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CS 152: Computer Architecture and Engineering 

 

Final Exam 

May 14th, 2019 

Professor Krste Asanović 

 

Name:______________________ 

SID:______________________ 

 

This is a closed book, closed notes exam. 

170 Minutes, 24 pages. 

 
• Not all questions are of equal difficulty, so look over the entire exam! 

• Please carefully state any assumptions you make. 

• Please write your name on every page in the exam. 

• Do not discuss the exam with other students who haven’t taken the exam. 

• If you have inadvertently been exposed to an exam prior to taking it, you 

must tell the instructor or TA. 

• You will receive no credit for selecting multiple-choice answers without 

giving explanations, if the instructions ask you to explain your choice. 

• You may detach the appendences provided at the reverse of the exam. 

 
 

Question Topic Point Value 

1 Virtual Memory 28 

2 Memory Hierarchy 24 

3 Pipelining 20 

4 Cache Coherence 28 

5 Multithreading 30 

6 Memory Consistency 22 

7 Vector Machines 18 

TOTAL: 170 
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Problem 1: Virtual Memory  

 
Multiple choice: Check one unless otherwise noted 

 
A) (2 Point) In a virtually indexed, physically tagged cache, what part of the virtual address 

is used to select the cache set?  

 

[   ]  VPN [   ]  PPN [   ]  Page offset [   ]  Tag 

 

 

B) (2 Point) A page-table walker (PTW) handles what kind of events? 

 

[   ] SegFaults  [   ]  Demand paging          [   ]  Page faults.       [   ] TLB misses 

 

 

C) (3 Points) Which of the following are advantages of page-based virtual memory over a 

base-and-bound scheme? Check all that apply. 

 

[   ] Protecting one process from other processes on the system 

[   ] Translating addresses to virtualize the resource of physical memory 

[   ] Reduced external fragmentation 

[   ] Reduced address translation cost 

 

 

D) (3 Points) Explain why TLBs are critical for good performance in a paged virtual 

memory system. 

 

 

 

 

 

 

 

 

 

E) (4 points) Consider a system with 4096B pages and page-table entries that are 32 bits at 

all levels of the page table hierarchy. How many levels of page tables are needed to support a 32-

bit virtual address space? 
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F) (9 points) Consider a system with the following specifications: 

• 8192B page sizes 

• 64-bit virtual address space 

• 48-bit physical address space 

• 32KiB, 4-way set-associative L1 cache with 64B block size 

• 256KiB, 4-way set-associative L2 cache with 64B block size 

• TLB entries contain 8 bits of metadata 

 

Fill in the table. Show organized work outside the table so partial credit may be assigned. 

 

 # of bits 

Physical page number  

Virtual page number  

Page offset  

TLB entry  

Cache block offset  

L1 cache tag  

L1 cache index  

L2 cache tag  

L2 cache index  
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G) (5 points) In the system from (F), what would be a reasonable technique(s) to apply to 

avoid aliasing in the L1 cache while minimizing the overhead of TLB lookups? The L2 cache? 

Justify your response. 
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Problem 2: Uniprocessor Caches and Memory Hierarchy  

 
A) (3 Points) How does total capacity, access latency, and bandwidth scale as we move 

between layers of a uniprocessor’s memory hierarchy? Indicate the general trend each 

with an arrow pointing in the direction of an increase in that parameter.  

 

 

Memory Example 

Parameter 

Capacity Access 

Latency 

Bandwidth 

Register File     

On-chip Caches 

Off-Chip Memory 

 

 

B) (3 Points) Suppose we build a processor with a 1-cycle L1 hit latency, a 10-cycle L1 

miss penalty, and a 20-cycle L2 miss penalty.  Assuming a L1 hit rate of 90% and a L2 

local hit rate of 80%, what is the average memory access time seen by this processor? 

 

 

 

 

 

 

 

 

C)  (4 Points) What is the difference between an inclusive and exclusive multi-level cache? 

Give one advantage of each approach.  

 

 

 

 

 

 
 

 

 

  

                          cycles    
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The remainder of this problem evaluates cache performance for different loop orderings. 

Consider the following two loops, written in C, which calculates the sum of all elements of a 16 

by 512 matrix of 32-bit integers: 

 

Loop A Loop B 

int sum = 0; 

for (i = 0; i < 16; i++) 

  for (j = 0; j < 512; j++) 

    sum  += A[i][j]; 

int sum = 0; 

for (j = 0; j < 512; j++) 

  for (i = 0; i < 16; i++) 

    sum += A[i][j]; 

 

The matrix A is stored contiguously in memory in row-major order.  Row-major order means that 

elements in the same row of the matrix are adjacent in memory. You may assume A starts at 0x0, 

thus A[i][j] resides in memory location [4*(512*i + j)]. 

