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Problem 1: Parallelism (32 points) 
 

In this problem, we will explore how out-of-order processors, VLIW machines, and vector 

machines extract parallelism from the following code: 

// Assume that N is large 

for (i = 0; i < N; i++) { 

 a = A[i]; 

 b = B[i]; 

 C[i] = (a * a) + (b * b); 

} 

 

 

Problem 1.A: Out-of-Order Execution (8 points) 

 

This loop is translated into the following scalar code: 

# a0 points to A 

# a1 points to B 

# a2 points to C 

# a3 points to C+N 

loop: 

 fld f1, 0(a0) 

 fld f2, 0(a1) 

 fmul.d f1, f1, f1 

 fmul.d f2, f2, f2 

 fadd.d f1, f1, f2 

 fsd f1, 0(a2) 

 addi a0, a0, 8 

 addi a1, a1, 8 

 addi a2, a2, 8 

 bltu a2, a3, loop 

 

Consider an out-of-order processor with the following characteristics: 

• Up to 6 instructions can be dispatched, issued, and committed per cycle 

• 128-entry ROB 

• 96-entry unified physical register file 

• 2 integer ALUs, 1-cycle latency 

• 2 load/store units, 2-cycle latency (assume all loads and stores hit in the cache) 

• 1 floating-point adder, 2-cycle latency 

• 1 floating-point multiplier, 3-cycle latency 

• All functional units are fully pipelined 

• Scheduler always selects the oldest ready instructions to issue 

• Assume perfect branch prediction and memory disambiguation 



What is the steady-state throughput in floating-point operations (FLOPs) per cycle?  Count only 

arithmetic operations. 

 

A common misconception is to divide by the minimum latency of one iteration (fld → fmul 

→ fadd → fsd), as if it were in-order issue.  With dynamic scheduling, however, multiple 

iterations can be in flight simultaneously. 

Since each loop iteration is independent of the others and all functional units are fully pipelined, 

the issue bandwidth is the true limiting factor.  On average, a new loop iteration can be initiated 

at most every two cycles, due to these constraints: 

• The four ALU operations must be issued over two cycles. 

• The two fld and one fsd must be issued over two cycles as there are only two 

load/store units. 

• The two fmul must be issued over two cycles as there is only one multiplier. 

The ROB size is sufficiently large compared to the latency through one iteration, so the oldest 

iteration should commit and have its ROB entries freed before the ROB is completely full. 

Thus, the throughput is 3/2 FLOPs per cycle. 

 

Problem 1.B: VLIW (8 points) 

 

Consider a VLIW machine with the following characteristics: 

• 2 integer ALUs, 1-cycle latency 

• 2 load/store units, 2-cycle latency 

• 1 floating-point adder, 2-cycle latency 

• 1 floating-point multiplier, 3-cycle latency 

• All functional units are fully pipelined 

Instructions are statically scheduled with no interlocks; all latencies are exposed in the 

ISA.  All register operands are read before any writes from the same instruction take effect (i.e., 

no WAR hazards between operations within a single VLIW instruction). 

 

Schedule the operations from Part 1.A using software pipelining.  You may rewrite the code to 

remove WAR/WAW hazards, but do not unroll the loop.  Show only the software-pipelined 

loop; you do not need to include the prologue or epilogue.  For each operation, also indicate 

which iteration that it belongs to (i, i+1, i+2, etc.). 

What is the steady-state throughput in FLOPs per cycle? 

 



Note: Not all rows may be needed. 

ALU0 ALU1 MEM0 MEM1 FADD FMUL 

addi a0,a0,8 

[iter i+4] 

addi a2,a2,8 

[iter i+4] 

fld f1,0(a0) 

[iter i+4] 

fld f2,0(a1) 

[iter i+4] 

fadd.d f5,f3,f4 

[iter i+1] 

fmul.d f3,f1,f1 

[iter i+3] 

addi a1,a1,8 

[iter i+4] 

bltu a2,a3,loop 

[iter i+4] 

 fsd f5,-40(15) 

[iter i] 

 fmul.d f4,f2,f2 

[iter i+3] 

 

 

     

 

 

     

 

 

     

 

 

     

 

 

     

 

 

     

 

 

     

 

 

     

 

FLOPs per cycle: 

3/2 FLOPs per cycle 

The VLIW machine has the same mix of functional units as the OoO processor from Part 1.A, and so static scheduling should yield 

the same performance as dynamic scheduling under these conditions. 



