
CS 152 Computer Architecture and Engineering

CS 252 Graduate Computer Architecture

Midterm #1

March 2, 2020

Professor Krste Asanović

Name:______________________

SID:______________________

I am taking CS152 / CS252

(circle one)

This is a closed book, closed notes exam.

80 Minutes, 21 pages.

Notes:

• Not all questions are of equal difficulty, so look over the entire exam!

• Please carefully state any assumptions you make.

• Please write your name on every page in the exam.

• Do not discuss the exam with other students who haven’t taken the exam.

• If you have inadvertently been exposed to an exam prior to taking it, you

must tell the instructor or TA.

• You will receive no credit for selecting multiple-choice answers without

giving explanations if the instructions ask you to explain your choice.

Question CS152 Point Value CS252 Point Value

1 15 15

2 20 --

3 20 20

4 25 25

5 -- 20

TOTAL 80 80

Name: ______________________________

2

Problem 1: (15 Points) Iron Law of Processor Performance

Mark whether the following modifications will cause each of the first three categories to

increase or decrease, or whether the modification will have a negligible effect. Assume all

other parameters of the system are unchanged whenever possible. Explain your reasoning.

For the rightmost column, mark whether the modification will cause execution time to increase

or decrease, or whether the modification will have a negligible effect or a potentially significant

but ambiguous effect. Explain your reasoning. If the modification has an ambiguous effect,

describe the trade-off in which it might be significantly beneficial or in which it might be

significantly detrimental (i.e., as an architect, when would you suggest implementing the

modification or not and why?).

Be explicit if you are relying on any specific assumptions.

 Instructions /

Program

Cycles / Instruction Seconds / Cycle Execution Time

a)

Using wider

microcode in a

microcoded

machine

Negligible

Microcode is not

visible at the ISA

level.

Decrease

Fewer

microinstructions are

needed to implement

an ISA instruction

since each

microinstruction can

perform multiple

parallel operations.

Increase

Due to the sparse

encoding, the larger

microcode ROM

could be slower to

access. The datapath

might be more

complex if more

control signals are

required to drive it.

Decrease

The parallelism from

using wider

microcode generally

outweighs the cycle

time impact.

b)

Pipelining the

microcode

engine in a

microcode

machine

Negligible

Pipelining is not

visible at the ISA

level.

Decrease

Replacing a multi-

cycle bus-based

implementation with

a pipeline enables a

CPI=1 to be

potentially achieved.

Negligible

A single-bus

implementation may

already have a fast

cycle time due to its

simplicity, but a

sufficiently deep

pipeline should have

a comparable cycle

time.

Decrease

The instruction

throughput is

significantly

improved.

Name: ______________________________

3

c)

Adding an

instruction to

copy strings

Decrease

Several instructions

can be replaced with

one complex

instruction.

Increase

Each string copy

instruction takes

potentially many

cycles for multiple

memory accesses.

Negligible

Although extra

control logic is

required to sequence

the string copy, the

state machine is

generally simple

enough that it should

not impact the cycle

time for a typical

pipeline in which the

critical path goes

through memory.

Decrease

The loop overhead

(pointer increment,

bounds check,

branch penalty) of a

software string copy

is eliminated, as well

as the extra byte-

oriented copies to

handle non-word-

aligned strings.

(Same benefits as a

DMA engine)

d)

Adding an L2

cache between

the L1 cache and

DRAM

Negligible

An L2 cache is not

visible at the ISA

level.

Decrease

An L2 cache should

improve the average

memory access time

for L1 misses.

Negligible

A larger L2 cache

would be clocked at

½ the core frequency

or slower to avoid

impacting cycle

time.

OR

Increase

Larger SRAM banks

incur a longer clock-

to-q delay.

Decrease

Reducing the latency

for L1 misses should

provide a benefit to

most programs that

exhibit locality.

e)
Adding virtual

memory

Increase

Page faults cause

additional

instructions to be

executed in the OS

page fault handler.

Software TLB refills

involve extra

instructions on a

TLB miss.

Increase

Instruction fetches

and memory

operations incur

extra cycles for page

table walks, but this

overhead is generally

mitigated by a TLB.

Negligible

The TLB can be

accessed in parallel

with a VIPT cache.

The privileged

architecture state,

control logic, and

hardware page table

walker should not

impact the critical

path.

