Groups

Another approach is to use the standard length encoding from Figure 1.1 to encode parallel in-
struction groups, allowing NOPs to be compressed out of the VLIW instruction. For example,
a 64-bit instruction could hold two 28-bit operations, while a 96-bit instruction could hold three
28-bit operations, and so on. Alternatively, a 48-bit instruction could hold one 42-bit operation,
while a 96-bit instruction could hold two 42-bit operations, and so on.

This approach has the advantage of retaining the base ISA encoding for instructions holding a
single operation, but has the disadvantage of requiring a new 28-bit or 42-bit encoding for operations
within the VLIW instructions, and misaligned instruction fetch for larger groups. One simplification
is to not allow VLIW instructions to straddle certain microarchitecturally significant boundaries
(e.g., cache lines or virtual memory pages).

Fixed-Size Instruction Bundles

Another approach, similar to Itanium, is to use a larger naturally aligned fixed instruction bundle
size (e.g., 128 bits) across which parallel operation groups are encoded. This simplifies instruction
fetch, but shifts the complexity to the group execution engine. To remain RISC-V compatible, the
base 32-bit instruction would still have to be supported.
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End-of-Group bits in Prefix

None of the above approaches retains the RISC-V encoding for the individual operations within
a VLIW instruction. Yet another approach is to repurpose the two prefix bits in the fixed-width
32-bit encoding. One prefix bit can be used to signal “end-of-group” if set, while the second bit
could indicate execution under a predicate if clear. Standard RISC-V 32-bit instructions generated
by tools unaware of the VLIW extension would have both prefix bits set (11) and thus have the
correct semantics, with each instruction at the end of a group and not predicated.

The main disadvantage of this approach is that the base ISA lacks the complex predication support
usually required in an aggressive VLIW system, and it is difficult to add space to specify more
predicate registers in the standard 30-bit encoding space.
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Chapter 10

ISA Subset Naming Conventions

This chapter describes the RISC-V ISA subset naming scheme that is used to concisely describe
the set of instructions present in a hardware implementation, or the set of instructions used by an
application binary interface (ABI).

The RISC-V ISA is designed to support a wide variety of implementations with various exper-
imental instruction-set extensions. We have found that an organized naming scheme simplifies
software tools and documentation.

10.1 Case Sensitivity

The ISA naming strings are case insensitive.

10.2 Underscores

Underscores “ ” can be used to separate components of the ISA string to improve human readability,
and might be required to disambiguate components of the ISA string.

10.3 Base Integer ISA

RISC-V ISA strings begin with either RV32I or RV64I, indicating the supported address space size
in bits for the base integer ISA.

10.4 Instruction Extensions Names

Standard ISA extensions are given a name consisting of a single letter. For example, the first
four standard extensions to the integer bases are: “M” for integer multiplication and division, “A”
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for atomic memory instructions, “F” for single-precision floating-point instructions, and “D” for
double-precision floating-point instructions. Any RISC-V instruction set variant can be succinctly
described by concatenating the base integer prefix with the names of the included extensions. For
example, “RV64IMAFD”.

We have also defined an abbreviation “G” to represent the “IMAFD” base and extensions, as this
is intended to represent our standard general-purpose ISA.

Standard extensions to the RISC-V ISA are given other reserved letters, e.g., “Q” for quad-precision
floating-point, or “C” for the 16-bit compressed instruction format.

10.5 Version Numbers

Recognizing that instruction sets may expand or alter over time, we encode subset version numbers
following the subset name. Version numbers are divided into major and minor version numbers,
separated by a “p”. If the minor version is “0”, then “p0” can be omitted from the version string.
Changes in major version numbers imply a loss of backwards compatibility, whereas changes in only
the minor version number must be backwards-compatible. For example, the original 64-bit standard
ISA defined in release 1.0 of this manual can be written in full as “RV64I1p0M1p0A1p0F1p0D1p0”,
more concisely as “RV64I1M1A1F1D1”, or even more concisely as “RV64G1”. The version of the
ISA defined in this manual has changes that break backwards-compatibility everywhere. The G
ISA subset can be written as “RV64I2p0M2p0A2p0F2p0D2p0”, or more concisely “RV64G2”.

