
 1

CS 152: Computer Architecture and Engineering

Final Exam

May 14th, 2019

Professor Krste Asanović

Name:______________________

SID:______________________

This is a closed book, closed notes exam.

170 Minutes, 24 pages.

• Not all questions are of equal difficulty, so look over the entire exam!

• Please carefully state any assumptions you make.

• Please write your name on every page in the exam.

• Do not discuss the exam with other students who haven’t taken the exam.

• If you have inadvertently been exposed to an exam prior to taking it, you

must tell the instructor or TA.

• You will receive no credit for selecting multiple-choice answers without

giving explanations, if the instructions ask you to explain your choice.

• You may detach the appendences provided at the reverse of the exam.

Question Topic Point Value

1 Virtual Memory 28

2 Memory Hierarchy 24

3 Pipelining 20

4 Cache Coherence 28

5 Multithreading 30

6 Memory Consistency 22

7 Vector Machines 18

TOTAL: 170

 2

Problem 1: Virtual Memory

Multiple choice: Check one unless otherwise noted

A) (2 Point) In a virtually indexed, physically tagged cache, what part of the virtual address

is used to select the cache set?

[] VPN [] PPN [] Page offset [] Tag

B) (2 Point) A page-table walker (PTW) handles what kind of events?

[] SegFaults [] Demand paging [] Page faults. [] TLB misses

C) (3 Points) Which of the following are advantages of page-based virtual memory over a

base-and-bound scheme? Check all that apply.

[] Protecting one process from other processes on the system

[] Translating addresses to virtualize the resource of physical memory

[] Reduced external fragmentation

[] Reduced address translation cost

D) (3 Points) Explain why TLBs are critical for good performance in a paged virtual

memory system.

E) (4 points) Consider a system with 4096B pages and page-table entries that are 32 bits at

all levels of the page table hierarchy. How many levels of page tables are needed to support a 32-

bit virtual address space?

 3

F) (9 points) Consider a system with the following specifications:

• 8192B page sizes

• 64-bit virtual address space

• 48-bit physical address space

• 32KiB, 4-way set-associative L1 cache with 64B block size

• 256KiB, 4-way set-associative L2 cache with 64B block size

• TLB entries contain 8 bits of metadata

Fill in the table. Show organized work outside the table so partial credit may be assigned.

 # of bits

Physical page number

Virtual page number

Page offset

TLB entry

Cache block offset

L1 cache tag

L1 cache index

L2 cache tag

L2 cache index

 4

G) (5 points) In the system from (F), what would be a reasonable technique(s) to apply to

avoid aliasing in the L1 cache while minimizing the overhead of TLB lookups? The L2 cache?

Justify your response.

 5

Problem 2: Uniprocessor Caches and Memory Hierarchy

A) (3 Points) How does total capacity, access latency, and bandwidth scale as we move

between layers of a uniprocessor’s memory hierarchy? Indicate the general trend each

with an arrow pointing in the direction of an increase in that parameter.

Memory Example

Parameter

Capacity Access

Latency

Bandwidth

Register File

On-chip Caches

Off-Chip Memory

B) (3 Points) Suppose we build a processor with a 1-cycle L1 hit latency, a 10-cycle L1

miss penalty, and a 20-cycle L2 miss penalty. Assuming a L1 hit rate of 90% and a L2

local hit rate of 80%, what is the average memory access time seen by this processor?

C) (4 Points) What is the difference between an inclusive and exclusive multi-level cache?

Give one advantage of each approach.

 cycles

 6

The remainder of this problem evaluates cache performance for different loop orderings.

Consider the following two loops, written in C, which calculates the sum of all elements of a 16

by 512 matrix of 32-bit integers:

Loop A Loop B

int sum = 0;

for (i = 0; i < 16; i++)

 for (j = 0; j < 512; j++)

 sum += A[i][j];

int sum = 0;

for (j = 0; j < 512; j++)

 for (i = 0; i < 16; i++)

 sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row-major order means that

elements in the same row of the matrix are adjacent in memory. You may assume A starts at 0x0,

thus A[i][j] resides in memory location [4*(512*i + j)].

