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Problem 1: (15 Points) Iron Law of Processor Performance 

Mark whether the following modifications will cause each of the first three categories to 

increase or decrease, or whether the modification will have a negligible effect.  Assume all 

other parameters of the system are unchanged whenever possible.  Explain your reasoning. 

For the rightmost column, mark whether the modification will cause execution time to increase 

or decrease, or whether the modification will have a negligible effect or a potentially significant 

but ambiguous effect.  Explain your reasoning.  If the modification has an ambiguous effect, 

describe the trade-off in which it might be significantly beneficial or in which it might be 

significantly detrimental (i.e., as an architect, when would you suggest implementing the 

modification or not and why?). 

Be explicit if you are relying on any specific assumptions. 

 
  Instructions / 

Program 

Cycles / Instruction Seconds / Cycle Execution Time 

a) 

Using wider 

microcode in a 

microcoded 

machine  

Negligible 

Microcode is not 

visible at the ISA 

level. 

Decrease 

Fewer 

microinstructions are 

needed to implement 

an ISA instruction 

since each 

microinstruction can 

perform multiple 

parallel operations. 

Increase 

Due to the sparse 

encoding, the larger 

microcode ROM 

could be slower to 

access.  The datapath 

might be more 

complex if more 

control signals are 

required to drive it. 

Decrease 

The parallelism from 

using wider 

microcode generally 

outweighs the cycle 

time impact. 

b) 

 

Pipelining the 

microcode 

engine in a 

microcode 

machine 

 

Negligible 

Pipelining is not 

visible at the ISA 

level. 

Decrease 

Replacing a multi-

cycle bus-based 

implementation with 

a pipeline enables a 

CPI=1 to be 

potentially achieved. 

Negligible 

A single-bus 

implementation may 

already have a fast 

cycle time due to its 

simplicity, but a 

sufficiently deep 

pipeline should have 

a comparable cycle 

time. 

Decrease 

The instruction 

throughput is 

significantly 

improved. 
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c) 

Adding an 

instruction to 

copy strings 

Decrease 

Several instructions 

can be replaced with 

one complex 

instruction. 

Increase 

Each string copy 

instruction takes 

potentially many 

cycles for multiple 

memory accesses. 

Negligible 

Although extra 

control logic is 

required to sequence 

the string copy, the 

state machine is 

generally simple 

enough that it should 

not impact the cycle 

time for a typical 

pipeline in which the 

critical path goes 

through memory. 

Decrease 

The loop overhead 

(pointer increment, 

bounds check, 

branch penalty) of a 

software string copy 

is eliminated, as well 

as the extra byte-

oriented copies to 

handle non-word-

aligned strings. 

(Same benefits as a 

DMA engine) 

d) 

Adding an L2 

cache between 

the L1 cache and 

DRAM 

Negligible 

An L2 cache is not 

visible at the ISA 

level. 

Decrease 

An L2 cache should 

improve the average 

memory access time 

for L1 misses. 

Negligible 

A larger L2 cache 

would be clocked at 

½ the core frequency 

or slower to avoid 

impacting cycle 

time. 

OR 

Increase 

Larger SRAM banks 

incur a longer clock-

to-q delay. 

Decrease 

Reducing the latency 

for L1 misses should 

provide a benefit to 

most programs that 

exhibit locality. 

e) 
Adding virtual 

memory  

Increase 

Page faults cause 

additional 

instructions to be 

executed in the OS 

page fault handler. 

Software TLB refills 

involve extra 

instructions on a 

TLB miss. 

Increase 

Instruction fetches 

and memory 

operations incur 

extra cycles for page 

table walks, but this 

overhead is generally 

mitigated by a TLB. 

Negligible 

The TLB can be 

accessed in parallel 

with a VIPT cache. 

The privileged 

architecture state, 

control logic, and 

hardware page table 

walker should not 

impact the critical 

path. 