We introduced the version numbering scheme with this second release, which we also intend to
become a permanent standard. Hence, we define the default version of a standard subset to be
that present at the time of this document, e.g., “RV32G” is equivalent to “RV32I2M2A2F2D2”.

10.6 Non-Standard Extension Names

Non-standard subsets are named using a standard “X” followed by a name beginning with a letter
indicating the particular extension. For example, “Xhwacha” names the Hwacha vector-fetch ISA
extension.

10.7 Annotations

Arbitrary annotations can be added following the name and any version number, with underscores
used to prevent confusion, e.g., “RV64G1p1 Xhwacha2 eos14”.
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Subset Name

Standard General-Purpose ISA

Integer I
Integer Multiplication and Division M
Atomics A
Single-Precision Floating-Point F
Double-Precision Floating-Point D

General G = IMAFD

Standard User-Level Extensions

Quad-Precision Floating-Point Q
Decimal Floating-Point L
16-bit Compressed Instructions C
Bit Manipulation B
Transactional Memory T
Packed-SIMD Extensions P

Non-Standard User-Level Extensions

Non-standard extension “abc” Xabc

Standard Supervisor-Level ISA

Supervisor extension “def” Sdef

Non-Standard Supervisor-Level Extensions

Supervisor extension “ghi” SXghi

Table 10.1: Standard ISA subset names. The table also defines the canonical order in which subset
names must appear in the name string, with top-to-bottom in table indicating first-to-last in the
name string, e.g., RV32IMAFDQC is legal, whereas RV32IMAFDCQ is not.

10.8 Supervisor-level Instruction Subsets

Standard supervisor instruction subsets are defined in Volume II, but are named using “S” as a
prefix, followed by a supervisor subset name, a version number, and any annotations.

10.9 Supervisor-level Extensions

Non-standard extensions to the supervisor-level ISA are defined using the “SX” prefix.

10.10 Subset Naming Convention

Table 10.1 summarizes the standardized subset names.
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Chapter 11

“Q” Standard Extension for
Quad-Precision Floating-Point

This chapter describes the Q standard extension for 128-bit binary floating-point instructions com-
pliant with the IEEE 754-2008 arithmetic standard. The 128-bit or quad-precision binary floating-
point instruction subset is named “Q”, and requires RV64IFD. The floating-point registers are now
extended to hold either a single, double, or quad-precision floating-point value (FLEN=128).

11.1 Quad-Precision Load and Store Instructions

New 128-bit variants of LOAD-FP and STORE-FP instructions are added, encoded with a new
value for the funct3 width field.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 width rd opcode

12 5 3 5 7
offset[11:0] base Q dest LOAD-FP

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 width imm[4:0] opcode

7 5 5 3 5 7
offset[11:5] src base Q offset[4:0] STORE-FP

If a floating-point register holds a single-precision or double-precision value, it is guaranteed that
a FSQ of that register will place a value into memory that when reloaded with a FLQ will recreate
the original value in a register. The data format that is stored in memory is undefined beyond
having this property.
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11.2 Quad-Precision Computational Instructions

A new supported format is added to the format field of most instructions, as shown in Table 11.1.

fmt field Mnemonic Meaning

00 S 32-bit single-precision
01 D 64-bit double-precision
10 - reserved
11 Q 128-bit quad-precision

Table 11.1: Format field encoding.

The quad-precision floating-point computational instructions are defined analogously to their
double-precision counterparts, but operate on quad-precision operands and produce quad-precision
results.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FADD/FSUB Q src2 src1 RM dest OP-FP
FMUL/FDIV Q src2 src1 RM dest OP-FP
FMIN-MAX Q src2 src1 MIN/MAX dest OP-FP

FSQRT Q 0 src RM dest OP-FP

31 27 26 25 24 20 19 15 14 12 11 7 6 0

rs3 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
src3 Q src2 src1 RM dest F[N]MADD/F[N]MSUB

11.3 Quad-Precision Convert and Move Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.int.fmt Q W[U]/L[U] src RM dest OP-FP
FCVT.fmt.int Q W[U]/L[U] src RM dest OP-FP