Assume:

- caches are initially empty.

- only accesses to matrix A cause memory references and all other necessary variables are

stored in registers.

- instructions are in a separate instruction cache.

D) (7 points) Consider a 4KiB direct-mapped data cache with 64-byte cache lines. Calculate the

number of cache misses that will occur when running Loop A. Calculate the number of cache

misses that will occur when running Loop B. You must show your work for full credit!

The number of cache misses for Loop A:

The number of cache misses for Loop B:

 7

E) (7 points) Consider a 4KiB fully-associative data cache with 64-byte cache lines. This data

cache uses a first-in/first-out (FIFO) replacement policy. Calculate the number of cache misses

that will occur when running Loop A, and when running Loop B. You must show your work for

full credit!

The number of cache misses for Loop A:

The number of cache misses for Loop B:

 8

Problem 3: Pipelining and The Iron Law

Iron Law (15 points total)

Mark whether the following modifications will cause each of the first three categories to

increase, decrease, or whether the modification will have negligible effect. Assume all other

parameters of the system are unchanged whenever possible. Explain your reasoning.

For the final column “Execution Time,” mark whether the following modifications increase,

decrease, have negligible effect, or whether the modification will have a potentially significant

but ambiguous effect. Explain your reasoning. If the modification has an ambiguous effect,

describe the tradeoff in which it would be a significantly beneficial modification or in which it

would a significantly detrimental modification (i.e., as an engineer would you suggest using the

modification or not and why?).

Instructions /

Program

Cycles /

Instruction
Seconds / Cycle Execution Time

Pipelining a

single-cycle

implementation

Pipelining an

unpipelined

multi-cycle

implementation,

while keeping

the latency of

each instruction

constant

Reducing the

number of

stages in a

pipeline

 9

Modifying the 5-stage Pipeline: Long Latencies

A) (2 Point) If we allow non-dependent operations to proceed while a multiply is

outstanding, which parts of execution are proceeding “out-of-order” in the processor? Assume

that multiply operations cannot generate exceptions based on their input or output values. Check

all that apply.

[] Issue [] Completion [] Commit [] None of these

B) (3 Points) Suppose we want to add a multiplier with an 8-cycle latency and an 8-cycle

occupancy to a 5-stage pipeline, as shown above. We must keep around some information about

registers whose values are pending an outstanding multiply operation. What type of

microarchitectural structure is commonly used for this purpose?

 10

Problem 4: Cache Coherence

A) (2 Point) What is the fewest number of metadata bits (i.e., not including the line’s tag and

data) a writeback cache must track per cache line to implement an MSI coherence protocol

(assume no transient states).

[] 1 bit [] 2 bits [] 3 bits [] 4 bits

B) (3 Point) Which sequence of memory operations would produce less coherency traffic under

MESI vs MSI. Assume all memory operations act on the same cache line, and that neither

processor P1 nor P2 have the line in cache initially. Check all that apply.

[] P1.read, P2.read, P1.write

[] P1.read, P1.write, P2.read

[] P1.write, P2.read, P1.read

C) (3 Points) In general, which of the following are advantages of snoopy cache coherence

over directory-based cache coherence. Check all that apply.

[] Simpler to implement

[] Scalable to more cores

[] Lower latency on cache misses

[] Uses less interconnect bandwidth

D) (4 Points) In the table below, indicate which memory operations experience a hit, true

sharing miss, or false sharing miss under an MSI protocol. Assume x1, x2 are in the same cache

line and the line is initially cached in a shared state by both processors (P1 and P2). The first row

is filled out for you.