Increase 

A performance 

impact may be 

observed for 

applications with a 

working size greater 

than the TLB reach 

and when not all 

pages are resident in 

physical memory. 
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Problem 2: (20 Points) Microprogramming (CS152 ONLY) 

In this problem, you will write microcode for a bus-based implementation of a RISC-V machine.  

This microarchitecture is identical to the one described in Handout #1 and Problem Set 1. 

The final solution should be efficient with respect to the number of microinstructions used.  

Make sure to use logical descriptions of data movement in the “pseudocode” column for clarity.  

Credit will be awarded for optimizing signals using “don’t care” or ∗ values as appropriate, but 

this is less important than producing a correct implementation. 

Please comment your code clearly.  If the pseudocode for a line does not fit in the space provided, 

or if you have additional comments, you may write neatly in the margins. 

 

For your reference, the single-bus datapath is reproduced here, as well as some important 

information about microprogramming in the bus-based architecture. 

 

 

 

IR  A  B  

 

32 GPRs 

+ PC 

(32-bit) 

RegWr 

RegEn 

MemWr 

MemEn 

MA 

addr addr 

data data 

rs2 
rs1

1 

  1(RA) 

RegSel 

 

 

 

Memory 

zero? 

ALUOp 

Opcode 

rd 

32(PC) 

busy? 

lRLd 

IntRq 

Bus 

ALd BLd MALd 

ALU 

ALUEn 

Immed 
Select 

ImmEn 

ImmSel 
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Arithmetic Logic Unit: 

ALUOp ALU Result Output 

COPY_A A 
COPY_B B 
INC_A_1 A+1 
DEC_A_1 A-1 
INC_A_4 A+4 
DEC_A_4 A-4 
ADD A+B 
SUB A-B 
SLT Signed(A) < Signed(B) 
SLTU A < B 

Table Q2-1: Available ALU operations 

Immediate Selector: 

Five immediate types are supported by ImmSel: ImmI, ImmU, ImmS, ImmJ, and ImmB. 

Microbranches: 

The Br column represents a 3-bit field with six possible values: N, J, EZ, NZ, D, and S. 

• N (next): The next state is simply (current state + 1).  

• J (jump): The next state is unconditionally the state specified in the Next State column 

(i.e., it’s an unconditional microbranch).  

• EZ (branch-if-equal-zero): The next state depends on the value of the ALU’s zero output 

signal (i.e., a conditional microbranch). If zero is asserted (𝑧𝑒𝑟𝑜 = 1), then the next state 

is that specified in the Next State column, otherwise, it is (current state + 1). 

• NZ (branch-if-not-zero): This behaves exactly like EZ but instead performs a 

microbranch if zero is not asserted (𝑧𝑒𝑟𝑜 ≠ 0). 

• D (dispatch): The FSM looks at the opcode and function fields in the IR and goes to the 

corresponding state. 

• S (spin): The PC stalls if busy? is asserted; otherwise, it goes to (current state +1). 

 

Guidelines for Enable Signals: 

• Only one source of data can drive the bus in any cycle. 

• Don’t worry about marking any of the en__ signals as don’t care. However, other types 

of signals should be marked as don’t care where applicable. 

• Two control signals determine how the register file is used during a cycle: RegWr and 

enReg. RegWr determines whether the operation to be performed, if any, is a read or a 

write. If RegWr=1, then it is a write; otherwise it is a read. enReg is a general enable 

control for the register file. If enReg=1, then the register reads or writes depending on 

RegWr. If enReg=0, then nothing is done, regardless of the value of RegWr. 

