CS152: Section 2

Q1. Iron Law

Q1.1: For each term in the Iron Law, give at least three techniques that improve that term.

Instructions/program:

Cycles/instruction:

Time/cycle:

Q1.2: Explain how each term changes given the proposed modification (increase / decrease / no effect).

[Quiz 1, 2011] In a classic RISC pipeline, modify the ISA (and thus the microarchitecture) to use hardware interlocking instead of software interlocking for both branch delay slots and load-use delay slots

Instructions/program:

Cycles/instruction:

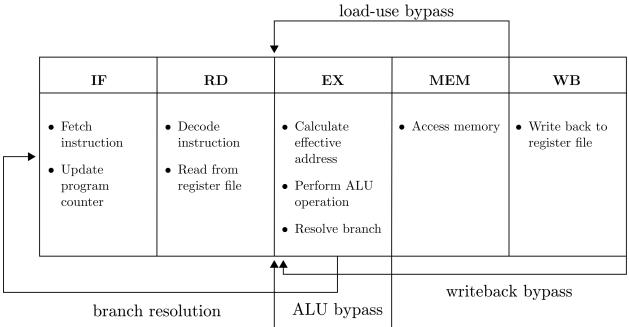
Time/cycle:

[Quiz 1, 2013] Remove hardware floating-point instructions and instead use software subroutines for floating-point arithmetic

Instructions/program:

Cycles/instruction:

Time/cycle:

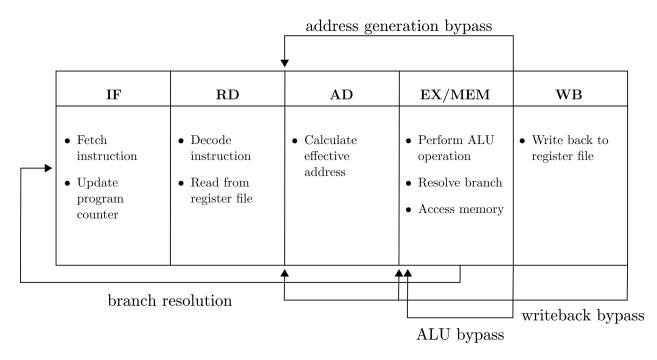

Q2. Pipelining

Q2.1: What does the following code do? How many iterations does it run?

ADDI x2, x0, 0x700 LOOP: ADD x1, x2, x0 LW x2, 4(x2) BNE x2, x0, LOOP

Memory Address	Memory Value
0x400	0x000
0x404	0xD40
 0x700	0x9F0
0x704	0x400
 0x9F0	0x400
0x9F4	0x000
0xD40	0x000
0xD44	0x9F0

Q2.2: Fill out the pipeline diagram for the following pipeline, assuming that branches are always predicted not taken.



• What is the CPI for the given code sequence?

• Consider splitting MEM into two stages, M1 and M2. How does the CPI change?

• What is the CPI if the BNE is always correctly predicted?

Q2.3: Fill out the pipeline diagram for the following pipeline, assuming that branches are always predicted not taken. [M. Golden and T. Mudge, "A comparison of two pipeline organizations", 1994]

• What is the CPI for the given code sequence?

• Consider splitting EX/MEM into two stages, M1 and EX/M2. How does the CPI change?

• What is the CPI if the BNE is always correctly predicted?

Q2.4: Suppose that the "load-use interlock" (LUI) pipeline from Q2.2 meets timing at 1 GHz. What is the minimum frequency at which the "address-generation interlock" (AGI) pipeline from Q2.3 performs better on the given code sequence, assuming perfect branch prediction?

Q2.5: Under what circumstances might you consider using the AGI pipeline design over the LUI pipeline?

Q2.6: How would you support precise exceptions in the AGI pipeline design? How does this differ from the LUI pipeline?

Q2.2: Load-Use Interlock (LUI) pipeline

-																		7 18 19												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
addi	F	D	х	М	W																									
add																														
lw																														
bne																														

Q2.3: Address Generation Interlock (AGI) pipeline

Q2.0.1	1		3	4	5	6		10	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
addi	F	D	A	х	w																						
add																											
lw																											
bne																											
																											<u> </u>