Time P1 P2 Hit

True

Sharing

Miss

False

Sharing

Miss

1 Write x2 X

2 Read x1

3 Read x1

4 Write x2

5 Write x1

 11

In the remainder of this question, we’ll study a simplified version of the directory-based cache

coherence scheme from HW5 (detach Appendix B, attached to the reverse of the exam). Our

system consists of 16 cores, each with write-back, write-allocate private caches. All caches are

connected to a single directory. Specifically, we’re interested the series of coherence events that

transpire to service a CPU’s load or store under different initial conditions. For example,

consider a load-miss in CPU0 to a line is currently not cached by any CPU in the system:

Time Agent Current State
Event/Message

Received
Next State Message(s) Sent

0 CPU 0 C-nothing Load C-pending ShReq(0)

1 Directory R(ε) (empty) ShReq(0) R(0) ShResp(0)

2 CPU 0 C-pending ShResp(0) C-shared N/A

Total Messages Sent: 2

Simplifications:

- assume agents can send and receive multiple messages simultaneously

- assume messages take one time step to reach their destinations

- if a set of events may happen in parallel, indicate this by setting the “time” field to the

same value.

- include only the ID field of messages (i.e., neglect data, address fields)

E) (6 Points) In the table below, indicate the series of events that occur to service CPU0, load-

miss when CPU 4 has the line cached in the C-exclusive state.

Time Agent Current State
Event/Message

Received
Next State Message(s) Sent

0 CPU 0 C-nothing Load C-pending ShReq(0)

1 Directory

Total Messages Sent:

 12

F) (10 Points) In the table below, indicate the series of events that occur to service CPU0’s store-

miss when CPUs 0, 4 and 8 have the line cached in a shared state.

Time Agent Current State
Event/Message(s)

Received
Next State Message(s) Sent

0 CPU 0 C-Shared Store C-pending ExReq(0)

1 Directory

Total Messages Sent:

 13

Question 5: Multithreading

A) (2 Points) If we multithread a classic 5-stage RISC pipeline with no bypassing (the result of

an instruction can be read in decode one cycle after writeback) using a fixed-interleave

policy, how many threads are required to avoid interlocks (assume no other hazards)?

[] 3 [] 4 [] 5 [] 6

B) (4 Points) The following diagrams indicate how the slots of a four execution units are being

utilized, with each row corresponding to a different cycle and each column corresponding to

a functional unit slot of the machine. Instructions belonging to different threads are indicated

with a different color and texture. A white square indicates an empty slot. Label each

illustration with letter (A – G) of the corresponding multithreading scheme.

 [] [] [] []

C) (3 Points) Which of the following must be duplicated per-thread in a multithreaded

processor. Check all that apply.

[] GPRs

[] TLBs

[] PCs

[] Branch Predictors

[] Reorder Buffers

Labels

A: Simultaneous MT

B: Coarse-grained MT

C: Vertical MT

D: Multiprocessing

E: Fine-grained MT

F: Horizontal MT

G: Parallel MT

 14

In remainder of this question, we will consider the execution of the following C kernel:

void kernel(float * A, float * B, float * C, int N) {

 for (int i = 0; i < N; i++)

 C[i] += A[i] * B[i];

}

The code above can be translated into the following RISC-V assembly code:

a1, a2, a3 hold A, B, and C respectively

a4 holds N

t0 is initially 0

loop:

flw f1, 0(a1)

flw f2, 0(a2)

flw f3, 0(a3)

fmul f4, f1, f2

fadd f5, f4, f3

fst f5, 0(a3)

addi a1, a1, 4

addi a2, a2, 4

addi a3, a3, 4

addi t0, t0, 1

bne t0, a4, loop

Each cycle, the processor can fetch and issue one instruction that performs any of the following

operations:

- load/store, 20-cycle latency (fully pipelined)

- integer add, 1-cycle latency

- floating-point add, 1-cycle latency

- floating-point multiply, 5-cycles latency (fully pipelined)

- branch, no delay slots, 1-cycle latency

The processor does not have a cache. Each memory operation directly accesses main memory. If

an instruction cannot be issued due to a data dependency, the processor stalls. We also assume

that the processor has a perfect branch predictor with no penalty for both taken and not-taken

branches. Assume N is very large.

 15

D) (5 points) Consider a single-issue in-order, multithreaded pipeline, where threads are

switched every cycle using a fixed round-robin schedule. If the thread is not ready to run on

its turn, a bubble is inserted into the pipeline. Each thread executes the above algorithm, and

is calculating its own independent piece of the A array (i.e., there is no communication

required between threads). In steady state, how many cycles does the machine take to execute

each loop iteration for a very large value of N, without rescheduling (changing) the assembly

and assuming only a single thread. Explain.