 

Assume: 

- caches are initially empty.   

- only accesses to matrix A cause memory references and all other necessary variables are 

stored in registers.   

- instructions are in a separate instruction cache.   
 

 

D) (7 points) Consider a 4KiB direct-mapped data cache with 64-byte cache lines.  Calculate the 

number of cache misses that will occur when running Loop A. Calculate the number of cache 

misses that will occur when running Loop B. You must show your work for full credit! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The number of cache misses for Loop A: 

The number of cache misses for Loop B: 
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E) (7 points) Consider a 4KiB fully-associative data cache with 64-byte cache lines.  This data 

cache uses a first-in/first-out (FIFO) replacement policy. Calculate the number of cache misses 

that will occur when running Loop A, and when running Loop B. You must show your work for 

full credit! 

 

 

 

 

 

 

 

 

 

 

 

 

 

The number of cache misses for Loop A: 

The number of cache misses for Loop B: 
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Problem 3: Pipelining and The Iron Law 

 
Iron Law (15 points total) 

 

Mark whether the following modifications will cause each of the first three categories to 

increase, decrease, or whether the modification will have negligible effect. Assume all other 

parameters of the system are unchanged whenever possible. Explain your reasoning. 

 

For the final column “Execution Time,” mark whether the following modifications increase, 

decrease, have negligible effect, or whether the modification will have a potentially significant 

but ambiguous effect. Explain your reasoning. If the modification has an ambiguous effect, 

describe the tradeoff in which it would be a significantly beneficial modification or in which it 

would a significantly detrimental modification (i.e., as an engineer would you suggest using the 

modification or not and why?). 
 

 
Instructions / 

Program 

Cycles / 

Instruction 
Seconds / Cycle Execution Time 

Pipelining a 

single-cycle 

implementation 

    

Pipelining an 

unpipelined 

multi-cycle 

implementation, 

while keeping 

the latency of 

each instruction 

constant 

    

Reducing the 

number of 

stages in a 

pipeline 
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Modifying the 5-stage Pipeline: Long Latencies 

 

 
 
A) (2 Point) If we allow non-dependent operations to proceed while a multiply is 

outstanding, which parts of execution are proceeding “out-of-order” in the processor? Assume 

that multiply operations cannot generate exceptions based on their input or output values. Check 

all that apply. 

 

 

[   ] Issue  [   ]  Completion  [   ]  Commit   [   ] None of these 

 

B) (3 Points) Suppose we want to add a multiplier with an 8-cycle latency and an 8-cycle 

occupancy to a 5-stage pipeline, as shown above. We must keep around some information about 

registers whose values are pending an outstanding multiply operation. What type of 

microarchitectural structure is commonly used for this purpose?  
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Problem 4: Cache Coherence  

 
A) (2 Point) What is the fewest number of metadata bits (i.e., not including the line’s tag and 

data) a writeback cache must track per cache line to implement an MSI coherence protocol 

(assume no transient states).  

 

[   ]  1 bit  [   ]  2 bits [   ]  3 bits  [   ] 4 bits 

 

 

B) (3 Point)  Which sequence of memory operations would produce less coherency traffic under 

MESI vs MSI. Assume all memory operations act on the same cache line, and that neither 

processor P1 nor P2 have the line in cache initially. Check all that apply. 

 
 

[  ]  P1.read,  P2.read,  P1.write 

[  ]  P1.read,  P1.write, P2.read 

[  ]  P1.write, P2.read,  P1.read 

 

 

C) (3 Points) In general, which of the following are advantages of snoopy cache coherence 

over directory-based cache coherence. Check all that apply. 

 

[   ]  Simpler to implement 

[   ]  Scalable to more cores  

[   ]  Lower latency on cache misses 

[   ]  Uses less interconnect bandwidth 

 

 

D) (4 Points) In the table below, indicate which memory operations experience a hit, true 

sharing miss, or false sharing miss under an MSI protocol. Assume x1, x2 are in the same cache 

line and the line is initially cached in a shared state by both processors (P1 and P2). The first row 

is filled out for you.  