• MemWr and enMem function in an analogous way for the memory.  
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2.A (16 points) Implement a SWITCH instruction 

The SWITCH instruction performs a multiway indirect branch, corresponding to the C code: 

switch (index) { 

 case 0: goto target_0; 

 case 1: goto target_1; 

 case 2: goto target_2; 

 … 

 case limit: goto target_last; 

} 

// Fall through if index is out of bounds 

 

The SWITCH instruction has the following format: 

SWITCH rs1, rs2, imm 

The operands consist of two source registers and one B-type immediate: 

rs1: Zero-based index to select a branch table entry 

rs2: Pointer to a branch table in memory 

imm: Limit, the index of the last table entry (𝑁 − 1) 

The table operand (rs2) points to an array in memory with 𝑁 word-sized entries, each holding a 

branch target address: 

Address Content 

table + 0 target_0 

table + 4 target_1 

table + 8 target_2 

… … 

table + (4×limit) target_last 

 

The index (rs1) is compared with limit (imm) to check that it is within the table range.  If index 

≤ limit, then the processor branches to the address stored in the table[index] entry.  Otherwise, if 

index > limit, no branch is taken, and execution continues at PC + 4 as usual. 

For simplicity, assume that the immediate representing limit must be ≥ 0. 

Note: The ALU does not support a multiply or shift operation, but multiplication by a power of 2 

(i.e., left shift) can be efficiently handled with repeated doubling. 

 

Fill in the microcode table on the following page. 

 

 



Name: ______________________________ 

 7 

2.B (4 Points) Performance of your SWITCH implementation 

How many cycles does your SWITCH instruction take to execute in the following situations? 

Assume that all memory accesses complete in a single cycle (just for the purposes of this CPI 

calculation – you must still use spin states).  Count all cycles starting from FETCH0 to the last 

microinstruction that jumps back to FETCH0. 

1. index ≤ limit 

12 cycles 

• Fetch/dispatch: 3 cycles 

• SWITCH routine: 9 cycles 

 

 

 

 

 

 

 

 

 

 

2. index > limit 

6 cycles 

• Fetch/dispatch: 3 cycles 

• SWITCH routine: 3 cycles 
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State Pseudocode IR 
Ld 

Reg 
Sel 

Reg 
Wr 

Reg 
En 

A 
Ld 

B 
Ld 

ALUOp ALU 
En 

MA 
Ld 

Mem 
Wr 

Mem 
En 

Imm 
Sel 

Imm 
En 

Br Next State 

FETCH0: MA ← PC; 
A ← PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR ← Mem 1 * * 0 0 * * 0 0 0 1 * 0 S * 

 PC ← A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D * 

…                 

SWITCH0: A ← Imm 0 * * 0 1 * * 0 * * 0 B 1 N  

 B ← R[rs1] 0 rs1 0 1 0 1 * 0 * * 0 * 0 N  

 If (A < B) { 

  µBr to FETCH0 

} 

A ← R[rs1] 

0 rs1 0 1 1 0 SLTU 0 * * 0 * 0 NZ FETCH0 

 A, B ← A + B 0 * * 0 1 1 ADD 1 * * 0 * 0 N  

 A ← A + B 0 * * 0 1 * ADD 1 * * 0 * 0 N  

 B ← R[rs2] * rs2 0 1 0 1 * 0 * * 0 * 0 N  

 MA ← A + B * * * 0 * * ADD 1 1 * 0 * 0 N  

 PC ← Mem * PC 1 1 * * * 0 0 0 1 * 0 S  

 µBr to FETCH0 * * * 0 * * * 0 * * 0 * 0 J FETCH0 
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Problem 3 (20 Points): Pipelining and Exceptions 

 

 

Figure 3.1 

3.A (2 Points) Latency vs Occupancy 

Figure 3.1 shows a classic fully-bypassed 5-stage pipeline that has been augmented with an 

unpipelined divider in parallel with the ALU. Bypass paths are not shown in the diagram. This 

iterative divider produces 2 bits per cycle until it outputs a full 32-bit result. 

1. (1 Point) What is the latency of a divide operation in cycles? 

 

32 / 2 = 16 cycles 

 

 

 

 

 

2. (1 Point) What is the occupancy of a divide operation in cycles? 