Increase

A performance

impact may be

observed for

applications with a

working size greater

than the TLB reach

and when not all

pages are resident in

physical memory.

Name: ______________________________

 4

Problem 2: (20 Points) Microprogramming (CS152 ONLY)

In this problem, you will write microcode for a bus-based implementation of a RISC-V machine.

This microarchitecture is identical to the one described in Handout #1 and Problem Set 1.

The final solution should be efficient with respect to the number of microinstructions used.

Make sure to use logical descriptions of data movement in the “pseudocode” column for clarity.

Credit will be awarded for optimizing signals using “don’t care” or ∗ values as appropriate, but

this is less important than producing a correct implementation.

Please comment your code clearly. If the pseudocode for a line does not fit in the space provided,

or if you have additional comments, you may write neatly in the margins.

For your reference, the single-bus datapath is reproduced here, as well as some important

information about microprogramming in the bus-based architecture.

IR A B

32 GPRs

+ PC

(32-bit)

RegWr

RegEn

MemWr

MemEn

MA

addr addr

data data

rs2
rs1

1

 1(RA)

RegSel

Memory

zero?

ALUOp

Opcode

rd

32(PC)

busy?

lRLd

IntRq

Bus

ALd BLd MALd

ALU

ALUEn

Immed
Select

ImmEn

ImmSel

Name: ______________________________

 5

Arithmetic Logic Unit:

ALUOp ALU Result Output

COPY_A A
COPY_B B
INC_A_1 A+1
DEC_A_1 A-1
INC_A_4 A+4
DEC_A_4 A-4
ADD A+B
SUB A-B
SLT Signed(A) < Signed(B)
SLTU A < B

Table Q2-1: Available ALU operations

Immediate Selector:

Five immediate types are supported by ImmSel: ImmI, ImmU, ImmS, ImmJ, and ImmB.

Microbranches:

The Br column represents a 3-bit field with six possible values: N, J, EZ, NZ, D, and S.

• N (next): The next state is simply (current state + 1).

• J (jump): The next state is unconditionally the state specified in the Next State column

(i.e., it’s an unconditional microbranch).

• EZ (branch-if-equal-zero): The next state depends on the value of the ALU’s zero output

signal (i.e., a conditional microbranch). If zero is asserted (𝑧𝑒𝑟𝑜 = 1), then the next state

is that specified in the Next State column, otherwise, it is (current state + 1).

• NZ (branch-if-not-zero): This behaves exactly like EZ but instead performs a

microbranch if zero is not asserted (𝑧𝑒𝑟𝑜 ≠ 0).

• D (dispatch): The FSM looks at the opcode and function fields in the IR and goes to the

corresponding state.

• S (spin): The PC stalls if busy? is asserted; otherwise, it goes to (current state +1).

Guidelines for Enable Signals:

• Only one source of data can drive the bus in any cycle.

• Don’t worry about marking any of the en__ signals as don’t care. However, other types

of signals should be marked as don’t care where applicable.

• Two control signals determine how the register file is used during a cycle: RegWr and

enReg. RegWr determines whether the operation to be performed, if any, is a read or a

write. If RegWr=1, then it is a write; otherwise it is a read. enReg is a general enable

control for the register file. If enReg=1, then the register reads or writes depending on

RegWr. If enReg=0, then nothing is done, regardless of the value of RegWr.

• MemWr and enMem function in an analogous way for the memory.

Name: ______________________________

 6

2.A (16 points) Implement a SWITCH instruction

The SWITCH instruction performs a multiway indirect branch, corresponding to the C code:

switch (index) {

 case 0: goto target_0;

 case 1: goto target_1;

 case 2: goto target_2;

 …

 case limit: goto target_last;

}

// Fall through if index is out of bounds

The SWITCH instruction has the following format:

SWITCH rs1, rs2, imm

The operands consist of two source registers and one B-type immediate:

rs1: Zero-based index to select a branch table entry

rs2: Pointer to a branch table in memory

imm: Limit, the index of the last table entry (𝑁 − 1)

The table operand (rs2) points to an array in memory with 𝑁 word-sized entries, each holding a

branch target address:

Address Content

table + 0 target_0

table + 4 target_1

table + 8 target_2

… …

table + (4×limit) target_last

The index (rs1) is compared with limit (imm) to check that it is within the table range. If index

≤ limit, then the processor branches to the address stored in the table[index] entry. Otherwise, if

index > limit, no branch is taken, and execution continues at PC + 4 as usual.