Problem 1.C: Vector Machines (8 points) 

 

The loop is translated into the following vector assembly code: 

# a0 points to A 

# a1 points to B 

# a2 points to C 

# a3 holds N 

loop: 

 vsetvli t0, a3, e64 

 vle.v v0, 0(a0) 

 vfmul.vv v1, v0, v0 

 vle.v v2, 0(a1) 

 vfmul.vv v3, v2, v2 

 vfadd.vv v4, v1, v3 

 vse.v v4, 0(a2) 

 sub a3, a3, t0 

 slli t0, t0, 3 

 add a0, a0, t0 

 add a1, a1, t0 

 add a2, a2, t0 

 bnez a3, loop 

 

For this question, consider a vector machine with the following characteristics: 

• 16 elements per vector register 

• 4 vector lanes 

• 1 load/store unit per lane, 2-cycle latency 

• 1 floating-point adder per lane, 2-cycle latency 

• 1 floating-point multiplier per lane, 3-cycle latency 

• All functional units are fully pipelined 

• All functional units have dedicated read/write ports into the vector register file 

• No dead time between vector instructions 

• Vector instructions execute in order 

• Scalar instructions execute separately on a decoupled control processor 

 

 



First, we compare the performance of the vector processor with and without chaining.  Vector 

chaining is performed through the vector register file.  An element can be read on the same cycle 

that it is written back, or it can be read on any later cycle – the chaining is flexible. 

However, with no chaining, a dependent vector instruction must stall until the previous vector 

instruction finishes writing back all elements.  As an example, the pipeline timing would proceed 

as follows for two dependent vfadd instructions if not using chaining: 

Instruction 1 2 3 4 5 6 7 8 9 
vfadd v2, v0, v1 R X1 X2 W      
  R X1 X2 W     
   R X1 X2 W    
    R X1 X2 W   
vfadd v4, v2, v3        R X1 

 

Complete the following table for one stripmine iteration, which shows the cycle numbers at 

which each vector instruction begins execution (starting from the vector register read).  The first 

column corresponds to the baseline vector design with no chaining.  The second column adds 

flexible chaining to the processor.  Assume that vl is set to the maximum vector length, and the 

first vector instruction executes in cycle 1.  Ignore scalar instructions. 

Instruction Cycle number 

Without chaining With chaining 
vle v0 1 1 
vfmul v1 8 4 
vle v2 9 5 
vfmul v3 16 8 
vfadd v4 24 12 
vse v4 31 15 

 

Assuming that the scalar instruction overhead of the stripmine loop is entirely hidden by the 

control processor executing separately, what is the FLOPs per cycle per lane with and without 

chaining?  Consider the loop in steady state. 

 

Note that with only one load/store unit per lane, vle.v of the next iteration must wait three 

more cycles for the last vector element group of the previous vse.v to proceed far enough 

through the pipeline (avoiding a structural hazard). 

With chaining: (16 × 3)/(31 + 3)/4 = 6/17 

Without chaining: (16 × 3)/(15 + 3)/4 = 6/9 

 

 



Problem 1.D: Impact on Performance (4+4 points) 

 

For each of the processors (OoO, VLIW, vector) introduced in Parts 1.A to 1.C, discuss how the 

following hardware changes would impact performance on the given loop.  Assume that all other 

design parameters remain unchanged. 

(i) Doubling the register file size (i.e., doubling the size of the unified physical register file 

for OoO, doubling the number of architectural registers for VLIW, doubling the length of 

the vector registers).  Does taking advantage of the expanded register file capacity require 

changing the code? 

 

 

OoO: FLOPs/cycle is unchanged; performance is bottlenecked by structural hazards with 

the functional units, not lack of registers.  Increasing the number of physical registers 

beyond the number of ROB entries also serves no useful purpose.  No code changes are 

needed since renaming automatically exploits the larger physical register file. 

 

VLIW: FLOPs/cycle is unchanged for the same reasons as the OoO case.  The code must 

be rewritten to use the extra architectural registers now provided by the ISA. 

 

Vector: FLOPs/cycle improves if chaining is used.  Chaining longer vectors increases the 

proportion of cycles in which the adder and multiplier are simultaneously utilized.  No 

code changes are needed if the code is written to be vector-length-agnostic. 

 

 

(ii) Adding another floating-point multiplier.  Does taking advantage of this new functional 

unit require changing the code? 

 

 

OoO: FLOPs/cycle is unchanged.  Performance is still bottlenecked to the same degree 

by structural hazards with the ALUs and load/store units.  No code changes are needed 

since the issue logic can automatically exploit the extra multiplier. 

 

VLIW: FLOPs/cycle is unchanged for the same reasons as the OoO case.  (Some 

improvement is possible if the instruction scheduling is initially suboptimal.)  The code 

must be rewritten to use the extra VLIW slot. 

 

Vector: FLOPs/cycle is unchanged.  The lack of a second load unit in each lane prevents 

the two multipliers from being utilized simultaneously.  No code changes are needed. 



Problem 2: Virtual Memory and Virtualization (21 points) 
 

A virtual machine monitor (VMM) runs several guest OSs on a single host machine.  The guest 

OSs run in user (unprivileged) mode, whereas the VMM runs in supervisor (privileged) mode.  

The OS in each guest virtual machine manages its own set of page tables, which reflect the 

mapping of the guest virtual address space to the guest physical address space (“virtual-to-real”).  
The guest physical addresses must then be mapped to host physical addresses. 

To reuse the hardware TLB, the VMM maintains a set of shadow page tables that map directly 

from the guest virtual address space to the host physical address space (“virtual-to-physical”).  
When running the guest OS in user mode, the VMM sets the hardware page table base pointer to 

point to the shadow page table.  The TLB works as if there were no virtualization. 

