
CS 152 Computer Architecture and Engineering

CS 252 Graduate Computer Architecture

Midterm #1

SOLUTIONS

March 1, 2021

Professor Krste Asanović

Name:______________________

SID:______________________

80 Minutes, 5 Questions

Notes:

• Not all questions are of equal difficulty, so look over the entire exam!

• Please carefully state any assumptions you make.

• Please write your name on every page in the exam.

• Do not discuss the exam with other students who haven’t taken the exam.
• If you have inadvertently been exposed to an exam prior to taking it, you

must tell the instructor or TA.

• You will receive no credit for selecting multiple-choice answers without

giving explanations if the instructions ask you to explain your choice.

Question CS152 Point Value CS252 Point Value

1 12 12

2 21 12

3 26 26

4 14 14

5 12 12

TOTAL 85 76

Q1-1

Problem 1: (12 Points) Iron Law of Processor Performance

Mark whether the following modifications will cause each term in the Iron Law to increase or decrease, or whether the modification

will have a negligible effect. Assume all other parameters of the system are unchanged whenever possible. Explain your reasoning.

Be explicit if you are relying on any specific assumptions.

 Instructions / Program Cycles / Instruction Time / Cycle

Adding a second data bus to a

single-bus microcoded

machine

Negligible

The second data bus is a

microarchitectural feature not

visible at the ISA level.

Decrease

The second data bus avoids

some structural hazards

compared to a single shared

bus, reducing the number of

microinstructions by enabling

more parallel operations.

Increase

The second data bus increases

fanout and wire congestion.

Additional muxes are needed

to select between busses for

each consumer. Driving the

second bus requires more

control signals, increasing the

microcode ROM width.

Adding instructions with

register-operand indexing:

R[rd] = R[R[rs1]] + R[R[rs2]]

Decrease – Code that performs

dynamic array indexing may

sometimes be replaced with

fewer instructions.

OR

Negligible – A compiler is

unlikely to use this addressing

mode, since arrays are usually

allocated in memory, not in the

scalar register file.

Increase

Each operand involves two

register file reads, which may

require occupying the decode

stage for two cycles or

introducing an additional

pipeline stage. Structural

hazards can arise from the

limited number of register file

read ports. More data hazards

are possible.

Increase

More read ports may have to

be added to the register file.

The control logic becomes

more complex to sequence the

second round of register file

reads.

Q1-2

 Instructions / Program Cycles / Instruction Time / Cycle

Using a software page table

walker, instead of a hardware

PTW

Increase

For each TLB miss, additional

instructions are executed by an

exception handler to walk the

page tables and refill the TLB.

Decrease

A TLB miss does not incur a

long-latency stall for a

hardware page table walk.

Bubbles are replaced with

additional instructions.

Decrease – The hardware

complexity is reduced.

OR

Negligible – A hardware PTW

is a relatively simple state

machine and is unlikely to be a

critical path in typical

implementations.

Removing support for precise

exceptions

Increase

Resuming from an imprecise

exception may require more

instructions to repair/restore

microarchitectural state.

Negligible – Precise

exceptions have minimal

impact on the latencies of

operations: Exception

information is propagated in

parallel to the pipeline, and

bypassing allows results to be

used before architectural state

is updated at the commit point.

OR

Decrease – Exception

handling latency is marginally

reduced, as control can be

redirected to the handler as

soon as an exception is

detected, rather than waiting

for commit.

Decrease – The hardware

complexity is reduced.

OR

Negligible – The

simplification of commit logic

is balanced by the introduction

of hardware mechanisms to

save microarchitectural state to

memory for restartable

exceptions.

Q1-3

 Instructions / Program Cycles / Instruction Time / Cycle

Changing the base page size

from 4 KiB to 8 KiB

Decrease

There are fewer page faults to

handle and fewer pages for the

OS to manage. (It is possible

that larger pages exacerbate

waste from internal

fragmentation, increase

memory pressure, and trigger

more frequent swapping, but

the difference is modest

enough that this is unlikely).

Decrease

Doubling the TLB reach

reduces the number of TLB

misses.