New floating-point to floating-point conversion instructions FCVT.S.Q, FCVT.Q.S, FCVT.D.Q,
FCVT.Q.D are added.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCVT.fmt.fmt S Q src RM dest OP-FP
FCVT.fmt.fmt Q S src RM dest OP-FP
FCVT.fmt.fmt D Q src RM dest OP-FP
FCVT.fmt.fmt Q D src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.Q, FSGNJN.Q, and FSGNJX.Q
are defined analogously to the double-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FSGNJ Q src2 src1 J[N]/JX dest OP-FP

FMV.X.Q and FMV.Q.X instructions are not provided, so quad-precision bit patterns must be
moved to the integer registers via memory.

RV128 supports FMV.X.Q and FMV.Q.X in the Q extension.

11.4 Quad-Precision Floating-Point Compare Instructions

Floating-point compare instructions perform the specified comparison (equal, less than, or less
than or equal) between floating-point registers rs1 and rs2 and record the Boolean result in integer
register rd.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCMP Q src2 src1 EQ/LT/LE dest OP-FP

11.5 Quad-Precision Floating-Point Classify Instruction

The quad-precision floating-point classify instruction, FCLASS.Q, is defined analogously to its
double-precision counterpart, but operates on quad-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7
FCLASS Q 0 src 001 dest OP-FP
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Chapter 12

“L” Standard Extension for Decimal
Floating-Point

This chapter is a placeholder for the specification of a standard extension named “L” designed to
support decimal floating-point arithmetic as defined in the IEEE 754-2008 standard.

12.1 Decimal Floating-Point Registers

Existing floating-point registers are used to hold 64-bit and 128-bit decimal floating-point values,
and the existing floating-point load and store instructions are used to move values to and from
memory.

Due to the large opcode space required by the fused multiply-add instructions, the decimal floating-
point instruction extension will require five 25-bit major opcodes in a 30-bit encoding space.
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Chapter 13

“C” Standard Extension for
Compressed Instructions

The RISC-V standard compressed instruction set extension is named “C” and reduces static and
dynamic code size by adding short 16-bit instruction encodings for common integer operations.
The compressed instruction encodings can be added to both RV64 and RV32.

The C extension allows 16-bit instructions to be freely intermixed with the 32-bit base instructions,
with the latter now able to start on any 16-bit boundary. All of the 16-bit instructions expand into
one or more of the base RISC-V instructions.

The C extension is still under development, with a preliminary version described in Waterman’s
Master’s thesis [24]. Based on these initial results, we expect a 25–30% reduction in static and
dynamic code size.
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Chapter 14

“B” Standard Extension for Bit
Manipulation

This chapter is a placeholder for a future standard extension to provide bit manipulation instruc-
tions, including instructions to insert, extract, and test bit fields, and for rotations, funnel shifts,
and bit and byte permutations.

Although bit manipulation instructions are very effective in some application domains, particu-
larly when dealing with externally packed data structures, we excluded them from the base ISA
as they are not useful in all domains and can add additional complexity or instruction formats
to supply all needed operands.

We anticipate the B extension will be a brownfield encoding within the base 30-bit instruction
space.
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Chapter 15

“T” Standard Extension for
Transactional Memory

This chapter is a placeholder for a future standard extension to provide transactional memory
operations.

Despite much research over the last twenty years, and initial commercial implementations, there
is still much debate on the best way to support atomic operations involving multiple addresses.

Our current thoughts are to include a small limited-capacity transactional memory buffer
along the lines of the original transactional memory proposals.
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Chapter 16

“P” Standard Extension for
Packed-SIMD Instructions

In this chapter, we outline a standard packed-SIMD extension for RISC-V. We’ve reserved the
instruction subset name “P” for a future standard set of packed-SIMD extensions. Many other
extensions can build upon a packed-SIMD extension, taking advantage of the wide data registers
and datapaths separate from the integer unit.