 

 

 

Problem 2.A: TLB Miss Latency (3 points) 

 

Suppose that the guest and host machines both use three-level page tables.  The host has a 

hardware-refilled TLB.  When running the guest OS, what is the TLB miss latency if the TLB 

access takes 1 cycle and the memory latency is 50 cycles per access? 

 

1 + 50 + 50 + 50 = 151 cycles 

A hardware TLB refill involves a page table walk of the shadow page tables in memory, same as 

if there were no virtualization in effect.  Note that the guest page tables are not directly involved. 

The TLB miss latency must also include the cost of the initial TLB lookup (1 cycle). 

 



Problem 2.B: TLB Miss Latency Revisited (3 points) 

 

Now suppose that the guest machine uses two-level page tables instead, while the host continues 

to use three-level page tables.  When running the guest OS, what is the TLB miss latency if the 

TLB access takes 1 cycle and the memory latency is 50 cycles per access? 

 

1 + 50 + 50 + 50 = 151 cycles 

The shadow page table walk is agnostic to the structure of the guest page tables. 

 

 

 

 

 

 

 

 

Problem 2.C: Page Table Base Pointers (5 points) 

 

When the guest OS begins to run a guest OS user process, it attempts to change the page table 

base pointer to point to the guest page table of the process.  Since the guest OS itself is running 

in unprivileged mode, this causes a trap into the VMM.  What action does the VMM take when it 

encounters this trap? 

 

On a write attempt to the page table base register, the VMM sets the hardware page table pointer 

to the corresponding L1 shadow page table and saves the guest version of the page table pointer 

elsewhere.  If the VMM needs to allocate a new L1 shadow page table for a new process, it does 

not need to immediately initialize all shadow entries to mirror the guest page tables; the 

mappings can be populated lazily as page faults arise. 

On a read attempt, the VMM returns the guest page table base pointer that was last recorded. 

 

 

 

 



Problem 2.D: Page Table Updates (5 points) 

 

From the perspective of the guest OS, the guest page tables live in guest physical memory.  How 

does the VMM ensure that the shadow page table is updated when the corresponding guest page 

table is modified by the guest OS? 

 

In the shadow page table, the VMM write-protects the pages holding the guest page tables so that 

any attempt to modify the guest page tables causes a trap into the VMM.  On a trap, the VMM 

mirrors the changes to the guest page table entry in the shadow page table.  The VMM must 

translate the guest physical addresses presented by the guest OS to host physical addresses; this 

typically requires the VMM to maintain a separate table with the real-to-physical mappings. 

 

 

 

 

Problem 2.E: Different Page Sizes (5 points) 

 

Describe how it is possible to support a guest virtual machine with an 8 KiB page size on a host 

machine with a 4 KiB page size. 

 

Each guest page is mapped to two host pages; a leaf entry in the guest page table corresponds to 

two consecutive entries in the shadow page table with the same permissions.  To properly 

support I/O (i.e., DMA requests), the two host pages should be physically contiguous. 

 

 

 



Problem 3: Branch Prediction (28 points) 
 

The following loop iterates through two arrays of integers and compares their elements.  The 

code contains four branches labeled B1, B2, B3, and B4.  Assume that the arrays X and Y are 

populated with uniformly random values. 

c = 0; 

for (i = 0; i < N; i++) { // B4 

 x = X[i]; 

 y = Y[i]; 

 if (x == 0) // B1 

  c++; 

 if (y == 0) // B2 

  c--; 

 if (x != y) // B3 

  c += (x – y); 
} 

 la x1, X 

 la x2, Y 

 li x3, N 

 li x4, 0  # c 

loop: 

 lw x5, (x1) # x 

 lw x6, (x2) # y 

 bnez x5, skip1  # B1 

 addi x4, x4, 1 

skip1: 

 bnez x6, skip2  # B2 

 addi x4, x4, -1 

skip2: 

 beq x5, x6, skip3 # B3 

 sub x5, x5, x6 

 add x4, x4, x5 

skip3: 

 addi x1, x1, 4 

 addi x2, x2, 4 

 addi x3, x3, -1 

 bnez x3, loop  # B4 

 

 

Problem 3.A: Branch Correlation (2+2 points) 

 

In contrast to spatial correlation, a branch may also demonstrate temporal correlation such that 

the present outcome of the branch is related to the previous outcomes of the same branch. 

(i) For the code above, briefly explain which branches exhibit spatial correlation, if any. 

 

B3 is correlated with B1 and B2.  For example, if B1 and B2 are both not taken, then B3 

will always be taken. 

 

 

(ii) For the code above, briefly explain which branches exhibit temporal correlation, if any. 

 

Only B4.  B1, B2, and B3 are not temporally correlated since the value of each element is 

independent of the others. 

 



Problem 3.B: Two-Level Predictors (8 points) 

 

Consider the two-level branch predictor presented in lecture, which consists of four branch 

history tables (BHTs) indexed by PC.  Each BHT entry contains a 2-bit saturating counter.  The 

prediction is selected from one of the four ways based on two bits of global branch history.  The 

outcome of the most recent branch is shifted into the global history register from right to left (1 

for “taken” and 0 for “not-taken”). 