For simplicity, assume that the immediate representing limit must be ≥ 0.

Note: The ALU does not support a multiply or shift operation, but multiplication by a power of 2

(i.e., left shift) can be efficiently handled with repeated doubling.

Fill in the microcode table on the following page.

Name: ______________________________

 7

2.B (4 Points) Performance of your SWITCH implementation

How many cycles does your SWITCH instruction take to execute in the following situations?

Assume that all memory accesses complete in a single cycle (just for the purposes of this CPI

calculation – you must still use spin states). Count all cycles starting from FETCH0 to the last

microinstruction that jumps back to FETCH0.

1. index ≤ limit

12 cycles

• Fetch/dispatch: 3 cycles

• SWITCH routine: 9 cycles

2. index > limit

6 cycles

• Fetch/dispatch: 3 cycles

• SWITCH routine: 3 cycles

Name: ______________________________

 8

State Pseudocode IR
Ld

Reg
Sel

Reg
Wr

Reg
En

A
Ld

B
Ld

ALUOp ALU
En

MA
Ld

Mem
Wr

Mem
En

Imm
Sel

Imm
En

Br Next State

FETCH0: MA ← PC;
A ← PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR ← Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

 PC ← A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

…

SWITCH0: A ← Imm 0 * * 0 1 * * 0 * * 0 B 1 N

 B ← R[rs1] 0 rs1 0 1 0 1 * 0 * * 0 * 0 N

 If (A < B) {

 µBr to FETCH0

}

A ← R[rs1]

0 rs1 0 1 1 0 SLTU 0 * * 0 * 0 NZ FETCH0

 A, B ← A + B 0 * * 0 1 1 ADD 1 * * 0 * 0 N

 A ← A + B 0 * * 0 1 * ADD 1 * * 0 * 0 N

 B ← R[rs2] * rs2 0 1 0 1 * 0 * * 0 * 0 N

 MA ← A + B * * * 0 * * ADD 1 1 * 0 * 0 N

 PC ← Mem * PC 1 1 * * * 0 0 0 1 * 0 S

 µBr to FETCH0 * * * 0 * * * 0 * * 0 * 0 J FETCH0

Name: ______________________________

 9

Problem 3 (20 Points): Pipelining and Exceptions

Figure 3.1

3.A (2 Points) Latency vs Occupancy

Figure 3.1 shows a classic fully-bypassed 5-stage pipeline that has been augmented with an

unpipelined divider in parallel with the ALU. Bypass paths are not shown in the diagram. This

iterative divider produces 2 bits per cycle until it outputs a full 32-bit result.

1. (1 Point) What is the latency of a divide operation in cycles?

32 / 2 = 16 cycles

2. (1 Point) What is the occupancy of a divide operation in cycles?

16 cycles, since the divider is unpipelined

Name: ______________________________

 10

3.B (3 Points) Hazards

Note that the div instruction in RISC-V cannot raise a data-dependent exception. To avoid

pipeline stalls while a multi-cycle divide operation is in progress, the pipeline control logic

allows subsequent instructions that do not depend on the divide result to be issued and completed

before the divide has completed.

What additional hazards might be caused by div instructions, aside from the structural hazard

on the divider itself? If any, describe how they could be resolved using an interlock.

WAW hazards can arise from the out-of-order completion of div instructions. For any

subsequent instruction that writes to the same destination register as an ongoing div instruction,

one approach is to stall at the D stage (or alternatively, in X or M at the potential cost of higher-

fanout stall signals). This can be implemented using a comparator that checks the destination

register of the div against the destination of the instruction in decode, or with a scoreboard that

contains a bit-vector to track pending writes.

A potential structural hazard also exists on the write port of the register. When a div and

another instruction that writes a register are both in the W stage, one of them must stall.

Although not a true control hazard, when a branch following a div that has not yet completed is

taken, the ongoing divide operation should not be killed in the partial pipeline flush.

3.C (10 Points) Interrupts

In this pipeline, asynchronous interrupts are handled in the MEM stage and cause a jump to a

dedicated interrupt trap handler address. The interrupt latency is defined as the number of cycles

from when an interrupt request is raised in the MEM stage until the first instruction of the

interrupt handler reaches the MEM stage.

1. (1 Point) What is the minimum interrupt latency that the pipeline can achieve in the best-

case scenario?