Packed-SIMD extensions, first introduced with the Lincoln Labs TX-2 [3], have become a pop-
ular way to provide higher throughput on data-parallel codes. Earlier commercial microproces-
sor implementations include the Intel i860, HP PA-RISC MAX [13], SPARC VIS [21], MIPS
MDMX [6], PowerPC AltiVec [2], Intel x86 MMX/SSE [17, 19], while recent designs include In-
tel x86 AVX [14] and ARM Neon [5]. We describe a standard framework for adding packed-SIMD
in this chapter, but are not actively working on such a design. In our opinion, packed-SIMD
designs represent a reasonable design point when reusing existing wide datapath resources, but
if significant additional resources are to be devoted to data-parallel execution then designs based
on traditional vector architectures are a better choice.

A RISC-V packed-SIMD extension reuses the floating-point registers (f0-f31). These registers can
be defined to have widths of FLEN=32 to FLEN=1024. The standard floating-point instruction
subsets require registers of width 32 bits (“F”), 64 bits (“D”), or 128 bits (“Q”).

It is natural to use the floating-point registers for packed-SIMD values rather than the integer
registers (PA-RISC and Alpha packed-SIMD extensions) as this frees the integer registers for
control and address values, simplifies reuse of scalar floating-point units for SIMD floating-
point execution, and leads naturally to a decoupled integer/floating-point hardware design. The
floating-point load and store instruction encodings also have space to handle wider packed-SIMD
registers. However, reusing the floating-point registers for packed-SIMD values does make it
more difficult to use a recoded internal format for floating-point values.

The existing floating-point load and store instructions are used to load and store various-sized words
from memory to the f registers. The base ISA supports 32-bit and 64-bit loads and stores, but the
LOAD-FP and STORE-FP instruction encodings allows 8 different widths to be encoded as shown
in Table 16.1. When used with packed-SIMD operations, it is desirable to support non-naturally
aligned loads and stores in hardware.
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width field Code Size in bits

000 B 8
001 H 16
010 W 32
011 D 64
100 Q 128
101 Q2 256
110 Q4 512
111 Q8 1024

Table 16.1: LOAD-FP and STORE-FP width encoding.

Packed-SIMD computational instructions operate on packed values in f registers. Each value can
be 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit, and both integer and floating-point representations can
be supported. For example, a 64-bit packed-SIMD extension can treat each register as 1×64-bit,
2×32-bit, 4×16-bit, or 8×8-bit packed values.

Simple packed-SIMD extensions might fit in unused 32-bit instruction opcodes, but more exten-
sive packed-SIMD extensions will likely require a dedicated 30-bit instruction space.



Chapter 17

RV128I Base Integer Instruction Set

“There is only one mistake that can be made in computer design that is difficult to re-
cover from—not having enough address bits for memory addressing and memory man-
agement.” Bell and Strecker, ISCA-3, 1976.

This chapter describes RV128I, a variant of the RISC-V ISA supporting a flat 128-bit address space.
The variant is a straightforward extrapolation of the existing RV32I and RV64I designs.

The primary reason to extend integer register width is to support larger address spaces. Although
some applications would benefit from wider integer support, including cryptography, these are
best added as packed-SIMD extensions to the f registers to avoid growing the size of address
pointers. It is not clear when a flat address space larger than 64 bits will be required. At the
time of writing, the fastest supercomputer in the world as measured by the Top500 benchmark had
over 1 PB of DRAM, and would require over 50 bits of address space if all the DRAM resided in
a single address space. Some warehouse-scale computers already contain even larger quantities
of DRAM, and new dense solid-state non-volatile memories and fast interconnect technologies
might drive a demand for even larger memory spaces. Exascale systems research is targeting
100 PB memory systems, which occupy 57 bits of address space. At historic rates of growth, it
is possible that greater than 64 bits of address space might be required before 2030.

History suggests that whenever it becomes clear that more than 64 bits of address space is
needed, architects will repeat intensive debates about alternatives to extending the address space,
including segmentation, 96-bit address spaces, and software workarounds, until, finally, flat 128-
bit address spaces will be adopted as the simplest and best solution.