 

 

The most significant bit of the bimodal counter provides the prediction: 1 for “taken” and 0 for 

“not-taken”.  The counter that was used for the prediction is incremented if the branch is taken 

and decremented if not taken. 

 

Complete the table on the following page for the first three iterations of the loop.  The predictor 

columns show the state of the counters and the history register before the branch is resolved.   

For each row, only the counter value that was last updated needs to be written.  Assume that: 

• N>3, and the contents of the arrays are X = { 0, 1, 2, … } and Y = { 2, 0, 1 2, … }. 
• All counters are initialized to the weakly “not-taken” state (01), and the global history is 

initialized to 00. 

• Each branch is resolved before the next branch is predicted. 

• The BHTs are large enough to avoid aliasing of PCs. 

The first iteration has been done as an example. 

 



Let X = { 0, 1, 2, … } and Y = { 2, 0, 2, … }. 

Loop Branch Predictor Branch Behavior 

Iteration Branch History Way 00 Way 01 Way 10 Way 11 Predicted Actual 

0 B1 00 01 01 01 01 NT NT 

B2 00 01 01 01 01 NT T 

B3 01 01 01 01 01 NT NT 

B4 10 01 01 01 01 NT T 

1 B1 01 00    NT T 

B2 11 10    NT NT 

B3 10  00   NT NT 

B4 00   10  NT T 

2 B1 01  10   T T 

B2 11    00 NT T 

B3 11   00  NT T 

B4 11 10    NT T 

 

Problem 3.C: Expected Accuracy (6 points) 

 

Suppose that the elements in arrays X and Y are randomly and uniformly distributed over the set 

of integers 0, 1, and 2 (each possibility is equally likely).   With the two-level predictor, what is 

the expected accuracy in predicting branch B3 correctly (beq x5, x6, skip3) as the loop 

approaches an infinite number of iterations?  Show your work. 

Hint: Consider the combined outcomes of branches B1 and B2, their probabilities, and how they 

contribute to the bimodal counters for B3.  It may be helpful to separate the cases as such: 

Conditions Possibilities of (x, y) 

x ≠ 0 y ≠ 0 (1, 1), (1, 2), (2, 1), (2, 2) 

x = 0 y ≠ 0 (0, 1), (0, 2) 

x ≠ 0 y = 0 (1, 0), (2, 0) 

x = 0 y = 0 (0, 0) 

 

For ¾ of the cases, the global history perfectly determines the outcome of B3 with 100% 

accuracy.  In the remaining case (x ≠ 0 and y ≠ 0), both outcomes are equally likely, so the 

counter increments and decrements cancel out on average.  Thus, the predictor does not learn 

anything useful and performs no better than a random guess, resulting in only 50% accuracy. 

 



B1 B2 P(B1, B2) P(B3 = T) Prediction 

 T T 4/9 0.5 50% accurate on average 

NT T 2/9 0.0 Always NT; counter converges to 00 

T NT 2/9 0.0 Always NT; counter converges to 00 

NT NT 1/9 1.0 Always T; counter converges to 11 

 

The expected prediction accuracy is therefore: (1/9 +  2/9 +  2/9)(100%) + (4/9)(50%)  =  7/9 ≈  77. 7̅% 

 

Problem 3.D: Trace Scheduling (5 points) 

 

Now consider a different microarchitecture without a dynamic branch predictor.  The processor 

statically predicts that branches are never taken, and taken branches incur a multi-cycle penalty. 

Although originally conceived in a VLIW context, trace scheduling is a general compiler 

technique for removing control hazards that can also be applied to conventional scalar 

architectures.  Assuming the contents of arrays X and Y follow the same uniform distribution as 

Part 3.C (all elements are equally likely to be either 0, 1, or 2), reschedule the assembly code to 

minimize the branch penalty along the most frequently executed code path. 

 la x1, X 

 la x2, Y 

 li x3, N 

 li x4, 0  # c 

loop: 

 lw x5, (x1) # x 

 lw x6, (x2) # y 

 beqz x5, B1  # B1 

cont1: 

 beqz x6, B2  # B2 

cont2: 

 beq x5, x6, skip3 # B3 

 sub x5, x5, x6 

 add x4, x4, x5 

skip3: 

 addi x1, x1, 4 

 addi x2, x2, 4 

 addi x3, x3, -1 

 bnez x3, loop  # B4 

B1: 

 addi x4, x4, 1 

 j cont1 

B2: 

 addi x4, x4, -1 

 j cont2 

 



Problem 3.E: Predication (5 points) 

 

In high-performance processor implementations, one hardware technique to reduce the impact of 

frequent branch mispredictions is to internally convert short forward branches into sequences of 

predicated operations.  This can be performed at the microarchitectural level without requiring 

any software modifications.  For example, the original instruction sequence on the left can be 

executed as the predicated form on the right, where p1 represents an internal predicate register. 

 bnez x5, skip 

 addi x4, x4, 1 

skip: 

sneq p1, x5, x0 

addi x4, x4, 1, p1.t 

 

However, this scheme nonetheless incurs some overhead in that the predicated operation would 

still be executed as a NOP even when the predicate is false, whereas a correctly predicted taken 

branch would avoid fetching and executing that instruction. 

