
Final Exam Review: Part 1, 5/3/19

Iron Law

 Instructions /
Program

Cycles /
Instruction Seconds / Cycle Execution Time

Pipelining a
single-cycle

implementation

Adding stages to
an existing

pipeline

Adding bypass
paths

Adding
hardware

floating-point
instructions

Data-in-ROB Machines

Consider a dual-issue core with a data-in-ROB design. The ROB has twelve entries. Instructions
write back the same cycle they complete, and can commit one cycle later. ROB entries can be
reused one cycle after commit. Instructions can issue on the same cycle that the instruction(s)
they depend on write back. Loads and stores take three cycles each, ALU instructions take one
cycle, and branches resolve / complete using the ALU one cycle after they issue. All functional
units are fully pipelined.

Fill out the table with the cycles at which instructions enter the ROB, issue to the functional
units, complete, and commit, and record all destination and operand names. Use ROB0-ROB11
for the twelve ROB entries. If the instruction producing a source register has committed before
the dependent instruction enters the ROB, use the architectural register name. On each cycle, two
instructions can enter the ROB, and one instruction ​of each type​ can issue and complete. Up to
two instructions of any type may commit per cycle.

loop: lb t0, 0(a0)

sb t0, 0(a1)

addi a0, a0, 0x1

addi a1, a1, 0x1

bne t0, r0, loop

Fill out the tables below for executing the above strcpy routine the string “H” as input. Assume
the branch is always predicted taken in time to fill the fetch buffer, and that the ROB is empty
before the first load. Assume older instructions are chosen to issue first. Fill the table out through
when the mispredicted branch is caught. What happens then? Circle the event in the table that
corresponds with the earliest time when this would be corrected, assuming branch mispredicts
are handled more quickly than exceptions.

 Cycle # Data Location

Instruction Enter
ROB

Issue Complete Commit Dest Src1 Src2

lb t0, 0(a0) 0 ROB0 a0 --

sb t0, 0(a0) 0

Trace Scheduling

Trace scheduling is a compiler technique that increases ILP by removing control dependencies,
allowing operations following branches to be moved up and speculatively executed in parallel
with operations before the branch. It was originally developed for statically scheduled VLIW
machines, but it is a general technique that can be used in different types of machines, and in this
question we apply it to a single-issue RISC-V processor.

Consider the following RISC-V code sequence:

 B1:

 fdiv.d f1, f2, f3

 fadd.d f4, f1, f5

 beqz x1, B3 # Taken 99%

 B2:

 ld x2, 4(x3)

 j B4

 B3:

 ld x2, 0(x3)

 B4:

 addi x2, x2, 8

 beqz x2, B6 # Taken 99%

 B5:

 fsub.d f2, f3, f7

 j B7

 B6:

 fsub.d f2, f2, f6

 sd f2, 0(x8)

 B7:

 addi x3, x3, 8

 addi x8, x8, 8

The code is executed on an in-order single-issue RISC-V pipeline. Integer arithmetic instructions
are fully pipelined with a single-cycle latency. Loads are fully pipelined with a two-cycle
latency. Floating-point add and subtract instructions are fully pipelined with a three-cycle
latency. Floating-point divide instructions are unpipelined with an 8-cycle latency, but other
independent instructions can execute while the divider is busy.

Branches that are not taken execute in a single cycle. Taken branches and unconditional jumps
incur two stall cycles (three cycles total).

Part A:​ Assume both conditional branches are taken and that all register values are available on
the first cycle. How long does the code sequence take to execute (i.e., total pipeline occupancy)?

Part B: ​Consider only the code along the most frequently taken trace. Omit the branches, and
show how to reschedule the code along this trace to execute in the least number of cycles,
without modifying load or store offsets. How many cycles does this trace take?

Part C: ​Add branches to correctly exit the trace on the infrequent paths and show the fixup code
required on these exits, without modifying load/store offsets. Your solution should minimize the
slowdown to the most commonly followed trace. How many cycles does this hot trace now take?

Vector ISAs

Vectorize the following double-precision dot product C code using the RVV vector ISA
described in Appendix A. Your code should perform well for vectors of >10000 elements.

double ddot(int n, double *x, double *y) {

 double result = 0.0;

 for (int i = 0; i < n; i++) {

 result += x[i] * y[i];

 }

 return result;

}

Part A:​ Vectorize the code. Assume that register ​a0​ holds ​n​, register ​a1​ holds ​x​, and register
a2​ holds ​y​. Return the result in register ​a0​. You may reorder the floating-point arithmetic
operations to improve efficiency. As a simplifying assumption, assume that ​N​ is evenly divisible
by the maximum vector length ​MVL​.

done: ret

Part B:​ Discuss at least two ways we could modify this code to support vectors that have lengths
not evenly divisible by MVL.

Appendix A: Vector Architecture for Question 1

This instruction listing is identical to lab 4’s but with a setvl instruction that has identical
semantics to the preprocessor macro provided in lab 4. This instruction first sets VL to
min(maximum vector length, rs1);​ and then returns the new VL. Omitting the final vector mask
(​vm​) argument to all instructions is legal, and treats all elements ​i < VL​ as active.