4 cycles, shown by the shaded cycles in this pipeline diagram. The interrupt is raised in

cycle 4. The earliest uncommitted instruction when the interrupt is taken is labeled with

“EPC”, while “MTVEC” denotes the first instruction of the interrupt trap handler.

 1 2 3 4 5 6 7 8

EPC F D X M

… F D -

… F -

… -

MTVEC F D X M W

Name: ______________________________

 11

2. (6 Points) Consider the execution of the code below. Suppose an interrupt is raised

during cycle 8, which causes a jump to interrupt_handler. The handler increments

a counter at a fixed memory address before returning to the original context.

Fill in the pipeline-timing diagram on the next page until the mret instruction at the end

of interrupt_handler commits. The architectural guarantee of precise interrupts

should be upheld. Assume that all memory accesses take one cycle in the MEM stage.

lw x2, 0(x1)

div x1, x2, x3

slli x3, x2, 1

lui x4, 0x100

addi x4, x4, 0xf

xor x5, x3, x4

sub x3, x5, x2

...

interrupt_handler:

sw x1, 0(x0) # Save register in known location

lw x1, 4(x0) # Use register to increment counter

addi x1, x1, 1

sw x1, 4(x0)

lw x1, 0(x0) # Restore register before returning

mret # Return from interrupt handler

3. (2 Points) What is the interrupt latency for the code above?

14 cycles (cycles 8 to 21, inclusive)

4. (1 Point) Which instruction should interrupt_handler return to in order to ensure

that the program will continue to execute correctly?

The EPC (exception PC) should point to the earliest uncommitted instruction:
lui x4, 0x100

Name: ______________________________

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 lw F D X M W

 div F D D X X X X X X X X X X X X X X X X M W

 slli F F D X M W

 lui F D X M

 addi F D X

 xor F M

 sub F

 sw F D D D D D D D D D D D X M W

 lw F F F F F F F F F F F D X M W

 addi F D D X M W

 sw F F D X M W

 lw F D X M W

 mret F D X M W

Name: ______________________________

 13

3.D (5 Points) Reducing Interrupt Latency

Propose a modification to the architecture and/or microarchitecture that would reduce the

interrupt latency for the code in 3.C, while ensuring that interrupts are handled precisely.

Further unrolling the iterative divider (e.g., to output 4 bits per cycle instead of 2) would shorten

its latency and alleviate the RAW hazard, but this is not always feasible in terms of cycle time.

We could also prevent subsequent instructions from committing before the div commits, which

allows the divide to be killed precisely on a taken interrupt, although this option is unattractive

for the common case where interrupts are relatively infrequent.

Yet another approach is to constrain the destination register for a div instruction. The ABI

could be changed to reserve a specific x register to always hold the divide result, so the interrupt

handler can avoid using it. In a more generalized exception handler, reading the register can be

deferred towards the end of the context save, which might hide the divide latency. This does not

require any hardware modifications but relies on code voluntarily complying with the ABI.

Alternatively, the div instruction could be redefined to write to a special-purpose register

separate from the x register file. This is the approach adopted by MIPS with its hi and lo

registers, but it involves an ISA change with RISC-V.

A tempting proposition is to kill the ongoing divide operation and save the intermediate pipeline

state so that it can be restarted after the interrupt. Although interrupt latency is reduced, it

creates an imprecise interrupt, as the instruction following div has already committed.

Name: ______________________________

 14

Problem 4: (25 Points) Caches

In this problem, we will investigate how various cache organizations perform on the following

loop. Let A be a 1024×1024 matrix of 32-bit int elements stored in row-major order, aligned to

the beginning of a cache line.

for (int i = 1; i < 16; i++) {

 int x = A[0][i-1];

 int y = A[i][i];

 A[i][i] = x + y;

}

Assume that memory accesses are executed in the order shown in the program – i.e., the

compiler does not reorder load and store instructions. Variables x, y, and i are held in registers.

4.A (6 Points) Direct-Mapped Cache

Consider a 4 KiB direct-mapped L1 data cache with 16-byte cache lines.

1. (4 Points) Count the numbers of cache hits and misses for each category on the loop

shown above. Assume that the cache is initially empty.