RV128I builds upon RV64I in the same way RV64I builds upon RV32I, with integer registers
extended to 128 bits (i.e., XLEN=128). Most integer computational instructions are unchanged as
they are defined to operate on XLEN bits. The RV64I “*W” integer instructions that operate on
32-bit values in the low bits of a register are retained, and a new set of “*D” integer instructions
that operate on 64-bit values held in the low bits of the 128-bit integer registers are added. The
“*D” instructions consume two major opcodes (OP-IMM-64 and OP-64) in the standard 32-bit
encoding.

Shifts by an immediate (SLLI/SRLI/SRAI) are now encoded using the low 7 bits of the I-immediate,
and variable shifts (SLL/SRL/SRA) use the low 7 bits of the shift amount source register.
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A LDU (load double unsigned) instruction is added using the existing LOAD major opcode, along
with new LQ and SQ instructions to load and store quadword values. SQ is added to the STORE
major opcode, while LQ is added to the MISC-MEM major opcode.

The floating-point instruction set is unchanged, although the 128-bit Q floating-point extension can
now support FMV.X.Q and FMV.Q.X instructions, together with additional FCVT instructions to
and from the T (128-bit) integer format.



Chapter 18

Calling Convention

This chapter describes the C compiler standards for RV32 and RV64 programs and two calling
conventions: the convention for the base ISA plus standard general extensions (RV32G/RV64G),
and the soft-float convention for implementations lacking floating-point units (e.g., RV32I/RV64I).

Implementations with ISA extensions might require extended calling conventions.

18.1 C Datatypes and Alignment

Table 18.1 summarizes the datatypes natively supported by RISC-V C programs. In both RV32
and RV64 C compilers, the C type int is 32 bits wide. longs and pointers, on the other hand, are
both as wide as a integer register, so in RV32, both are 32 bits wide, while in RV64, both are 64
bits wide. Equivalently, RV32 employs an ILP32 integer model, while RV64 is LP64. In both RV32
and RV64, the C type long long is a 64-bit integer, float is a 32-bit IEEE 754-2008 floating-point
number, double is a 64-bit IEEE 754-2008 floating-point number, and long double is a 128-bit
IEEE floating-point number.

The C types char and unsigned char are 8-bit unsigned integers and are zero-extended when
stored in a RISC-V integer register. unsigned short is a 16-bit unsigned integer and is zero-
extended when stored in a RISC-V integer register. signed char is an 8-bit signed integer and is
sign-extended when stored in a RISC-V integer register, i.e. bits (XLEN-1)..7 are all equal. short
is a 16-bit signed integer and is sign-extended when stored in a register.

In RV64, 32-bit types, such as int, are stored in integer registers as proper sign extensions of their
32-bit values; that is, bits 63..31 are all equal. This restriction holds even for unsigned 32-bit types.

The RV32 and RV64 C compiler and compliant software keep all of the above datatypes naturally
aligned when stored in memory.

83



84 Volume I: RISC-V User-Level ISA V2.0

C type Description Bytes in RV32 Bytes in RV64

char Character value/byte 1 1
short Short integer 2 2
int Integer 4 4
long Long integer 4 8
long long Long long integer 8 8
void* Pointer 4 8
float Single-precision float 4 4
double Double-precision float 8 8
long double Extended-precision float 16 16

Table 18.1: C compiler datatypes for base RISC-V ISA.

18.2 RVG Calling Convention

The RISC-V calling convention passes arguments in registers when possible. Up to eight integer
registers, a0–a7, and up to eight floating-point registers, fa0–fa7, are used for this purpose.

If the arguments to a function are conceptualized as fields of a C struct, each with pointer align-
ment, the argument registers are a shadow of the first eight pointer-words of that struct. If
argument i < 8 is a floating-point type, it is passed in floating-point register fai; otherwise, it is
passed in integer register ai. However, floating-point arguments that are part of unions or array
fields of structures are passed in integer registers. Additionally, floating-point arguments to vari-
adic functions (except those that are explicitly named in the parameter list) are passed in integer
registers.

Arguments smaller than a pointer-word are passed in the least-significant bits of argument registers.
Correspondingly, sub-pointer-word arguments passed on the stack appear in the lower addresses of
a pointer-word, since RISC-V has a little-endian memory system.