Negligible

The page table walk is

unchanged since the base page

size affects only the leaf page

table entries.

Removing byte load and store

instructions from the ISA

Increase

Additional bitwise instructions

are required to emulate byte

accesses with wider load and

store instructions.

Decrease

The shift and mask operations

to pack/unpack a byte within a

word increases the proportion

of simple arithmetic

instructions.

Decrease

A smaller shifter is needed to

align the load/store data in a

cache line. (Simplified ECC

circuitry in the cache

subsystem was another

justification cited by the

architects of the Alpha ISA.)

Q2-1

Problem 2: (21 Points) Microprogramming (CS152)

Consider the REVLL complex instruction. This instruction reverses a linked list in memory,

where the rs1 operand to this instruction is the memory address of the first node in the linked list.

This instruction has no destination register, but the instruction zeroes the register specified by rs1

upon completion (it does not preserve rs1).

Alternate: This instruction reverses a linked list in memory, where the rs1 operand to this

instruction is the memory address of a pointer to the first node in the linked list (a pointer to a

pointer).

REVLL rs1

Every node in the linked list has the following structure. Assume that pointers are 32 bits wide in

this architecture. The next pointer is either the memory address of the next node in the list or is

equal to 0 (NULL) to indicate the end of the linked list.

struct node

{

 void *value;

 struct node *next;

}

struct node // Alternate

{

 struct node *next;

 void *value;

}

For reference, the equivalent C and assembly code for this instruction are provided below.

void REVLL(struct node *head) {

 struct node *prev = NULL;

 struct node *curr = head;

 while (curr != NULL) {

 struct node *next = curr->next;

 curr->next = prev;

 prev = curr;

 curr = next;

 }

}

 # head is passed in a0

 # t0 holds prev

 # t1 holds next

 beqz a0, done

 addi t0, t0, 0

loop:

 lw t1, 4(a0)

 sw t0, 4(a0)

 addi t0, a0, 0

 addi a0, t1, 0

 bnez t1, loop

done:

void REVLL(struct node **head) {

 struct node *prev = NULL;

 struct node *curr = *head;

 while (curr != NULL) {

 struct node *next = curr->next;

 curr->next = prev;

 prev = curr;

 curr = next;

 }

}

 # head is passed in a0

 # t0 holds prev

 # t1 holds next

 lw a0, 0(a0)

 beqz a0, done

 addi t0, t0, 0

loop:

 lw t1, 0(a0)

 sw t0, 0(a0)

 addi t0, a0, 0

 addi a0, t1, 0

 bnez t1, loop

done:

Q2-2

2.A (2 points) Unpipelined CPI

Consider the execution of the assembly linked-list reversal code on an unpipelined RISC-V core

with a CPI of 1 for every instruction, except for loads and stores, which take 2 cycles each. How

many cycles does this program take to reverse a linked list with length 4 on this core?

Prologue: 0 loads/stores, 2 other instructions

Loop: 1 load, 1 store, 3 other instructions

2 + (2 + 2 + 3) * 4 = 30 cycles

Prologue: 1 load, 2 other instructions

Loop: 1 load, 1 store, 3 other instructions

2 + 2 + (2 + 2 + 3) * 4 = 32 cycles

2.B (16 points) Microprogramming

In the attached microcode table, write microcode to implement the REVLL instruction for a bus-

based RISC-V machine. This microarchitecture is identical to the one described in Handout #1

and Problem Set 1.

The final solution should be efficient with respect to the number of microinstructions used. Make

sure to use logical descriptions of data movement in the “pseudocode” column for clarity. Credit
will be awarded for optimizing signals using “don’t care” or ∗ values as appropriate, but this is

less important than producing a correct implementation. Please comment your code clearly. If

the pseudocode for a line does not fit in the space provided, or if you have additional comments,

you may write neatly in the margins.

Reference material on the microcoded datapath is provided on the following page.

Three temporaries are needed to maintain the curr, prev, and next pointers during the linked

list traversal, but as only two operand registers (A and B) are provided by the datapath, it is

necessary for the microcode to clobber rs1. The solution uses R[rs1] to hold curr, B to hold

prev (initialized to 0 before entering the microcode loop), and A to hold next.

