
CS	152	Computer	Architecture	and	Engineering	
CS252	Graduate	Computer	Architecture	

	
	Lecture	16	–	RISC-V	Vectors	

Krste	Asanovic	
Electrical	Engineering	and	Computer	Sciences	

University	of	California	at	Berkeley	
	

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

	
	

Last	Time	in	Lecture	15	

Vector	supercomputers	
§ Vector	register	versus	vector	memory	
§  Scaling	performance	with	lanes	
§  Stripmining	
§ Chaining	
§ Masking	
§  Sca@er/Gather	

	

2	

New	RISC-V	Vector	Standard	

§ Being	added	as	a	standard	extension	to	the	RISC-V	ISA	
§ An	updated	form	of	Cray-style	vectors	for	modern	
microprocessors	

§  SGll	a	work	in	progress,	so	details	might	change	before	
being	standardized	

§  Today,	a	short	tutorial	on	vector	programming	using	the	
current	draL	standard	

§ Assembly	syntax	will	be	changed,	but	concepts	should	be	
correct	

3	

Quick	Summary	of	RISC-V	Vector	ISA	
§  32	vector	registers,	v0-v31	(no	zero	register)	
§  Each	vector	register	has	associated	type	including:	

–  Number	of	bits	in	each	element	(8-bit,	16-bit,	32-bit,	64-bit,	128-bit,	…)	
–  RepresentaGon	(signed	integer,	unsigned	integer,	floaGng-point)	
–  Shape	(scalar,	1D	vector)	

§ Number	of	vector	registers,	and	their	type	are	configured	with	
special	instrucGons	before	using	vector	unit	

§ Vector	instrucGons	are	polymorphic,	operaGon	depends	on	
opcode	and	vector	register	operand	types	

§ Vector	length	register,	vl	,	controls	number	of	elements	
executed	by	each	instrucGon	

§  InstrucGons	can	be	executed	under	mask	
§ Vector	arithmeGc	operaGons	include	all	standard	scalar	
operaGons	

§ Vector	memory	operaGons	include	unit-stride,	constant-stride,	
sca@er-gather	

4	

Vector	Unit	State	

5	

[0] [1]v0 [MAXVL-1]

[0] [1]v1 [MAXVL-1]

[0] [1]v31 [MAXVL-1]

vl

vtype0
vtype1

vtype31

Vector	length	register	

Vector	data	registers	 Vector	configuraGon	state	

MAXVL	depends	on	implementaGon	and	configuraGon	

Vector	ConfiguraKon	

§ Can	be	done	by	wriGng	a	number	of	control	registers	
§  Faster	method	is	a	special	instrucGon	that	sets	up	
standard	pa@erns:	
–  vcfg	N1*TYPE1,	N2*TYPE2,	N3*TYPE3,…	
–  v0..vN1-1	have	TYPE1,	vN1…v(N1+N2-1)	have	TYPE	2,	…	

	
§ Requested	vector	registers	are	zeroed	
§ Unused	vector	registers	are	not	accessible	
§ MAXVL	depends	on	number	of	vector	registers	and	type,	
but	can	write	assembly	code	without	knowing	MAXVL	

	
	
	

6	

setvl	instrucKon	

setvl xregd, xregsrc
§ vl	is	set	to	MIN(MAXVL,	xregsrc),	also	copied	to	xregd	

§  E.g.,	setvl t0,a0 # vl, t0 = MIN(MAXVL,a0)

7	

Simple	Example:	Vector-vector	add	
for (i=0; i<N; i++)
{ C[i] = A[i] + B[i]; } // 32-bit ints

 vcfg 3*V32bINT # Set up v0,v1,v2 to be 32-bit ints
Loop:
 setvl t0, a0 # a0 holds N, t0 holds amount done
 ld v0, a1 # load strip of A vector
 ld v1, a2 # load strip of B vector
 vadd v2, v0, v1 # add vectors
 st v2, a3 # store strip of C vector
 slli t1, t0, 2 # multiply by 4 to get bytes
 add a1, a1, t1 # bump pointers
 add a2, a2, t1
 add a3, a3, t1
 sub a0, a0, t0 # Subtract amount done
 bnez a0, Loop

8	

Simple	Example:	Float	vector-vector	add	
for (i=0; i<N; i++)
{ C[i] = A[i] + B[i]; } // 32-bit ints

 vcfg 3*V32bFP # Set up v0,v1,v2 to be 32-bit floats
Loop:
 setvl t0, a0 # a0 holds N, t0 holds amount done
 ld v0, a1 # load strip of A vector
 ld v1, a2 # load strip of B vector
 vadd v2, v0, v1 # add vectors
 st v2, a3 # store strip of C vector
 slli t1, t0, 2 # multiply by 4 to get bytes
 add a1, a1, t1 # bump pointers
 add a2, a2, t1
 add a3, a3, t1
 sub a0, a0, t0 # Subtract amount done
 bnez a0, Loop

9	

Vector-vector	add,	32b+16b	->	32b	integer	
for (i=0; i<N; i++)
{ C[i] = A[i] + B[i]; } // 32-bit ints

 vcfg 2*V32bINT, 1*V16bINT # v0,v1:32b, v2:16b
Loop:
 setvl t0, a0 # a0 holds N, t0 holds amount done
 ld v0, a1 # load strip of A vector
 ld v2, a2 # load strip of B vector
 vadd v1, v0, v2 # add vectors
 st v1, a3 # store strip of C vector
 slli t1, t0, 2 # multiply by 4 to get bytes
 slli t2, t0, 1 # multiply by 2 to get bytes
 add a1, a1, t1 # bump pointers
 add a2, a2, t2
 add a3, a3, t1
 sub a0, a0, t0 # Subtract amount done
 bnez a0, Loop

10	

Vector-scalar	add	
for (i=0; i<N; i++)
{ C[i] = A[i] + B; } // 32-bit ints

 vcfg 2*V32bINT, 1*S32bINT #
 vmv v2, a2 # Copy B to vector unit scalar
Loop:
 setvl t0, a0 # a0 holds N, t0 holds amount done
 ld v0, a1 # load strip of A vector
 vadd v1, v0, v2 # add vectors
 st v1, a3 # store strip of C vector
 slli t1, t0, 2 # multiply by 4 to get bytes
 add a1, a1, t1 # bump pointers
 add a3, a3, t1
 sub a0, a0, t0 # Subtract amount done
 bnez a0, Loop

11	

Vector	length	<	MAXVL	

§ When	vl	is	set	to	less	than	MAXVL,	elements	past	end	of	
vector	are	zeroed.		This	supports	vector	register	renaming.	

§  E.g.,	MAXVL=8,	vl		=	5,	when	execute	add:	

12	

a b c d e f g h

i j k l m n o p

a+i b+j c+k d+l e+m 0 0 0

+ + + + +

vl=5

Vector	masking	
§  In	base	instrucGon	set,	instrucGons	can	be	“unmasked”	or	
masked	by	vector	register	v1,	either	true	or	complement	

§  Least-significant	bit	of	each	element	is	used	as	mask	
vadd v3,v0,v2,v1.t # Execute only if v1.LSB is set

13	

a b c d e f g h

i j k l m n o p

a+i 0 c+k 0 e+m 0 0 0

+ + +

1 0 1 0 1 1 1 0v1

v0

v2

v3

vl=5 Zeros	wri@en	to	masked	results	

CS152	Administrivia	

§  PS	4	due	Friday	March	23	in	secGon	
–  Can	also	turn	in	on	class	Wednesday,	office	hours,	or	can	email	pdf	

14	

CS252	

CS252	Administrivia	

15	