 

16 cycles, since the divider is unpipelined 
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3.B (3 Points) Hazards 

Note that the div instruction in RISC-V cannot raise a data-dependent exception.  To avoid 

pipeline stalls while a multi-cycle divide operation is in progress, the pipeline control logic 

allows subsequent instructions that do not depend on the divide result to be issued and completed 

before the divide has completed. 

What additional hazards might be caused by div instructions, aside from the structural hazard 

on the divider itself?  If any, describe how they could be resolved using an interlock. 

 

WAW hazards can arise from the out-of-order completion of div instructions.  For any 

subsequent instruction that writes to the same destination register as an ongoing div instruction, 

one approach is to stall at the D stage (or alternatively, in X or M at the potential cost of higher-

fanout stall signals).  This can be implemented using a comparator that checks the destination 

register of the div against the destination of the instruction in decode, or with a scoreboard that 

contains a bit-vector to track pending writes. 

A potential structural hazard also exists on the write port of the register.  When a div and 

another instruction that writes a register are both in the W stage, one of them must stall. 

Although not a true control hazard, when a branch following a div that has not yet completed is 

taken, the ongoing divide operation should not be killed in the partial pipeline flush. 

 

3.C (10 Points) Interrupts 

In this pipeline, asynchronous interrupts are handled in the MEM stage and cause a jump to a 

dedicated interrupt trap handler address.  The interrupt latency is defined as the number of cycles 

from when an interrupt request is raised in the MEM stage until the first instruction of the 

interrupt handler reaches the MEM stage. 

1. (1 Point) What is the minimum interrupt latency that the pipeline can achieve in the best-

case scenario? 

 

4 cycles, shown by the shaded cycles in this pipeline diagram.  The interrupt is raised in 

cycle 4.  The earliest uncommitted instruction when the interrupt is taken is labeled with 

“EPC”, while “MTVEC” denotes the first instruction of the interrupt trap handler. 

 1 2 3 4 5 6 7 8  

EPC F D X M      

…  F D -      

…   F -      

…    -      

MTVEC     F D X M W 
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2. (6 Points) Consider the execution of the code below.  Suppose an interrupt is raised 

during cycle 8, which causes a jump to interrupt_handler. The handler increments 

a counter at a fixed memory address before returning to the original context. 

 

Fill in the pipeline-timing diagram on the next page until the mret instruction at the end 

of interrupt_handler commits.  The architectural guarantee of precise interrupts 

should be upheld.  Assume that all memory accesses take one cycle in the MEM stage. 

 
lw   x2, 0(x1) 

div  x1, x2, x3 

slli x3, x2, 1 

lui  x4, 0x100 

addi x4, x4, 0xf 

xor  x5, x3, x4 

sub  x3, x5, x2 

 

... 

interrupt_handler: 

sw   x1, 0(x0)  # Save register in known location 

lw   x1, 4(x0)  # Use register to increment counter 

addi x1, x1, 1 

sw   x1, 4(x0) 

lw   x1, 0(x0)  # Restore register before returning 

mret            # Return from interrupt handler 

 

 

 

 

3. (2 Points) What is the interrupt latency for the code above? 

 

14 cycles (cycles 8 to 21, inclusive) 

 

 

 

 

 

4. (1 Point) Which instruction should interrupt_handler return to in order to ensure 

that the program will continue to execute correctly? 

 

The EPC (exception PC) should point to the earliest uncommitted instruction: 
lui x4, 0x100
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

  lw F D X M W                                    

  div  F D D X X X  X  X  X  X X X X X  X  X  X  X X M W         

 slli   F F D X M W                       

 lui     F D X M                       

 addi      F D X                       

 xor       F M                       

 sub        F                       

 sw         F D D D D D D D D D D D X M W        

 lw          F F F F F F F F F F F D X M W       

 addi                     F D D X M W     

 sw                      F F D X M W    

 lw                        F D X M W   

 mret                         F D X M W  
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3.D (5 Points) Reducing Interrupt Latency 

Propose a modification to the architecture and/or microarchitecture that would reduce the 

interrupt latency for the code in 3.C, while ensuring that interrupts are handled precisely. 