The solution for the alternate version optimizes for fewer microinstructions in the loop body.

There is also a simpler implementation that is nearly identical to the solution for first version,

except for an extra microinstruction with a memory operation to deference R[rs1] prior to the

loop.

Q2-3

2.C (2 points) Microcoded performance

How many cycles does your implementation take to reverse a linked list with length 4? Assume

that the memory access time is 4 cycles.

Fetch: 3

Prologue: 2

Loop: 1 + 4 + 4 + 2 (4 iterations)

Epilogue: 1

3 + 2 + 4*11 + 1 = 50 cycles

Fetch: 3

Prologue: 1 + 4 + 1 + 1

Loop: 4 + 4 + 2 (4 iterations)

Epilogue: 1

3 + 7 + 4*10 + 1 = 51 cycles

2.D (1 point) Implementation Comparison

Compare the performance of your implementation with that of the unpipelined RISC-V core

from 2.A. Assume that both processors are using the same memory system, such that the

unpipelined core has 4x the cycle time of the microcoded machine to accommodate the memory

latency.

1 cycle of the unpipelined core is equivalent to 4 cycles of the microcoded machine.

Reversing a linked list with length 4 takes the unpipelined core 30*4 = 120 equivalent cycles,

which is 120/50 = 2.4 times longer than the microcoded REVLL instruction. (This demonstrates

how a microcoded machine with CPI > 1 can achieve better performance compared to an

unpipelined implementation clocked at a lower frequency.)

Reversing a linked list with length 4 takes the unpipelined core 32*4 = 128 equivalent cycles,

which is 128/51 ≈ 2.51 times longer than the microcoded REVLL instruction.

Q2-4

State Pseudocode IR
Ld

Reg
Sel

Reg
Wr

Reg
En

A
Ld

B
Ld

ALUOp ALU
En

MA
Ld

Mem
Wr

Mem
En

Imm
Sel

Imm
En

μBr Next State

FETCH0: MA ← PC;
A ← PC

* PC 0 1 1 * * 0 1 0 0 * 0 N *

 IR ← Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

 PC ← A+4 0 PC 1 1 0 * INC_A_4 1 * 0 0 * 0 D *

…

REVLL0: A, B ← R[rs1] 0 rs1 0 1 1 1 * 0 * 0 0 * 0 N *

 if (A == 0)

 μBr to FETCH0

0 * 0 0 0 0 COPY_A 0 * 0 0 * 0 EZ FETCH0

 B ← A - B (== 0) 0 * 0 0 0 1 SUB 1 * 0 0 * 0 N *

REVLL1: MA ← A + 4 0 * 0 0 * 0 INC_A_4 1 1 0 0 * 0 N *

 A ← Mem 0 * 0 0 1 0 * 0 0 0 1 * 0 S *

 Mem ← B 0 * 0 0 0 0 COPY_B 1 0 1 0 * 0 S *

 B ← R[rs1] 0 rs1 0 1 0 1 * 0 * 0 0 * 0 N *

 R[rs1] ← A;

if (A != 0)

 μBr to REVLL1

0 rs1 1 0 0 0 COPY_A 1 * 0 0 * 0 NZ REVLL1

 μBr to FETCH0 * * 0 0 * * * 0 * 0 0 * 0 J FETCH0

Q2-5

State Pseudocode IR
Ld

Reg
Sel

Reg
Wr

Reg
En

A
Ld

B
Ld

ALUOp ALU
En

MA
Ld

Mem
Wr

Mem
En

Imm
Sel

Imm
En

μBr Next State

FETCH0: MA ← PC;
A ← PC

* PC 0 1 1 * * 0 1 0 0 * 0 N *

 IR ← Mem 1 * * 0 0 * * 0 0 0 1 * 0 S *

 PC ← A+4 0 PC 1 1 0 * INC_A_4 1 * 0 0 * 0 D *

…

REVLL0: MA ← R[rs1] 0 rs1 0 1 * * * 0 1 0 0 * 0 N *

 A ← Mem 0 * 0 0 1 * * 0 0 0 1 * 0 S *

 MA, B ← A;

