CS152 Section 11

Q1: Memory Consistency Models

Consider the following two threads executing on two different cores. Assume that memory locations A, B, and C are all initialized to zero.

	P1:			P2:	
	li x1,	1		li x1,	2
I1	lw x2,	A	J1	sw x1,	В
12	sw x1,	С	J2	lw x2,	С
13	lw x3,	В	J 3	sw x1,	А

We are interested in the final values of P1.x2, P1.x3, and P2.x2.

Q1.1: Sequential Consistency

Give all possible sets of values of P1.x2, P1.x3, and P2.x2 under sequential consistency (SC).

Q1.2: Weak Versus Strong Memory Consistency Models

In general, what is the difference between a weak and a strong memory consistency model?

Q1.3: $W \rightarrow R$ Relaxation

Give all new possible sets of values if we relax Write \rightarrow Read ordering constraints and the instruction orderings that caused them.

Q1.4: $W \rightarrow W$ Relaxation

Give all new possible sets of values if we relax Write \rightarrow Write ordering constraints and the instruction orderings that caused them.

Q1.5: $R \rightarrow R$ and $R \rightarrow W$ Relaxation

Give all new possible sets of values if we relax Read \rightarrow Read and Read \rightarrow Write ordering constraints and the instruction orderings that caused them.

Q2: True / False

Indicate whether the following statements are true or false:

1. Sequential consistency is guaranteed if all processors have in-order pipelines.

2. A high-level language with a sequentially consistent memory model can be implemented on a ISA with a weaker memory model if fence instructions are provided. 3. Suppose an ISA specifies a non-multi-copy-atomic memory model, but a particular hardware implementation provides sequential consistency. Will software written for this ISA execute correctly on this machine?