 

Time P1 P2 Hit 

True 

Sharing 

Miss 

False 

Sharing 

Miss 

1  Write x2  X  

2 Read x1     

3  Read x1    

4 Write x2     

5  Write x1    
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In the remainder of this question, we’ll study a simplified version of the directory-based cache 

coherence scheme from HW5 (detach Appendix B, attached to the reverse of the exam). Our 

system consists of 16 cores, each with write-back, write-allocate private caches. All caches are 

connected to a single directory. Specifically, we’re interested the series of coherence events that 

transpire to service a CPU’s load or store under different initial conditions. For example, 

consider a load-miss in CPU0 to a line is currently not cached by any CPU in the system:  

 

Time Agent Current State 
Event/Message 

Received 
Next State Message(s) Sent 

0 CPU 0 C-nothing Load C-pending ShReq(0) 

1 Directory R(ε) (empty) ShReq(0) R(0) ShResp(0) 

2 CPU 0 C-pending ShResp(0) C-shared N/A 

Total Messages Sent: 2 

 

Simplifications:  

- assume agents can send and receive multiple messages simultaneously 

- assume messages take one time step to reach their destinations   

-  if a set of events may happen in parallel, indicate this by setting the “time” field to the 

same value. 

-  include only the ID field of messages (i.e., neglect data, address fields) 

 

E) (6 Points) In the table below, indicate the series of events that occur to service CPU0, load-

miss when CPU 4 has the line cached in the C-exclusive state. 

 

Time Agent Current State 
Event/Message 

Received 
Next State Message(s) Sent 

0 CPU 0 C-nothing Load C-pending ShReq(0) 

1 Directory     

      

      

      

      

      

Total Messages Sent:  
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F) (10 Points) In the table below, indicate the series of events that occur to service CPU0’s store-

miss when CPUs 0, 4 and 8 have the line cached in a shared state.   

 

Time Agent Current State 
Event/Message(s) 

Received 
Next State Message(s) Sent 

0 CPU 0 C-Shared Store C-pending ExReq(0) 

1 Directory     

      

      

      

      

      

      

      

      

Total Messages Sent:  

 

  



 13 

Question 5: Multithreading 

 
A) (2 Points) If we multithread a classic 5-stage RISC pipeline with no bypassing (the result of 

an instruction can be read in decode one cycle after writeback) using a fixed-interleave 

policy, how many threads are required to avoid interlocks (assume no other hazards)?   

 
[   ] 3          [   ] 4  [   ] 5  [   ] 6 

 
B) (4 Points) The following diagrams indicate how the slots of a four execution units are being 

utilized, with each row corresponding to a different cycle and each column corresponding to 

a functional unit slot of the machine. Instructions belonging to different threads are indicated 

with a different color and texture. A white square indicates an empty slot. Label each 

illustration with letter (A – G) of the corresponding multithreading scheme.  

 

 
         [    ]           [    ]                   [    ]                      [    ] 

 

C) (3 Points) Which of the following must be duplicated per-thread in a multithreaded 

processor. Check all that apply. 

 

[   ] GPRs 

[   ] TLBs 

[   ] PCs 

[   ] Branch Predictors 

[   ] Reorder Buffers  

Labels 

A: Simultaneous MT 

B: Coarse-grained MT 

C: Vertical MT 

D: Multiprocessing 

E: Fine-grained MT 

F: Horizontal MT 

G: Parallel MT 
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In remainder of this question, we will consider the execution of the following C kernel: 

 
void kernel(float * A, float * B, float * C, int N) { 

 for (int i = 0; i < N; i++)  

   C[i] += A[i] * B[i]; 

} 

   

The code above can be translated into the following RISC-V assembly code: 

 
# a1, a2, a3 hold A, B, and C respectively 

# a4 holds N 

# t0 is initially 0 

loop:  

flw f1, 0(a1)  

flw f2, 0(a2) 

flw f3, 0(a3) 

fmul f4, f1, f2 

fadd f5, f4, f3 

fst f5, 0(a3) 

addi a1, a1, 4 

addi a2, a2, 4  

addi a3, a3, 4  

addi t0, t0, 1 

bne  t0, a4, loop 

 

Each cycle, the processor can fetch and issue one instruction that performs any of the following 

operations:  

- load/store, 20-cycle latency (fully pipelined) 

- integer add, 1-cycle latency 

- floating-point add, 1-cycle latency 

- floating-point multiply, 5-cycles latency (fully pipelined) 

- branch, no delay slots, 1-cycle latency  

 

The processor does not have a cache. Each memory operation directly accesses main memory. If 

an instruction cannot be issued due to a data dependency, the processor stalls. We also assume 

that the processor has a perfect branch predictor with no penalty for both taken and not-taken 

branches. Assume N is very large. 