For the above sequence, how accurate does the branch predictor have to be in the non-predicated 

version to attain the same performance (latency) as the predicated version?  Assume that the 

branch is taken 50% of the time, bnez takes 1 cycle to execute, and the misprediction penalty is 

3 cycles.  All other operations (addi, sneq) also each take 1 cycle to execute. 

Hint: The average latency of this sequence would be 1+(1)(0.5) = 1.5 cycles in the cases where 

the branch is correctly predicted and 3+(1)(0.5) = 3.5 cycles if mispredicted. 

 

Let x represent the branch prediction accuracy. 1.5𝑥 + (3.5)(1 − 𝑥) = 2 1.5𝑥 +  3.5 −  3.5𝑥 =  2 −2𝑥 =  −1.5 𝑥 = 3/4 =  75% 

 

 



Problem 4: Cache Coherence (24 points) 
 

Problem 4.A: Inclusion Policy (4+4 points) 

 

In lecture, it was mentioned that an inclusive L2 cache can act as a filter to reduce the amount of 

L1 coherence traffic in a snoopy cache-coherence protocol.  If a coherence request misses in the 

L2 cache, there is no need to probe the L1 cache for the given line. 

 

 

(i) Explain how a strictly exclusive L2 cache can also be used to optimize snooping by the 

L1 cache. 

 

 

If a coherence request hits in the strictly exclusive L2 cache, the given line cannot be in 

the L1 cache, so there is no need to probe the L1. 

 

Another acceptable answer is that coherence requests to upgrade permission for lines 

already present in the L1 (e.g., S to M) do not need to be broadcasted to the L2. 

 

 

 

(ii) Could a non-inclusive, non-exclusive L2 cache (i.e., neither strictly inclusive nor strictly 

exclusive) be similarly used to optimize snooping by the L1 cache?  Explain. 

 

 

No, hits and misses at the L2 cache reveal no information about what the L1 cache 

contains, so the L1 must snoop every coherence request. 

 

A “yes” answer is also acceptable if it sufficiently explains how the L2 can track 

inclusivity with the L1 (e.g., an extra bit per L2 line to indicate it is shared with the L1). 

 

 



Problem 4.B: False Sharing (4 points) 

 

In the following table, indicate which memory operations experience a hit, true sharing miss, or 

false sharing miss under an MSI coherence protocol.  Assume that x1 and x2 reside in the same 

cache line, and both words are read by both processors P1 and P2 before this sequence.  The first 

row has been completed for you. 

Time P1 P2 Hit True Sharing 

Miss 

False Sharing 

Miss 

1  write x1  X  

2 write x2   X  

3  read x1   X 

4 read x1  X   

5 write x2    X 

 

 

Problem 4.C: Directory-Based Coherence (6+6 points) 

 

The following questions explore the directory-based coherence protocol described in Appendix 

A (same as Handout #6 from Problem Set 5) in more detail. 

As before, assume that message passing maintains FIFO order: All messages between the same 

source and destination are always received in the same order that they were sent.  Also assume 

that each site has sufficient queuing capacity to buffer all incoming messages without drops. 

(i) Consider the situation where a cache is sent an InvReq message for a given cache line.  

This occurs only if the directory state indicates that the site is a current sharer of the 

memory block, and the directory intends to invalidate the copy in the cache before 

granting exclusive access to another cache. 

 

Typically, one expects the line to be in the C-shared state when the InvReq arrives.  How 

is it also possible for the cache to receive the InvReq message while it has the line in the 

C-pending state (row #22 in Table H12-1 of Appendix A) – in other words, when the line 

is not actually present?  Why does ignoring InvReq work out correctly in this case? 

 

Assume that the home directory state is initially R(id’), indicating that the block is shared 
by the cache at site id’.  Consider the following scenario: 

1. The directory receives an ExReq from a site other than id’.  The directory sends 
an InvReq to site id’.  The home directory state becomes Tw(id’). 

2. Before the InvReq arrives at site id’, the cache performs a voluntary invalidation 
to evict the cache line.  The cache line state moves from C-shared to C-nothing. 

3. The processor then issues a load or store to the evicted line, causing the cache to 

send a ShReq or ExReq.  The cache line state becomes C-pending. 

4. The InvReq associated with the first ExReq eventually arrives at site id’. 



Note that the directory is waiting for an invalidation acknowledgement from site id’ to 
complete the first ExReq; unless received, the directory will remain indefinitely in the 

Tw(id’) state.  However, the cache at site id’ can safely ignore the InvReq here since it 

already sent an InvRep for the line as part of the voluntary invalidation (step 2), so 

deadlock is avoided. 

 

 

(ii) Consider the case where a cache requests a line in the C-exclusive state (ExReq) when the 

line is clean and shared by other caches.  To reduce the response latency, it is a tempting 

idea to send the ExRep message with the data to the requestor in parallel to sending 

InvReq to the other caches.  Does this optimization work correctly? 

 

 

A convincing argument for either side could be made depending on the assumptions. 