E) (4 points) Without rescheduling (changing) the assembly, how many threads are required to

saturate the machine from part D? Explain.

cycles

threads

 16

F) (12 points) What is the minimum number of threads we need to achieve peak performance

on the machine from part D, assuming you may reschedule the code as necessary without

loop unrolling. Explain, giving your final schedule.

You may perform the following optimizations:

• Reordering instructions

• Renaming / re-allocating registers

• Changing load/store immediate offsets

threads

 17

Problem 7: Memory Consistency Models (20 points)

A) (3 Points) Is it possible to translate code that assumes sequential consistency to the RISC-V

weak memory consistency model? Explain.

B) (3 Points) Given the instruction sequences below, check all possible combinations of P1.r2,

P2.r2 after both threads have executed, assuming an ISA that is sequentially consistent. X

and Y are non-overlapping, and initially X = 0, Y = 0,

P1: P2:
li r1, 1 li r1, 2

st r1, X st r1, Y

lw r2, Y ld r2, X

[] P1.r2 = 0; P2.r2 = 0

[] P1.r2 = 0; P2.r2 = 1

[] P1.r2 = 2; P2.r2 = 0

[] P1.r2 = 2; P2.r2 = 1

C) (2 Points) Given the same instruction sequences and initial conditions from part B, which of

the following combinations are possible under an ISA with TSO memory consistency model.

[] P1.r2 = 0; P2.r2 = 0

[] P1.r2 = 0; P2.r2 = 1

[] P1.r2 = 2; P2.r2 = 0

[] P1.r2 = 2; P2.r2 = 1

D) (4 Points) In general, what is the difference between a weak and a strong memory

consistency model? Give one advantage of each.

 18

E) (10 points) The following RISC-V assembly encodes a request-response relationship

between two threads. The requestor thread puts work in a memory location request and

then sets go = 1. It then spins waiting on the responder to produce the response. The

responder thread spins waiting for work from the master, by checking if go has been set.

Once available, it reads the request data, computes the response, and writes the response data

to a memory location response before setting done = 1.

Requestor thread: Responder thread:

Under a fully relaxed memory consistency model, insert fences where necessary to ensure this

code functions correctly? Use the least restrictive fences for full credit. Assume each thread

executes its code only once.

spin:

lw a1, go

beq a1, spin

 lw a2, request

 sw zero, go

 … a3 = process request

sw a3, response

li a0, 1

sw a0, done

li a0, 1

sw data, request

sw a0, go

spin:

lw a1, done

beqz a1, spin

lw a2, result

sw zero, done

spin:

lw a1, go

beq a1, spin

 lw a2, request

 sw zero, go

 … a3 = process request

sw a3, response

li a0, 1

sw a0, done

li a0, 1

sw data, request

sw a0, go

spin:

lw a1, done

beqz a1, spin

lw a2, result

sw zero, done

 19

Problem 8: Vector Machines

A) (2 Point) What is the minimum number of lanes a machine must have to exploit data-level

parallelism on vector instructions when VL is set to 4?

[] 1 [] 2 [] 4 [] 8

B) (16 points) Vectorize the following 32-bit integer C code using the RISC-V vector

specification described in lab 4. See appendix A for the vector instruction set listing.

for (i = 0; i < N; i++) {

B[i] = (A[i] < 0) ? -A[i] : A[i]; // A and B do not overlap
}

v0, v2-v8: configured to hold 32-bit integer values

v1: configured to hold 8-bit integers, used as mask register

a0 and a1: hold pointers A and B, respectively

a2: holds N.

t0-t3 may be used as scalar temporaries

Your code begins:

stripmine_loop:

 bne ______, _______, stripmine_loop

Your code ends

ret

 20

 21

Appendix A: Vector Architecture for Question 1

This instruction listing is identical to that in Lab 4, but with a setvl instruction that has

identical semantics to the preprocessor macro provided in Lab 4. This instruction first sets VL to

min(maximum vector length, rs1); and then returns the new VL.