Note that elements A[0][i] and A[i][i] map to the same set in the cache, which

means that the accesses to A[i][i] in iteration i will evict the line that A[0][i-1]

would reference in iteration i+1. The first four iterations thus behave as follows:

 i = 1 i = 2 i = 3 i =4

A[0][i-1] (load) Compulsory miss Conflict miss Conflict miss Conflict miss

A[i][i] (load) Compulsory miss Compulsory miss Compulsory miss Compulsory miss

A[i][i] (store) Hit Hit Hit Hit

The pattern repeats for i = 5 through i = 15 (i.e., i = 5 will hit/miss for each access in the

same way as i = 1).

• Hits: 15 (A[i][i] store)

• Compulsory misses: 4 (A[0][i-1] load) + 15 (A[i][i] load) = 19

• Conflict misses: 11 (A[0][i-1] load)

• Capacity misses: 0

Name: ______________________________

 15

(2 Points) What is the average memory access time (AMAT) in cycles if the hit time of the

direct-mapped cache is 1 cycle and the L1 miss penalty to DRAM is 100 cycles? (You do not

need to calculate the exact number; just write the formula with the individual terms substituted

with the appropriate values.)

The miss rate is 2/3 (30/45).

𝐴𝑀𝐴𝑇 = 1 + (2 3⁄)(100)

4.B (6 Points) 2-way Set-Associative Cache

Now we double the capacity by switching to an 8 KiB two-way set-associative L1 data cache

with LRU eviction and a write-allocate policy. The cache line size remains 16 bytes.

1. (4 Points) Count the numbers of cache hits and misses for each category on the preceding

loop. Assume that the cache is initially empty.

All conflict misses for A[0][i-1] are eliminated with 2-way associativity.

 i = 1 i = 2 i = 3 i =4

A[0][i-1] (load) Compulsory miss Hit Hit Hit

A[i][i] (load) Compulsory miss Compulsory miss Compulsory miss Compulsory miss

A[i][i] (store) Hit Hit Hit Hit

As before, the pattern repeats for i = 5 through i = 15.

• Hits: 11 (A[0][i-1] load) + 15 (A[i][i] store) = 26

• Compulsory misses: 4 (A[0][i-1] load) + 15 (A[i][i] load) = 19

• Conflict misses: 0

• Capacity misses: 0

2. (2 Points) What is the AMAT in cycles if the hit time is 2 cycles and the L1 miss penalty

to DRAM is 100 cycles? (You do not need to calculate the exact number; just write the

formula with the individual terms substituted with the appropriate values.)

The miss rate is 19/45.

𝐴𝑀𝐴𝑇 = 1 + (19/45)(100)

Name: ______________________________

 16

4.C (7 Points) 2-way Column-Associative Cache

Suppose we convert our 8 KiB 2-way set-associative cache from 4.B into an 8 KiB 2-way

column-associative cache with 16-byte lines. A column-associative (or pseudo-associative)

cache is similar in structure, except that instead of accessing both ways simultaneously, the ways

are accessed sequentially over consecutive cycles.

In other words, each way is treated as a separate 4 KiB direct-mapped cache. On a cache access,

Way 0 is searched first. If the line is not found in Way 0, then Way 1 is accessed the next cycle.

If there is a hit in Way 1, the lines in the two ways are swapped. On a miss, the new line is

placed in Way 0, and the previous line is moved to Way 1.

1. (1 Point) What is an advantage of a column-associative cache compared to a set-

associative cache of the same associativity?

A column-associative cache can have a lower hit time comparable to a direct-mapped

cache, since the way muxing is eliminated and the tag check does not need to be parallel.

2. (4 Points) Count the numbers of cache hits and misses for each category on the preceding

loop. Assume that the cache is initially empty.

The miss on A[i][i] causes the line in which A[0][i] resides to be swapped to Way

1, which increases the hit time slightly for A[0][i-1] in the next iteration.

 i = 1 i = 2 i = 3 i =4

A[0][i-1] (load) Compulsory miss Hit (Way 1) Hit (Way 1) Hit (Way 1)

A[i][i] (load) Compulsory miss Compulsory miss Compulsory miss Compulsory miss

A[i][i] (store) Hit (Way 0) Hit (Way 0) Hit (Way 0) Hit (Way 0)

As before, the pattern repeats for i = 5 through i = 15.