When primitive arguments twice the size of a pointer-word are passed on the stack, they are
naturally aligned. When they are passed in the integer registers, they reside in an aligned even-odd
register pair, with the even register holding the least-significant bits. In RV32, for example, the
function void foo(int, long long) is passed its first argument in a0 and its second in a2 and
a3. Nothing is passed in a1.

Arguments more than twice the size of a pointer-word are passed by reference.

The portion of the conceptual struct that is not passed in argument registers is passed on the
stack. The stack pointer sp points to the first argument not passed in a register.

Values are returned from functions in integer registers v0 and v1 and floating-point registers fv0

and fv1. Floating-point values are returned in floating-point registers only if they are primitives
or members of a struct consisting of only one or two floating-point values. Other return values
that fit into two pointer-words are returned in v0 and v1. Larger return values are passed entirely
in memory; the caller allocates this memory region and passes a pointer to it as an implicit first
parameter to the callee.
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In the standard RISC-V calling convention, the stack grows downward and the stack pointer is
always kept 16-byte aligned.

In addition to the argument and return value registers, five integer registers t0–t4 and six floating-
point registers ft0–ft5 are temporary registers that are volatile across calls and must be saved by
the caller if later used. Twelve integer registers s0–s11 and sixteen floating-point registers fs0–
fs15 are preserved across calls and must be saved by the callee if used. Table 18.2 indicates the
role of each integer and floating-point register in the calling convention.

Register ABI Name Description Saver

x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 s0/fp Saved register/frame pointer Callee
x3–13 s1–11 Saved registers Callee
x14 sp Stack pointer Callee
x15 tp Thread pointer Callee
x16–17 v0–1 Return values Caller
x18–25 a0–7 Function arguments Caller
x26–30 t0–4 Temporaries Caller
x31 gp Global pointer —

f0–15 fs0–15 FP saved registers Callee
f16–17 fv0–1 FP return values Caller
f18–25 fa0–7 FP arguments Caller
f26–31 ft0–5 FP temporaries Caller

Table 18.2: RISC-V calling convention register usage.

18.3 Soft-Float Calling Convention

The soft-float calling convention is used on RV32 and RV64 implementations that lack floating-
point hardware. It avoids all use of instructions in the F, D, and Q standard extensions, and hence
the f registers.

Integral arguments are passed and returned in the same manner as the RVG convention, and the
stack discipline is the same. Floating-point arguments are passed and returned in integer registers,
using the rules for integer arguments of the same size. In RV32, for example, the function double

foo(int, double, long double) is passed its first argument in a0, its second argument in a2

and a3, and its third argument by reference via a4; its result is returned in v0 and v1. In RV64,
the arguments are passed in a0, a1, and the a2-a3 pair, and the result is returned in v0.

The dynamic rounding mode and accrued exception flags are accessed through the routines provided
by the C99 header fenv.h.
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Chapter 19

History and Acknowledgments

19.1 History from Revision 1.0 of ISA manual

The RISC-V ISA and instruction set manual builds up several earlier projects. Several aspects of
the supervisor-level machine and the overall format of the manual date back to the T0 (Torrent-0)
vector microprocessor project at UC Berkeley and ICSI, begun in 1992. T0 was a vector processor
based on the MIPS-II ISA, with Krste Asanović as main architect and RTL designer, and Brian
Kingsbury and Bertrand Irrisou as principal VLSI implementors. David Johnson at ICSI was a
major contributor to the T0 ISA design, particularly supervisor mode, and to the manual text.
John Hauser also provided considerable feedback on the T0 ISA design.

The Scale (Software-Controlled Architecture for Low Energy) project at MIT, begun in 2000, built
upon the T0 project infrastructure, refined the supervisor-level interface, and moved away from the
MIPS scalar ISA by dropping the branch delay slot. Ronny Krashinsky and Christopher Batten
were the principal architects of the Scale Vector-Thread processor at MIT, while Mark Hampton
ported the GCC-based compiler infrastructure and tools for Scale.