R[rs1] ← A;

if (A == 0)

 μBr to FETCH0

0 rs1 1 0 0 1 COPY_A 1 1 0 0 * 0 EZ FETCH0

 B ← A - B (== 0) 0 * 0 0 * 1 SUB 1 0 0 0 * 0 N *

REVLL1: A ← Mem 0 * 0 0 1 0 * 0 0 0 1 * 0 S *

 Mem ← B 0 * 0 0 0 0 COPY_B 1 0 1 0 * 0 S *

 B ← R[rs1] 0 rs1 0 1 0 1 * 0 * 0 0 * 0 N *

 R[rs1], MA ← A

if (A != 0)

 μBr to REVLL1

0 rs1 1 0 1 0 COPY_A 1 1 0 0 * 0 NZ REVLL1

 μBr to FETCH0 * * 0 0 * * * 0 * 0 0 * 0 J FETCH0

Q2-6

Microcoding Reference Material

Arithmetic Logic Unit:

ALUOp ALU Result Output
COPY_A A
COPY_B B
INC_A_1 A+1
DEC_A_1 A-1
INC_A_4 A+4
DEC_A_4 A-4
ADD A+B
SUB A-B
SLT Signed(A) < Signed(B)
SLTU A < B

Immediate Selector:
Five immediate types are supported by ImmSel: ImmI, ImmU, ImmS, ImmJ, and ImmB.

Microbranches:
The μBr column represents a 3-bit field with six possible values: N, J, EZ, NZ, D, and S.

● N (next): The next state is simply (current state + 1).

● J (jump): The next state is unconditionally the state specified in the Next State column (i.e., it’s
an unconditional microbranch).

● EZ (branch-if-equal-zero): The next state depends on the value of the ALU’s zero output signal

(i.e., a conditional microbranch). If zero is asserted (𝑧𝑒𝑟𝑜 = 1), then the next state is that

specified in the Next State column, otherwise, it is (current state + 1).

● NZ (branch-if-not-zero): This behaves exactly like EZ but instead performs a microbranch if zero

is not asserted (𝑧𝑒𝑟𝑜 ≠ 0).

● D (dispatch): The FSM looks at the opcode and function fields in the IR and goes to the

corresponding state.

● S (spin): The μPC stalls if busy? is asserted; otherwise, it goes to (current state +1)

IR

 A

 B

32
GPRs
+ PC

(32-bit)

RegWr

RegEn

MemWr

MemEn

MA

addr addr

data data

rs2
rs
1

 1(RA)

RegSel

Memory

zero?

ALUOp

Opcode

rd

32(PC)

busy?

lRLd

IntRq

Bus

ALd BLd

MALd

ALU

ALUEn

Immed
Select

ImmEn

ImmSel

Q2-1

Problem 2: (14 points) Skewed-Associative Caches (CS252)

A skewed-associative cache uses a hash function on the index bits of the address to determine the

cache set that it belongs to. Each way of a skewed associative cache uses a unique hash function.

2.A (3 points)

Describe a code sequence that demonstrates higher performance on a skewed-associative cache

than on an equivalent set-associative cache.

A sequence of constant-stride accesses that have the same index bits conflicts in a regular set-

associative cache, whereas the hash function of a skewed-associative cache uniformly distributes

the lines among all sets.

2.B. (3 points)

Describe a code sequence that demonstrates reduced performance on a skewed-associative cache

than on an equivalent set-associative cache.

An access pattern which causes only compulsory misses in a set-associative cache or consists of

all different indices (such as lines in close spatial proximity) may conflict in a skewed-

associative cache due to hash collisions.

Q2-2

2.C (4 points)

Explain why a skewed-associative cache is typically implemented with unique hashing functions

for each way of the cache. In other words, what is the advantage of using a unique hashing

function for each way of the cache, compared to a single hashing function for all ways?

