CS 152 Computer Architecture and Engineering
CS252 Graduate Computer Architecture

Lecture 16 — RISC-V Vectors

Krste Asanovic
Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~csl152

Last Time in Lecture 15

Vector supercomputers

" Vector register versus vector memory
= Scaling performance with lanes

= Stripmining

" Chaining

= Masking

= Scatter/Gather

New RISC-V Vector Standard

" Being added as a standard extension to the RISC-V ISA

" An updated form of Cray-style vectors for modern
microprocessors

= Still a work in progress, so details might change before
being standardized

" Today, a short tutorial on vector programming using the
current draft standard

= Assembly syntax will be changed, but concepts should be
correct

Quick Summary of RISC-V Vector ISA

= 32 vector registers, v0-v31 (no zero register)

" Each vector register has associated type including:
— Number of bits in each element (8-bit, 16-bit, 32-bit, 64-bit, 128-bit, ...)
— Representation (signed integer, unsigned integer, floating-point)
— Shape (scalar, 1D vector)

* Number of vector registers, and their type are configured with
special instructions before using vector unit

" VVector instructions are polymorphic, operation depends on
opcode and vector register operand types

= VVector length register, vl , controls number of elements
executed by each instruction

" [nstructions can be executed under mask
= VVector arithmetic operations include all standard scalar
operations

" \Vector memory operations include unit-stride, constant-stride,
scatter-gather

Vector Unit State

vl Vector length register
Vector data registers Vector configuration state
vol [0y | [1y [[|owce-s) [vEypeO
vl [0] (11 | [MAXVL-1] vtypel
vl oy T] s Fegpest
< >

MAXVL depends on implementation and configuration

Vector Configuration

= Can be done by writing a number of control registers

" Faster method is a special instruction that sets up
standard patterns:
— vcfg NI*TYPEL, N2*TYPE2, N3*TYPE3,...
— v0..vN1-1 have TYPE1, vN1...v(N1+N2-1) have TYPE 2, ...

= Requested vector registers are zeroed
® Unused vector registers are not accessible

= MAXVL depends on number of vector registers and type,
but can write assembly code without knowing MAXVL

setvl instruction

setvl xregd, xregsrc
" v1 is set to MIN(MAXVL, xregsrc), also copied to xregd

"Eg,setvl t0,a0 # vl, t0 = MIN(MAXVL,a0)

Simple Example: Vector-vector add

for (i=0; i<N; i++)
{ C[i] = A[i] + B[i]; } // 32-bit ints

vcfg 3*V32bINT # Set up vO,vl,v2 to be 32-bit ints

Loop:
setvl t0, a0 # a0 holds N, t0O holds amount done
1d vO, al # load strip of A vector
1d v1l, a2 # load strip of B vector

vadd v2, v0, vl # add vectors

st v2, a3 # store strip of C vector

slli t1, t0, 2 # multiply by 4 to get bytes
add al, al, tl1 # bump pointers

add a2, a2, tl

add a3, a3, tl

sub a0, a0, t0 # Subtract amount done

bnez a0, Loop

Simple Example: Float vector-vector add

for (i=0; i<N; i++)
{ C[i] = A[i] + B[i]; } // 32-bit ints

vcfg 3*V32bFP # Set up vO,vl,v2 to be 32-bit floats

Loop:
setvl t0, a0 # a0 holds N, t0O holds amount done
1d vO, al # load strip of A vector
1d v1l, a2 # load strip of B vector

vadd v2, v0, vl # add vectors

st v2, a3 # store strip of C vector

slli t1, t0, 2 # multiply by 4 to get bytes
add al, al, tl1 # bump pointers

add a2, a2, tl

add a3, a3, tl

sub a0, a0, t0 # Subtract amount done

bnez a0, Loop

Vector-vector add, 32b+16b -> 32b integer

for (i=0; i<N; i++)
{ C[i] = A[i] + B[i]; } // 32-bit ints

vcfg 2*V32bINT, 1*V16bINT # vO,vl1:32b, v2:16b

Loop:
setvl t0, a0 # a0 holds N, t0O holds amount done
1d vO, al # load strip of A vector
1d v2, a2 # load strip of B vector

vadd vl1l, v0O, v2 # add vectors

st vl, a3 # store strip of C vector

slli t1, t0, 2 # multiply by 4 to get bytes
slli t2, t0, 1 # multiply by 2 to get bytes
add al, al, tl1 # bump pointers

add a2, a2, t2

add a3, a3, tl

sub a0, a0, t0 # Subtract amount done

bnez a0, Loop

10

Vector-scalar add

for (i=0; i<N; i++)
{ C[i] = A[i] + B; } // 32-bit ints

vcfg 2*V32bINT, 1*S32bINT #

vmv v2, a2 # Copy B to vector unit scalar
Loop:

setvl t0, a0 # a0 holds N, t0O holds amount done

1d vO0, al # load strip of A vector

vadd vl1l, v0O, v2 # add vectors

st vl, a3 # store strip of C vector

slli t1, t0, 2 # multiply by 4 to get bytes
add al, al, tl1 # bump pointers

add a3, a3, tl

sub a0, a0, t0 # Subtract amount done

bnez a0, Loop

11

Vector length < MAXVL

" When vl is set to less than MAXVL, elements past end of
vector are zeroed. This supports vector register renaming.

=" E.g., MAXVL=8, vl =5, when execute add:

\a \b \ \d \ t | ¢ | n
|+ [1s [\x Jl1 Jlm | n | o | o
AL

vl=5

Vector masking

= |n base instruction set, instructions can be “unmasked” or
masked by vector register v1, either true or complement

" Least-significant bit of each element is used as mask
vadd v3,v0,v2,vl.t # Execute only if v1.LSB is set

vl
vO

v2 || i | x Im
P .

1

1

C

e

|

|

vl=5

>

Zeros written to masked results

13

CS152 Administrivia

" PS 4 due Friday March 23 in section

— Can also turn in on class Wednesday, office hours, or can email pdf

14

CS252

CS252 Administrivia

15