 

  



 15 

D) (5 points) Consider a single-issue in-order, multithreaded pipeline, where threads are 

switched every cycle using a fixed round-robin schedule. If the thread is not ready to run on 

its turn, a bubble is inserted into the pipeline. Each thread executes the above algorithm, and 

is calculating its own independent piece of the A array (i.e., there is no communication 

required between threads). In steady state, how many cycles does the machine take to execute 

each loop iteration for a very large value of N, without rescheduling (changing) the assembly 

and assuming only a single thread. Explain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E) (4 points) Without rescheduling (changing) the assembly, how many threads are required to 

saturate the machine from part D? Explain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

cycles 

threads 
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F) (12 points) What is the minimum number of threads we need to achieve peak performance 

on the machine from part D, assuming you may reschedule the code as necessary without 

loop unrolling. Explain, giving your final schedule. 

 

You may perform the following optimizations: 

• Reordering instructions 

• Renaming / re-allocating registers 

• Changing load/store immediate offsets 

 

  

threads 
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Problem 7: Memory Consistency Models (20 points) 
 

A) (3 Points) Is it possible to translate code that assumes sequential consistency to the RISC-V 

weak memory consistency model? Explain. 

 

 

 

 

 

 

B) (3 Points) Given the instruction sequences below, check all possible combinations of P1.r2, 

P2.r2 after both threads have executed, assuming an ISA that is sequentially consistent. X 

and Y are non-overlapping, and initially X = 0, Y = 0,  

 

P1:     P2: 
li r1, 1    li r1, 2 

st r1, X    st r1, Y 

lw r2, Y     ld r2, X  

 

[ ] P1.r2 = 0; P2.r2 = 0  

[ ] P1.r2 = 0; P2.r2 = 1  

[ ] P1.r2 = 2; P2.r2 = 0  

[ ] P1.r2 = 2; P2.r2 = 1  

 

 

C) (2 Points) Given the same instruction sequences and initial conditions from part B, which of 

the following combinations are possible under an ISA with TSO memory consistency model.  

 

[ ] P1.r2 = 0; P2.r2 = 0  

[ ] P1.r2 = 0; P2.r2 = 1  

[ ] P1.r2 = 2; P2.r2 = 0  

[ ] P1.r2 = 2; P2.r2 = 1  

 

D)  (4 Points) In general, what is the difference between a weak and a strong memory 

consistency model? Give one advantage of each.  
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E) (10 points) The following RISC-V assembly encodes a request-response relationship 

between two threads. The requestor thread puts work in a memory location request and 

then sets go = 1. It then spins waiting on the responder to produce the response. The 

responder thread spins waiting for work from the master, by checking if go has been set. 

Once available, it reads the request data, computes the response, and writes the response data 

to a memory location response before setting done = 1.  

 

 

Requestor thread:     Responder thread:  

 

 

 

 

 

 

 

 

 

 

 

Under a fully relaxed memory consistency model, insert fences where necessary to ensure this 

code functions correctly? Use the least restrictive fences for full credit.  Assume each thread 

executes its code only once. 

 

 

 

 

 

  

spin: 

lw a1, go 

beq a1, spin 

 lw a2, request  

 sw zero, go 

 … a3 = process request  

sw a3, response 

li a0, 1 

sw a0, done 

li a0, 1 

sw data, request 

sw a0, go 

spin: 

lw a1, done 

beqz a1, spin 

lw a2, result 

sw zero, done 

 

 

spin: 

lw a1, go 

beq a1, spin 

 lw a2, request  

 sw zero, go 

 … a3 = process request  

sw a3, response 

li a0, 1 

sw a0, done 

li a0, 1 

sw data, request 

sw a0, go 

spin: 

lw a1, done 

beqz a1, spin 

lw a2, result 

sw zero, done 
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Problem 8: Vector Machines 
 

A) (2 Point) What is the minimum number of lanes a machine must have to exploit data-level 

parallelism on vector instructions when VL is set to 4? 

 

[   ] 1  [   ]  2  [   ]  4   [   ] 8 

 

B) (16 points) Vectorize the following 32-bit integer C code using the RISC-V vector 

specification described in lab 4. See appendix A for the vector instruction set listing.  

 
for (i = 0; i < N; i++) { 

B[i] = (A[i] < 0) ? -A[i] : A[i]; // A and B do not overlap 
} 

 
# v0, v2-v8: configured to hold 32-bit integer values 

# v1: configured to hold 8-bit integers, used as mask register 

# a0 and a1: hold pointers A and B, respectively 

# a2: holds N. 

# t0-t3 may be used as scalar temporaries 

 
# Your code begins: 

 

 

 

stripmine_loop: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 bne  ______, _______, stripmine_loop 

# Your code ends 

ret 



 20 

  



 21 

Appendix A: Vector Architecture for Question 1 

 

This instruction listing is identical to that in Lab 4, but with a setvl instruction that has 

identical semantics to the preprocessor macro provided in Lab 4. This instruction first sets VL to 

min(maximum vector length, rs1); and then returns the new VL.  