• Hits in Way 0: 15 (A[i][i] store)

• Hits in Way 1: 11 (A[0][i-1] load)

• Compulsory misses: 4 (A[0][i-1] load) + 15 (A[i][i] load) = 19

• Conflict misses: 0

• Capacity misses: 0

Name: ______________________________

 17

3. (2 Points) What is the AMAT in cycles if accessing each way takes 1 cycle and the L1

miss penalty to DRAM is 100 cycles? (You do not need to calculate the exact number;

just write the formula with the individual terms substituted with the appropriate values.)

The fraction of Way 1 hits is 11/45, and the miss rate to DRAM is 19/45.

𝐴𝑀𝐴𝑇 = 1 + (11 45⁄)(1) + (19/45)(1 + 100)

4.D (6 Points) Virtual Memory

To further reduce hit time while maintaining capacity, we now consider moving back to an 8

KiB direct-mapped VIPT (virtually indexed, physically tagged) cache.

1. (2 Points) Explain how virtual memory aliasing can occur with 4 KiB pages.

Since the most significant bit of the cache index is shared with the least significant bit of

the VPN, it is possible for two virtual addresses which map to same physical address to

be located in different sets in the cache.

2. (4 Points) Describe a mechanism to prevent aliases from co-existing in the 8 KiB direct-

mapped VIPT cache.

Aliases can exist only in two sets for a given physical address. First, we index the cache

and perform the tag check as usual. If there is no match, we flip the MSB of the index

(which overlaps with the VPN) and check the corresponding set on the next cycle. This

prevents a new copy of a physical line from being allocated in the cache on a miss if it is

already present through an alias.

Name: ______________________________

 18

Problem 5: (25 Points) Runahead Processing (CS252 ONLY)

An in-order runahead processor is one technique to reduce the impact of cache misses. A

runahead processor has two execution modes (regular and runahead) and two corresponding

copies of all architectural registers (regular and runahead). The runahead registers each have an

additional valid bit indicating if the register contains valid data.

In regular execution mode, the processor behaves as a regular in-order processor and updates the

regular architectural registers. But instead of stalling when the processor encounters a data cache

miss on a load instruction, it switches to runahead mode. First the processor copies the regular

architectural registers including the program counter into the runahead architectural registers,

and sets all the runahead register valid bits, except on the register corresponding to the target of

the load which is marked invalid. The processor then begins execution in runahead mode.

In runahead mode, the processor continues to execute instructions but now uses the runahead

registers. If the result of an instruction depends on a source register marked invalid, its

destination runahead register is also marked invalid. If a runahead instruction is a load that

causes a new data cache miss, the destination runahead register is marked invalid, the data cache

issues a prefetch for the missing line, and the processor continues execution.

When the original data cache miss returns, the missing load’s destination register in the regular

register set is updated, then the processor re-enters regular execution mode with the regular

program counter pointing to the instruction after the load that caused the original data cache miss.

5.A (3 Points) Branches

What should runahead mode do when encountering a conditional branch that compares one or

more invalid registers?

Name: ______________________________

 19

5.B (3 Points) Jumps

What should runahead mode do when encountering a jump register (jr) instruction where the

target is an invalid register?

5.C (4 Points) Stores

How should runahead mode handle store instructions?

Name: ______________________________

 20

5.D (5 Points) Vector Accumulate

Consider the following loop, which accumulates elements in a vector, running on a runahead

processor:

li x15, 0 # Clear accumulator

loop:

lw x8, (x10) # Get next word

addi x10, x10, 4 # Bump address pointer

add x15, x15, x8 # Accumulate new word into sum

bne x10, x11, loop # Loop if not at end of vector

This runahead processor has a regular 5-stage RISC pipeline, and the copy from architectural

registers to runahead registers uses special data paths to complete in one cycle.

The system has 32-byte cache lines. Assume the loop accumulates over many elements. What is

the smallest cache miss penalty for which the runahead processor will exhibit a performance

improvement on this loop over a non-runahead processor?

Name: ______________________________

 21

5.E (5 Points) Linked List Accumulate

Consider the following loop, which accumulates values in a linked list, running on a runahead

processor:

li x15, 0 # Clear accumulator

beqz x10, exit # Check if pointer is null

loop:

lw x8, 0(x10) # Get next value

lw x10, 4(x10) # Get next pointer

add x15, x15, x8 # Accumulate value into sum

bnez x10, loop # Loop if next pointer is not null

exit:

Describe if and how the runahead processor can provide a benefit in this case over a simple in-

order processor that stalls on a load cache miss.