 

Since the interconnect guarantees FIFO delivery, the proposed optimization is safe from a 

coherence perspective.  Recall that coherence can be defined with two invariants: 

 

1. Writes to the same memory location are serialized (i.e., observed in the same 

order by all processors). 

2. All writes eventually become visible to all processors. 

 

Most responses asserting that this optimization breaks coherence do so primarily based 

on these common objections: 

 

• The protocol misbehaves if the directory receives another ExReq before the first 

round of InvReqs are acknowledged (e.g., more than one site ends up in the 

exclusive state). 

 

This situation of overlapping ExReqs is handled in the same manner without the 

optimization, as this optimization applies only if the line is clean and in the R(dir) 

state.  The second ExReq will be queued until the directory receives all InvReps 

for the first, and then the directory will send a FlushReq to the current owner.  

Since messages are received in FIFO order, the FlushReq will arrive after the first 

ExRep, and so the FlushRep will contain the recently written data.  The other site 

will not transition to the C-exclusive state until it receives ExRep, which the 

directory will not send until it obtains FlushRep.  Thus, writes are serialized in the 

order by which their respective ExReqs arrive at the directory, upholding the first 

coherence invariant. 

 

• There is a window during which other caches can still read the “stale” data if the 

new owner receives the ExRep early and modifies its copy before all InvReqs are 

received elsewhere. 



 

While possible, this is not necessarily problematic.  Although these operations can 

overlap in real time, the reads are treated as logically preceding the write in the 

global memory order.  Coherence does not require that writes be “immediately” 
visible.  All other caches will eventually receive an InvReq, and subsequent reads 

will trigger a ShReq that returns the updated data, so the second coherence 

invariant continues to be upheld. 

 

Conversely, it can be argued that this proposed optimization is unsafe from a consistency 

perspective since the store-load reordering described above may lead to a violation of a 

stricter memory consistency model.  This is potentially the case when multiple directory 

sites are involved (multi-bank last-level caches). 

 



Problem 5: Memory Consistency (30 points) 
 

Problem 5.A: Load/Store Queues (4+4+4 points) 

 

Consider a multiprocessor with out-of-order cores that implement conservative out-of-order 

load/store execution (loads wait for memory addresses to be fully checked/disambiguated). 

Table 2.1 shows the current state of the store queue in one of the cores.  Stores are kept in the 

store queue until they commit.  The instruction number indicates the order of the instructions in 

the program, with lower numbers being earlier in program order. 

Table 2.2 shows the values present in the non-blocking data cache of the same core.  Loads 

following cache misses can read from the data cache on a hit if the memory consistency model is 

not violated. 

Tables 2.3, 2.4, and 2.5 show the current state of the load queue.  Assume that all loads and 

stores access the full 32-bit word.   

Table 2.1: Store Queue 

Instruction # Address Value 

5 0x100 0x12345678 

7 0x200 unknown 

11 0x300 0xABCDABCD 

13 0x200 0x11001100 

17 unknown unknown 

 

Table 2.2: Data Cache 

Valid? Address Value 

Y 0x100 0xFFFFFFFF 

Y 0x200 0x1234ABCD 

Y 0x300 0x87654321 

N 0x400 unknown 

 



(i) Under sequential consistency (SC), if the stores make no progress, can each load in Table 

2.3 complete?  If so, what value is read? 

Table 2.3: Load Queue (SC) 

Instruction # Address Can Complete? Value 

2 0x300 Y 0x87654321 

6 0x100 N  

12 0x400 N  

16 0x200 N  

18 0x300 N  

 

(ii) Under total store order (TSO), if the stores make no progress, can each load in Table 2.4 

complete?  If so, what value is read? 

Table 2.4: Load Queue (TSO) 

Instruction # Address Can Complete? Value 

2 0x300 Y 0x87654321 

6 0x100 Y 0x12345678 

12 0x400 N  

16 0x200 N  

18 0x300 N  

 

(iii) Under a fully relaxed multi-copy-atomic memory model, if the stores make no progress, 

can each load in Table 2.5 complete?  If so, what value is read? 

Table 2.5 Load Queue (weak ordering) 

Instruction # Address Can Complete? Value 

2 0x300 Y 0x87654321 

6 0x100 Y 0x12345678 

12 0x400 N  

16 0x200 Y 0x11001100 

18 0x300 N  

 

 



Problem 5.B: TSO and Optimizations (4+4+4 points) 

 

Explain whether the following microarchitectural optimizations are permitted under the TSO 

consistency model. 

(i) Can a load from one thread on a multithreaded core bypass a value from the write buffer 

stored by a different thread on the same core?  (Recall that a write buffer holds data from 

committed stores waiting to be written to the cache.) 

 

 

No – TSO requires store atomicity (a global memory order for stores), so a thread cannot 

see the result of another thread’s write early. 
 

 

 

 

 

 

 

(ii) Can a write buffer coalesce writes to the same word from the same thread?  (Writes from 

two stores, not necessarily consecutive in program order, are merged into the same write 

buffer entry.) 

 

 

No – TSO requires that stores appear in program order, so the write buffer must remain 

FIFO.  Coalescing two non-consecutive stores creates a store-store reordering. 