 

- The two vector mask arguments are v1t (perform op only if v1[i] is true) and v1f 

(perform op only if v1[i] is false). Omitting the final vector mask (vm) argument to all 

instructions is legal, and treats all elements i  < VL as active. 

- Unlike shortening VL, lengthening VL causes the elements extending past the previous 

vector length to have undefined values.  
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           Appendix B: Directory-based Cache Coherence Protocol (Abridged Handout 6)  
 

Changes from the handout:  

• Rep renamed Resp (Rep will still be accepted) 

• Tr and Tw now include the site id (idreq) that initialized the request  

• Removed unnecessary messages, columns, and rows for the exam 

• Removed home sites – there is only one directory site 

 

Cache states: For each cache line, there are 4 possible states: 

 C-nothing: The accessed data is not resident in the cache. 

 C-shared: The accessed data is resident in the cache, and possibly also cached at other sites. 
The data in memory is valid. 

 C-exclusive: The accessed data is exclusively resident in this cache and has been modified.  

 C-pending: The accessed data is in a transient state.  

 

Directory states: For each memory block, there are 4 possible states: 

 R(dir): The memory block is shared by the sites specified in dir (dir is a set of sites). The 

data in memory is valid in this state. If dir is empty (i.e., dir = ε), the memory block is  not 
cached by any site. 

 W(id): The memory block is exclusively cached at site id, and has been modified at that 
site. Memory does not have the most up-to-date data. 

 TR(idreq, dir): The memory block is in a transient state waiting for the acknowledgements 
to the invalidation requests that the directory has issued, before giving exclusive access to 
the site idreq that initiated the request. 

 TW(idreq, id): The memory block is in a transient state waiting for a block exclusively 
cached at site id (i.e., in C-modified state) to make the memory block at the directory up-
to-date, before servicing initial request made by site idreq. 

 

Protocol messages: 

 

Category Messages 
Cache to Memory Requests ShReq, ExReq 

Memory to Cache Requests WbReq, InvReq 

Cache to Memory Responses WbResp(v), InvResp 

Memory to Cache Responses ShResp(v), ExResp(v) 

22 
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Table B-1: Cache State Transitions 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B-2: Directory State Transitions, messages sent from site id.  

  

  

Current State Handling Message Next State Action 

C-nothing Load C-pending ShReq(id) 

C-nothing Store C-pending ExReq(id) 

C-nothing ShResp (a) C-shared updates cache with prefetch data 

C-nothing ExResp (a) C-exclusive updates cache with data 

C-shared Store C-pending ExReq(id) 

C-shared InvReq(a) C-nothing InvResp(id) 

C-exclusive WbReq(a) C-shared WbResp(id, data(a)) 

C-pending ShResp(a) C-shared updates cache with data 

C-pending ExResp(a) C-exclusive update cache with data 

Current State 

 
Message Received Next State Action 

R(dir) & (dir = ε) 

 

ShReq(a) R({id}) ShResp(id, data(a)) 

ExReq(a) W(id) ExResp(id, data(a)) 

R(dir) & (id ∉ dir) & 
(dir ≠ ε) 

ShReq(a) R(dir + {id}) ShResp(id, data(a)) 

ExReq(a) Tr(id, dir) InvReq(dir, a) 

// Note: here id is also = idreq 

R(dir) & (dir = {id}) 
ExReq(a) W(id) ExResp(id, data(a)) 

R(dir) & (id ∈ dir) & 
(dir ≠ {id}) 

 

ExReq(a) Tr(id, dir-{id}) InvReq(dir - {id}, a) 

// Note: here id is also = idreq 

W(id’)     (id’ ≠ id) 
ShReq(a) Tw(id, id’) WbReq(id’, a) 

// Note: here id is also = idreq 

Tr(idreq, dir) & (id ∈ dir) &  

dir ≠ {id 

InvResp(a) Tr(idreq, dir - {id}) None 

Tr(idreq, dir) & (dir = {id) 
InvResp(a) W(idreq) ExResp(idreq, data(a)) 

Tw(idreq, id) WbResp(a) R({idreq, id}) data-> memory; ShResp(idreq) 
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