 

Further unrolling the iterative divider (e.g., to output 4 bits per cycle instead of 2) would shorten 

its latency and alleviate the RAW hazard, but this is not always feasible in terms of cycle time. 

We could also prevent subsequent instructions from committing before the div commits, which 

allows the divide to be killed precisely on a taken interrupt, although this option is unattractive 

for the common case where interrupts are relatively infrequent. 

Yet another approach is to constrain the destination register for a div instruction.   The ABI 

could be changed to reserve a specific x register to always hold the divide result, so the interrupt 

handler can avoid using it.  In a more generalized exception handler, reading the register can be 

deferred towards the end of the context save, which might hide the divide latency.  This does not 

require any hardware modifications but relies on code voluntarily complying with the ABI.   

Alternatively, the div instruction could be redefined to write to a special-purpose register 

separate from the x register file.  This is the approach adopted by MIPS with its hi and lo 

registers, but it involves an ISA change with RISC-V. 

 

A tempting proposition is to kill the ongoing divide operation and save the intermediate pipeline 

state so that it can be restarted after the interrupt.  Although interrupt latency is reduced, it 

creates an imprecise interrupt, as the instruction following div has already committed. 
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Problem 4: (25 Points) Caches 

In this problem, we will investigate how various cache organizations perform on the following 

loop.  Let A be a 1024×1024 matrix of 32-bit int elements stored in row-major order, aligned to 

the beginning of a cache line. 

for (int i = 1; i < 16; i++) { 

 int x = A[0][i-1]; 

 int y = A[i][i]; 

 A[i][i] = x + y; 

} 

Assume that memory accesses are executed in the order shown in the program – i.e., the 

compiler does not reorder load and store instructions.   Variables x, y, and i are held in registers. 

 

4.A (6 Points) Direct-Mapped Cache 

Consider a 4 KiB direct-mapped L1 data cache with 16-byte cache lines. 

1. (4 Points) Count the numbers of cache hits and misses for each category on the loop 

shown above.  Assume that the cache is initially empty. 

 

Note that elements A[0][i] and A[i][i] map to the same set in the cache, which 

means that the accesses to A[i][i] in iteration i will evict the line that A[0][i-1] 

would reference in iteration i+1.  The first four iterations thus behave as follows: 

 i = 1 i = 2 i = 3 i =4 

A[0][i-1] (load) Compulsory miss Conflict miss Conflict miss Conflict miss 

A[i][i] (load) Compulsory miss Compulsory miss Compulsory miss Compulsory miss 

A[i][i] (store) Hit Hit Hit Hit 

 

The pattern repeats for i = 5 through i = 15 (i.e., i = 5 will hit/miss for each access in the 

same way as i = 1). 

 

• Hits: 15 (A[i][i] store) 

• Compulsory misses: 4 (A[0][i-1] load) + 15 (A[i][i] load) = 19 

• Conflict misses: 11 (A[0][i-1] load) 

• Capacity misses: 0 
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(2 Points) What is the average memory access time (AMAT) in cycles if the hit time of the 

direct-mapped cache is 1 cycle and the L1 miss penalty to DRAM is 100 cycles?  (You do not 

need to calculate the exact number; just write the formula with the individual terms substituted 

with the appropriate values.) 

 

The miss rate is 2/3 (30/45). 

𝐴𝑀𝐴𝑇 = 1 + (2 3⁄ )(100) 

 

4.B (6 Points) 2-way Set-Associative Cache 

Now we double the capacity by switching to an 8 KiB two-way set-associative L1 data cache 

with LRU eviction and a write-allocate policy.  The cache line size remains 16 bytes. 