 

 

 

 

 

 

 

(iii) Can hardware prefetching be used with the L1 cache for both loads and stores? 

 

 

Yes – fetching a cache line earlier does not affect consistency so as the loads and stores 

are performed in the same order without prefetching.  The coherence protocol will ensure 

that any intervening modifications to the line will erase an incorrect prefetch. 

 

 

 

 

 



Problem 5.C: Sequential Consistency and OoO Scheduling (6 points) 

 

Suppose we design an out-of-order multicore processor that implements sequential consistency 

within a cache-coherent memory system, using speculation to improve performance.  Consider 

two independent load instructions, ld1 and ld2, where ld1 precedes ld2 in program order.  In the 

situation where the address of ld2 is computed before ld1, the core chooses to dynamically 

reorder the execution of ld2 before ld1. 

After the core speculatively executes ld2, but before it can commit ld2, a coherence transaction 

from another core invalidates the cache line accessed by ld2.  What actions, if any, should the 

core take to maintain sequential consistency?  Explain your reasoning. 

 

The core should treat this as a case of misspeculation, as allowing ld2 to retire would create a 

load-load reordering that is prohibited under sequential consistency.  Thus, it is necessary to 

squash ld2 and all subsequent instructions, and then re-execute ld2. 

There are two ways to detect this situation: Either the core compares cache evictions to the load 

address (the technique employed by the MIPS R10000), or the load is replayed before commit to 

verify that the speculated load value is the same as the value at commit time. 

 

 

 



Problem 6: Synchronization (25 points) 
 

Consider a stack data structure implemented as a singly linked list which uses non-blocking 

synchronization to support concurrent access by multiple threads. 

Each stack entry contains a pointer to the next entry further down the stack.  The shared stack 

variable points to the entry at the top of the stack.  The push() function adds a new entry onto 

the stack, and the pop() function removes and returns the topmost entry.  For thread safety, the 

stack pointer must be updated atomically.  The high-level pseudocode is shown below: 

struct entry { 
 struct entry *next; 
 … 
}; 
 
struct entry *stack; 
 
void push(struct entry *new) { 
 ATOMIC_BLOCK { 
  new->next = stack; 
  stack = new; 
 } 
} 
 
struct entry *pop() { 
 struct entry *old, *top; 
 ATOMIC_BLOCK { 
  top = old = stack; 
  if (top != NULL) 
   top = top->next; 
  stack = top; 
 } 
 return old; 
} 
 

 



Problem 6.A: LR/SC Deadlock (5 points) 

 

Suppose that the load-reserved/store conditional (LR/SC) instruction pair is the only atomic read-

modify-write operation provided by our 32-bit architecture.  Our initial attempt at implementing 

the push() and pop() functions directly using LR/SC yields the following assembly code: 

 # a0 holds pointer to new entry 
push: 
 la a1, stack  # get address of stack variable 
 lr.w t0, (a1)  # load pointer to top entry 
 sw t0, 0(a0)  # new->next = stack 
 sc.w t0, a0, (a1) # stack = new 
 bnez t0, push  # retry if SC failed 
 ret 
 
 # a0 returns pointer to previous top entry 
pop: 
 la a1, stack  # get address of stack variable 
 lr.w t0, (a1)  # load pointer to top entry 
 mv a0, t0   # old = stack 
 beqz t0, update  # skip dereference if (top == NULL) 
 lw t0, 0(t0)  # top = top->next 
update: 
 sc.w t0, t0, (a1) # stack = top 
 bnez t0, pop  # retry if SC failed 
 ret 
  

 

Each core has a private write-back/write-allocate L1 data cache, and coherence is maintained 

through a MESI protocol.  The processor implements LR/SC based on the simple approach 

described in lecture: 

• lr.w ensures that the line is present in the local cache in the Modified or Exclusive state. 

• sc.w succeeds if and only if the line has continually remained in the Modified or 

Exclusive state.  On failure, it writes a non-zero code to the destination register. 

It turns out that our code contains a major flaw! 

We notice that push() and pop() become stuck in an infinite loop even when there is no 

contention from other cores.  What caused this to happen? 

 

If the stack pointer and the entry being pushed or popped map to the same cache set, the 

intervening sw and lw between lr.w and sc.w can evict the line containing the stack pointer 

and thus clear the reservation.  Retrying the LR/SC sequence does not resolve the cache conflict. 

 



Problem 6.B: Emulating CAS (5 points) 

 

We attempt to fix the code by rewriting it in terms of compare-and-swap (CAS).  CAS compares 

a word in memory to an expected value and, if equal, updates the memory location to a desired 

value.  It returns a Boolean value indicating whether the substitution was successfully performed. 