A lightly edited version of the T0 MIPS scalar processor specification (MIPS-6371) was used in
teaching a new version of the MIT 6.371 Introduction to VLSI Systems class in the Fall 2002
semester, with Chris Terman and Krste Asanović as lecturers. Chris Terman contributed most
of the lab material for the class (there was no TA!). The 6.371 class evolved into the trial 6.884
Complex Digital Design class at MIT, taught by Arvind and Krste Asanović in Spring 2005, which
became a regular Spring class 6.375. A reduced version of the Scale MIPS-based scalar ISA, named
SMIPS, was used in 6.884/6.375. Christopher Batten was the TA for the early offerings of these
classes and developed a considerable amount of documentation and lab material based around the
SMIPS ISA. This same SMIPS lab material was adapted and enhanced by TA Yunsup Lee for
the UC Berkeley Fall 2009 CS250 VLSI Systems Design class taught by John Wawrzynek, Krste
Asanović, and John Lazzaro.

The Maven (Malleable Array of Vector-thread ENgines) project was a second-generation vector-
thread architecture. Its design was led by Christopher Batten when he was an Exchange Scholar
at UC Berkeley starting in summer 2007. Hidetaka Aoki, a visiting industrial fellow from Hitachi,
gave considerable feedback on the early Maven ISA and microarchitecture design. The Maven
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infrastructure was based on the Scale infrastructure but the Maven ISA moved further away from
the MIPS ISA variant defined in Scale, with a unified floating-point and integer register file. Maven
was designed to support experimentation with alternative data-parallel accelerators. Yunsup Lee
was the main implementor of the various Maven vector units, while Rimas Avižienis was the main
implementor of the various Maven scalar units. Yunsup Lee and Christopher Batten ported GCC
to work with the new Maven ISA. Christopher Celio provided the initial definition of a traditional
vector instruction set (“Flood”) variant of Maven.

Based on experience with all these previous projects, the RISC-V ISA definition was begun in
Summer 2010. An initial version of the RISC-V 32-bit instruction subset was used in the UC
Berkeley Fall 2010 CS250 VLSI Systems Design class, with Yunsup Lee as TA. RISC-V is a clean
break from the earlier MIPS-inspired designs. John Hauser contributed to the floating-point ISA
definition.

19.2 Developments since Revision 1.0 of ISA manual

Multiple implementations of RISC-V processors have been completed, including several silicon
fabrications, as shown in Figure 19.1.

Name Tapeout Date Process ISA

Raven-1 May 29, 2011 ST 28nm FDSOI RV64G1 Xhwacha1

EOS14 April 1, 2012 IBM 45nm SOI RV64G1p1 Xhwacha2

EOS16 August 17, 2012 IBM 45nm SOI RV64G1p1 Xhwacha2

Raven-2 August 22, 2012 ST 28nm FDSOI RV64G1p1 Xhwacha2

EOS18 February 6, 2013 IBM 45nm SOI RV64G1p1 Xhwacha2

EOS20 July 3, 2013 IBM 45nm SOI RV64G1p99 Xhwacha2

Raven-3 September 26, 2013 ST 28nm SOI RV64G1p99 Xhwacha2

EOS22 March 7, 2014 IBM 45nm SOI RV64G1p9999 Xhwacha3

Table 19.1: Fabricated RISC-V testchips.

The first RISC-V processors to be fabricated were written in Verilog and manufactured in a pre-
production 28 nm FDSOI technology from ST as the Raven-1 testchip in 2011. Two cores were
developed by Yunsup Lee and Andrew Waterman, advised by Krste Asanović, and fabricated
together: 1) an RV64 scalar core with error-detecting flip-flops, and 2) an RV64 core with an
attached 64-bit floating-point vector unit. The first microarchitecture was informally known as
“TrainWreck”, due to the short time available to complete the design with immature design libraries.