1. (4 Points) Count the numbers of cache hits and misses for each category on the preceding 

loop.  Assume that the cache is initially empty. 

 

All conflict misses for A[0][i-1] are eliminated with 2-way associativity. 

 i = 1 i = 2 i = 3 i =4 

A[0][i-1] (load) Compulsory miss Hit Hit Hit 

A[i][i] (load) Compulsory miss Compulsory miss Compulsory miss Compulsory miss 

A[i][i] (store) Hit Hit Hit Hit 

 

As before, the pattern repeats for i = 5 through i = 15. 

 

• Hits: 11 (A[0][i-1] load) + 15 (A[i][i] store) = 26 

• Compulsory misses: 4 (A[0][i-1] load) + 15 (A[i][i] load) = 19 

• Conflict misses: 0 

• Capacity misses: 0 

 

 

 

 

 

2. (2 Points) What is the AMAT in cycles if the hit time is 2 cycles and the L1 miss penalty 

to DRAM is 100 cycles?  (You do not need to calculate the exact number; just write the 

formula with the individual terms substituted with the appropriate values.) 

 

The miss rate is 19/45. 

𝐴𝑀𝐴𝑇 = 1 + (19/45)(100) 
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4.C (7 Points) 2-way Column-Associative Cache 

Suppose we convert our 8 KiB 2-way set-associative cache from 4.B into an 8 KiB 2-way 

column-associative cache with 16-byte lines.  A column-associative (or pseudo-associative) 

cache is similar in structure, except that instead of accessing both ways simultaneously, the ways 

are accessed sequentially over consecutive cycles. 

In other words, each way is treated as a separate 4 KiB direct-mapped cache.  On a cache access, 

Way 0 is searched first.  If the line is not found in Way 0, then Way 1 is accessed the next cycle.  

If there is a hit in Way 1, the lines in the two ways are swapped.  On a miss, the new line is 

placed in Way 0, and the previous line is moved to Way 1. 

1. (1 Point) What is an advantage of a column-associative cache compared to a set-

associative cache of the same associativity? 

 

A column-associative cache can have a lower hit time comparable to a direct-mapped 

cache, since the way muxing is eliminated and the tag check does not need to be parallel. 

 

 

 

2. (4 Points) Count the numbers of cache hits and misses for each category on the preceding 

loop.  Assume that the cache is initially empty. 

 

The miss on A[i][i] causes the line in which A[0][i] resides to be swapped to Way 

1, which increases the hit time slightly for A[0][i-1] in the next iteration. 

 i = 1 i = 2 i = 3 i =4 

A[0][i-1] (load) Compulsory miss Hit (Way 1) Hit (Way 1) Hit (Way 1) 

A[i][i] (load) Compulsory miss Compulsory miss Compulsory miss Compulsory miss 

A[i][i] (store) Hit (Way 0) Hit (Way 0) Hit (Way 0) Hit (Way 0) 

 

As before, the pattern repeats for i = 5 through i = 15. 

 

• Hits in Way 0: 15 (A[i][i] store) 

• Hits in Way 1: 11 (A[0][i-1] load) 

• Compulsory misses: 4 (A[0][i-1] load) + 15 (A[i][i] load) = 19 

• Conflict misses: 0 

• Capacity misses: 0 
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3. (2 Points) What is the AMAT in cycles if accessing each way takes 1 cycle and the L1 

miss penalty to DRAM is 100 cycles?  (You do not need to calculate the exact number; 

just write the formula with the individual terms substituted with the appropriate values.) 

 

The fraction of Way 1 hits is 11/45, and the miss rate to DRAM is 19/45. 

 
𝐴𝑀𝐴𝑇 = 1 + (11 45⁄ )(1) + (19/45)(1 +  100) 

 

 

4.D (6 Points) Virtual Memory 

To further reduce hit time while maintaining capacity, we now consider moving back to an 8 

KiB direct-mapped VIPT (virtually indexed, physically tagged) cache. 