While our architecture lacks a CAS instruction, its functionality can be emulated with an LR/SC 

sequence of four instructions: 

int CAS(int *addr, int old, int new) { 
 int status; 
 ATOMIC_BLOCK { 
  if (*addr == old) { 
   *addr = new; 
   status = 0; // success 
  } else { 
   status = 1; // failure 
  } 
 } 
 return status; 
} 
 # a0 holds addr 
 # a1 holds old 
 # a2 holds new 
cas: 
 lr.w t0, (a0)  # load original value 
 bne a1, t0, fail  # fail if not equal 
 sc.w t0, a2, (a0) # attempt to update  
 bnez t0, cas  # retry if SC failed 
 …    # success  
fail: 
 …    # failure 

The pseudocode for the stack data structure becomes: 

void push(struct entry *new) { 
 do { 
  struct entry *old = stack; 
  new->next = old; 
 } while (CAS(&stack, old, new)); 
} 
 
struct entry *pop() { 
 struct entry *old, *top; 
 do { 
  top = old = stack; 
  if (top != NULL) 
   top = top->next; 
 } while (CAS(&stack, old, top)); 
 return old; 
} 

 



For simplicity, we will consider only the push() function for the remainder of this problem.  

We rewrite the assembly code for push() with the CAS sequence inlined: 

 # a0 holds pointer to new entry 
push: 
 la a1, stack  # get address of stack variable 
 lw t0, (a1)  # load pointer to top entry 
 sw t0, 0(a0)  # new->next = stack 
 lr.w t1, (a1)  # load pointer to top entry again 
 bne t0, t1, push  # retry if not the same 
 sc.w t0, a0, (a1) # stack = new 
 bnez t0, push  # retry if SC failed 
 ret 

 

Recall from lecture that CAS nominally guarantees forward progress.  Does that remain true 

when CAS is emulated using LR/SC, if LR/SC is implemented as described in Part 6.A?  If not, 

give a scenario where forward progress is obstructed. 

No, a livelock situation is still possible where all threads repeatedly attempt to acquire exclusive 

access to the shared stack pointer, thereby clearing each other’s reservations and preventing any 

store-conditional from ever succeeding. 

Thread 1: lr.w 

Thread 2: lr.w 

Thread 1: sc.w (fails) 

Thread 1: lr.w 

Thread 2: sc.w (fails) 

 

Problem 6.C: ABA Problem and CAS (5 points) 

 

Is the revised LR/SC version from Part 6.B susceptible to the ABA problem like a CAS 

instruction would be?  If so, describe an interleaved sequence of push() and pop() operations 

by two threads that results in a stack entry being permanently lost. 

 

Yes.  Let the initial state be stack → A → C. 

Thread 1: Begin pop(); load A->next 

Thread 2: A = pop() 

Thread 2: push(B) 

Thread 2: push(A) 

Thread 1: Finish pop(); the outdated A->next becomes the new stack pointer after CAS 

The final state is stack → C.  Entry B has been lost by thread 1. 



Problem 6.D: ABA Problem and DW-CAS (5 points) 

 

To avoid the ABA problem, we switch to using double-width compare-and-swap (DW-CAS), a 

variant of CAS that supports atomic access to two contiguous words in memory. 

int DWCAS(int *addr, int old1, int new1, int old2, int new2) 
 int status; 
 ATOMIC_BLOCK { 
  if ((addr[0] == old1) && (addr[1] == old2)) { 
   addr[0] = new1; 
   addr[1] = new2; 
   status = 0; // success 
  } else { 
   status = 1; // failure 
  } 
 } 
 return status; 
} 

 

// Assume variables are allocated contiguously 
struct entry *stack; 
int count; 
 
void push(struct entry *new) { 
 do { 
  struct entry *old = stack; 
  new->next = old; 
 } while (DWCAS(&stack, old, new, count, count+1)); 
} 
 
struct entry *pop() { 
 struct entry *old, *top; 
 do { 
  top = old = stack; 
  if (top != NULL) 
   top = top->next; 
 } while (DWCAS(&stack, old, top, count, count+1)); 
 return old; 
} 

 

Explain how DW-CAS overcomes the ABA problem. 

 

The count variable monotonically increases with each push() or pop() call.  Thus, even if the 

stack pointer is modified and then restored to its original value, the double-width comparison 

fails since the count values will differ. 

 



Problem 6.E: Emulating DW-CAS (5 points) 

 

Consider the following naïve attempt to emulate DW-CAS with single-word LR/SC: 

 # a0 holds addr 
 # a1 holds old1 
 # a2 holds old2 
 # a3 holds new1 
 # a4 holds new2 
dwcas: 
 lr.w t0, 0(a0)  # load original value of word 1 
 lr.w t1, 4(a0)  # load original value of word 2 
 bne a1, t0, fail  # fail if word 1 not equal 
 bne a2, t1, fail  # fail if word 2 not equal 
 sc.w t0, a3, 0(a0) # attempt to update word 1 
 sc.w t1, a4, 4(a0) # attempt to update word 2 
 or t0, t0, t1 
 bnez t0, dwcas  # retry if either SC failed 
 …    # success  
fail: 
 …    # failure 

 

Explain why this simple approach does not work, even if both words are located within the same 

cache line. 

 

Both words are not updated atomically, exposing a race condition: If the first sc.w succeeds 

while the second sc.w fails, memory is left in a partially modified state. 

(Note that RISC-V canonically specifies that sc.w pairs only with the most recent lr.w, but 

here we assume that the implementation can track multiple reservations independently.  It is not 

too difficult to extend the simple approach based on cache line states to enable this.) 

 