Subsequently, a clean microarchitecture for an in-order decoupled RV64 core was developed by
Andrew Waterman, Rimas Avižienis, and Yunsup Lee, advised by Krste Asanović, and, continuing
the railway theme, was codenamed “Rocket” after George Stephenson’s successful steam locomotive
design. Rocket was written in Chisel, a new hardware design language developed at UC Berkeley.
The IEEE floating-point units used in Rocket were developed by John Hauser, Andrew Waterman,
and Brian Richards. Rocket has since been refined and developed further, and has been fabricated
two more times in 28 nm FDSOI (Raven-2, Raven-3), and five times in IBM 45 nm SOI technology
(EOS14, EOS16, EOS18, EOS20, EOS22) for a photonics project. Work is ongoing to make the
Rocket design available as a parameterized RISC-V processor generator.
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EOS14–EOS22 chips include early versions of Hwacha, a 64-bit IEEE floating-point vector unit,
developed by Yunsup Lee, Andrew Waterman, Huy Vo, Albert Ou, Quan Nguyen, and Stephen
Twigg, advised by Krste Asanović. EOS16–EOS22 chips include dual cores with a cache-coherence
protocol developed by Henry Cook and Andrew Waterman, advised by Krste Asanović. EOS14
silicon has successfully run at 1.25 GHz. EOS16 silicon suffered from a bug in the IBM pad libraries.
EOS18 and EOS20 have successfully run at 1.35 GHz.

Contributors to the Raven testchips include Yunsup Lee, Andrew Waterman, Rimas Avižienis,
Brian Zimmer, Jaehwa Kwak, Ruzica Jevtić, Milovan Blagojević, Alberto Puggelli, Steven Bailey,
Ben Keller, Pi-Feng Chiu, Brian Richards, Borivoje Nikolić, and Krste Asanović.

Contributors to the EOS testchips include Yunsup Lee, Rimas Avižienis, Andrew Waterman, Henry
Cook, Huy Vo, Daiwei Li, Chen Sun, Albert Ou, Quan Nguyen, Stephen Twigg, Vladimir Sto-
janović, and Krste Asanović.

Andrew Waterman and Yunsup Lee developed the C++ ISA simulator “Spike”, used as a golden
model in development and named after the golden spike used to celebrate completion of the US
transcontinental railway. Spike has been made available as a BSD open-source project.

Andrew Waterman completed a Master’s thesis with a preliminary design of the RISC-V compressed
instruction set [24].

Various FPGA implementations of the RISC-V have been completed, primarily as part of integrated
demos for the Par Lab project research retreats. The largest FPGA design has 3 cache-coherent
RV64IMA processors running a research operating system. Contributors to the FPGA implemen-
tations include Andrew Waterman, Yunsup Lee, Rimas Avižienis, and Krste Asanović.

RISC-V processors have been used in several classes at UC Berkeley. Rocket was used in the Fall
2011 offering of CS250 as a basis for class projects, with Brian Zimmer as TA. For the undergraduate
CS152 class in Spring 2012, Chris Celio used Chisel to write a suite of educational RV32 processors,
named “Sodor” after the island on which “Thomas the Tank Engine” and friends live. The suite
includes a microcoded core, an unpipelined core, and 2, 3, and 5-stage pipelined cores, and is
publicly available under a BSD license. The suite was subsequently updated and used again in
CS152 in Spring 2013, with Yunsup Lee as TA, and in Spring 2014, with Eric Love as TA. Chris Celio
also developed an out-of-order RV64 design known as BOOM (Berkeley Out-of-Order Machine),
with accompanying pipeline visualizations, that was used in the CS152 classes. The CS152 classes
also used cache-coherent versions of the Rocket core developed by Andrew Waterman and Henry
Cook.

Over the summer of 2013, the RoCC (Rocket Custom Coprocessor) interface was defined to sim-
plify adding custom accelerators to the Rocket core. Rocket and the RoCC interface were used
extensively in the Fall 2013 CS250 VLSI class taught by Jonathan Bachrach, with several student
accelerator projects built to the RoCC interface. The Hwacha vector unit has been rewritten as a
RoCC coprocessor.

Two Berkeley undergraduates, Quan Nguyen and Albert Ou, have successfully ported Linux to run
on RISC-V in Spring 2013.

Colin Schmidt successfully completed an LLVM backend for RISC-V 2.0 in January 2014.
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Darius Rad at Bluespec contributed soft-float ABI support to the GCC port in March 2014.

We are aware of several other RISC-V core implementations, including one in Verilog by Tommy
Thorn, and one in Bluespec by Rishiyur Nikhil.
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