1. (2 Points) Explain how virtual memory aliasing can occur with 4 KiB pages. 

 

Since the most significant bit of the cache index is shared with the least significant bit of 

the VPN, it is possible for two virtual addresses which map to same physical address to 

be located in different sets in the cache. 

 

 

 

 

 

 

 

 

 

 

 

 

2. (4 Points) Describe a mechanism to prevent aliases from co-existing in the 8 KiB direct-

mapped VIPT cache. 

 

Aliases can exist only in two sets for a given physical address.  First, we index the cache 

and perform the tag check as usual.  If there is no match, we flip the MSB of the index 

(which overlaps with the VPN) and check the corresponding set on the next cycle.  This 

prevents a new copy of a physical line from being allocated in the cache on a miss if it is 

already present through an alias. 
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Problem 5: (25 Points) Runahead Processing (CS252 ONLY) 

An in-order runahead processor is one technique to reduce the impact of cache misses.  A 

runahead processor has two execution modes (regular and runahead) and two corresponding 

copies of all architectural registers (regular and runahead).  The runahead registers each have an 

additional valid bit indicating if the register contains valid data. 

In regular execution mode, the processor behaves as a regular in-order processor and updates the 

regular architectural registers.  But instead of stalling when the processor encounters a data cache 

miss on a load instruction, it switches to runahead mode.  First the processor copies the regular 

architectural registers including the program counter into the runahead architectural registers, 

and sets all the runahead register valid bits, except on the register corresponding to the target of 

the load which is marked invalid.  The processor then begins execution in runahead mode. 

In runahead mode, the processor continues to execute instructions but now uses the runahead 

registers.  If the result of an instruction depends on a source register marked invalid, its 

destination runahead register is also marked invalid.  If a runahead instruction is a load that 

causes a new data cache miss, the destination runahead register is marked invalid, the data cache 

issues a prefetch for the missing line, and the processor continues execution. 

When the original data cache miss returns, the missing load’s destination register in the regular 

register set is updated, then the processor re-enters regular execution mode with the regular 

program counter pointing to the instruction after the load that caused the original data cache miss. 

 

5.A (3 Points) Branches 

What should runahead mode do when encountering a conditional branch that compares one or 

more invalid registers? 
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5.B (3 Points) Jumps 

What should runahead mode do when encountering a jump register (jr) instruction where the 

target is an invalid register? 

 

 

 

 

 

 

 

 

 

 

 

 

5.C (4 Points) Stores 

How should runahead mode handle store instructions? 
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5.D (5 Points) Vector Accumulate 

Consider the following loop, which accumulates elements in a vector, running on a runahead 

processor: 

li   x15, 0         # Clear accumulator 

loop: 

lw   x8, (x10)      # Get next word 

addi x10, x10, 4    # Bump address pointer 

add  x15, x15, x8   # Accumulate new word into sum 

bne  x10, x11, loop # Loop if not at end of vector 

 

This runahead processor has a regular 5-stage RISC pipeline, and the copy from architectural 

registers to runahead registers uses special data paths to complete in one cycle. 

The system has 32-byte cache lines.  Assume the loop accumulates over many elements.  What is 

the smallest cache miss penalty for which the runahead processor will exhibit a performance 

improvement on this loop over a non-runahead processor? 
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5.E (5 Points) Linked List Accumulate 

Consider the following loop, which accumulates values in a linked list, running on a runahead 

processor: 

li   x15, 0        # Clear accumulator 

beqz x10, exit     # Check if pointer is null 

loop: 

lw   x8,  0(x10)   # Get next value 

lw   x10, 4(x10)   # Get next pointer 

add  x15, x15, x8  # Accumulate value into sum 

bnez x10, loop     # Loop if next pointer is not null 

exit: 

 

Describe if and how the runahead processor can provide a benefit in this case over a simple in-

order processor that stalls on a load cache miss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