- The two vector mask arguments are v1t (perform op only if v1[i] is true) and v1f

(perform op only if v1[i] is false). Omitting the final vector mask (vm) argument to all

instructions is legal, and treats all elements i < VL as active.

- Unlike shortening VL, lengthening VL causes the elements extending past the previous

vector length to have undefined values.

1

 Appendix B: Directory-based Cache Coherence Protocol (Abridged Handout 6)

Changes from the handout:

• Rep renamed Resp (Rep will still be accepted)

• Tr and Tw now include the site id (idreq) that initialized the request

• Removed unnecessary messages, columns, and rows for the exam

• Removed home sites – there is only one directory site

Cache states: For each cache line, there are 4 possible states:

 C-nothing: The accessed data is not resident in the cache.

 C-shared: The accessed data is resident in the cache, and possibly also cached at other sites.
The data in memory is valid.

 C-exclusive: The accessed data is exclusively resident in this cache and has been modified.

 C-pending: The accessed data is in a transient state.

Directory states: For each memory block, there are 4 possible states:

 R(dir): The memory block is shared by the sites specified in dir (dir is a set of sites). The

data in memory is valid in this state. If dir is empty (i.e., dir = ε), the memory block is not
cached by any site.

 W(id): The memory block is exclusively cached at site id, and has been modified at that
site. Memory does not have the most up-to-date data.

 TR(idreq, dir): The memory block is in a transient state waiting for the acknowledgements
to the invalidation requests that the directory has issued, before giving exclusive access to
the site idreq that initiated the request.

 TW(idreq, id): The memory block is in a transient state waiting for a block exclusively
cached at site id (i.e., in C-modified state) to make the memory block at the directory up-
to-date, before servicing initial request made by site idreq.

Protocol messages:

Category Messages
Cache to Memory Requests ShReq, ExReq

Memory to Cache Requests WbReq, InvReq

Cache to Memory Responses WbResp(v), InvResp

Memory to Cache Responses ShResp(v), ExResp(v)

22

2

Table B-1: Cache State Transitions

Table B-2: Directory State Transitions, messages sent from site id.

Current State Handling Message Next State Action

C-nothing Load C-pending ShReq(id)

C-nothing Store C-pending ExReq(id)

C-nothing ShResp (a) C-shared updates cache with prefetch data

C-nothing ExResp (a) C-exclusive updates cache with data

C-shared Store C-pending ExReq(id)

C-shared InvReq(a) C-nothing InvResp(id)

C-exclusive WbReq(a) C-shared WbResp(id, data(a))

C-pending ShResp(a) C-shared updates cache with data

C-pending ExResp(a) C-exclusive update cache with data

Current State

Message Received Next State Action

R(dir) & (dir = ε)

ShReq(a) R({id}) ShResp(id, data(a))

ExReq(a) W(id) ExResp(id, data(a))

R(dir) & (id ∉ dir) &
(dir ≠ ε)

ShReq(a) R(dir + {id}) ShResp(id, data(a))

ExReq(a) Tr(id, dir) InvReq(dir, a)

// Note: here id is also = idreq

R(dir) & (dir = {id})
ExReq(a) W(id) ExResp(id, data(a))

R(dir) & (id ∈ dir) &
(dir ≠ {id})

ExReq(a) Tr(id, dir-{id}) InvReq(dir - {id}, a)

// Note: here id is also = idreq

W(id’) (id’ ≠ id)
ShReq(a) Tw(id, id’) WbReq(id’, a)

// Note: here id is also = idreq

Tr(idreq, dir) & (id ∈ dir) &

dir ≠ {id

InvResp(a) Tr(idreq, dir - {id}) None

Tr(idreq, dir) & (dir = {id)
InvResp(a) W(idreq) ExResp(idreq, data(a))

Tw(idreq, id) WbResp(a) R({idreq, id}) data-> memory; ShResp(idreq)

23

3

This page intentionally left blank.

24