This is the concept of inter-way dispersion, or “inter-bank dispersion” as discussed in the
original Seznec paper. Two cache lines which conflict in one way of the cache would not

conflict in the other ways. This avoids cache thrashing behavior.

2.D (4 points)

Explain how virtual memory aliasing can be prevented in a skewed-associative cache when part

of the virtual page number is used for the index bits.

The usual anti-aliasing mechanisms for a VIPT cache also apply here:

• On a miss, probe all sets in which aliases can potentially be located. If n bits of the VPN

overlap with the index, there are 2n indices through which an alias may exist. Hash each

possibility and evict the corresponding line if present.

• Use a physically-indexed inclusive L2 cache to store the VPN bits that are part of the L1

index or the hash itself. On an L1 miss that hits in the L2, evict the line from the L1 that

the L2 entry identifies.

• Rely on the OS to ensure that all virtual pages which map to the same physical page

match in the VPN bits that overlap with the cache index (page coloring).

Q3-1

Problem 3: (26 Points) Pipelining

Note: The solutions for the alternate version of this question are at the end.

Note: The questions in 3.B, 3.C, and 3.D can be answered independently of each other.

Consider the standard fully-bypassed 5-stage RISC pipeline.

● A simple static branch predictor which always predicts PC+4 (branch not taken) in the

Fetch stage (not-taken branches do not induce bubbles)

● Unconditional direct jumps (JAL) redirect from the Decode stage

● Conditional branches and unconditional indirect jumps (JALR) redirect from the Execute

stage

● Bypass paths bypass into the operand registers before the Execute stage (the bypass

select muxes are in the Decode stage)

The subsections of this question will consider the execution of the following loop on this

pipeline.

1 loop: beq a1, x0, end

2 lw t0, 0(a0)

3 sw t0, 0(a1)

4 addi a0, a0, 0x8

5 lw a1, 4(a1)

6 j loop

7 end:

3.A Basic Pipelining

3.A.i (4 points) Pipeline diagram

Complete the pipeline diagram for the first iteration of this loop (all instructions in the table).

beq F D X M W

lw F D X M W

sw F D D X M W

addi F F D X M W

lw F D X M W

j F D X M W

beq F D X M w

Q3-2

3.A.ii: (2 points) CPI

Compute the CPI of the loop as the number of iterations approaches infinity.

Count number of cycles between two branches in different iterations

8 / 6

3.B: Improving Performance

3.B.i: (3 points) Bypass paths

Is there a bypass path you can add to improve the CPI of this code? If so, describe the bypass,

and the new CPI as the number of iterations approaches infinity? Otherwise, explain why not.

Bypass load data at the end of the M stage into the store data wire at the end of the X stage.

This avoids the load-use-delay between the LW and the SW which writes that data into memory.

New CPI is 7 / 6

3.B.ii: (3 points) Load-delay slots

Instead of adding a bypass path, you decide to introduce a load-delay slot to this architecture.

Describe how to modify the code to take maximum advantage of the load-delay slot, and

calculate the new CPI.

Reorder the addi instruction after the load. This avoids the load-use-delay as well.

New CPI is 7 / 6

Q3-3

3.C CISC Instructions

Instead of adding any of the features in Q3.B, you instead decide to add support for a new

instruction to improve the performance of this code sequence. The new instruction you add is

MMOV: memory-memory move.

MMOV: memory-memory move

M[R[rs2]] = M[R[rs1]]

To support this new instruction, you redesign the pipeline to be IF,ID,EX,LD,ST/WB. Now

stores are performed in parallel with writeback, while loads are still performed in the 4th stage.

3.C.i (3 points) Structural Hazards

Does the pipeline modification introduce new structural hazards into the machine? If so, describe

the hazard, provide a code example that demonstrates the hazard, and suggest a modification that

resolves this hazard with minimal performance penalty. If not, explain why.

Structural hazard on access to memory, as a two instruction sequence

SW

LW

will have both instructions trying to access the data memory through the ST, LD stages

respectively.

Interlocking only when there is back-to-back SW/LW will resolve this.

Alternatively, making the data memory dual ported will remove the structural hazard.

3.C.ii (3 points) Data Hazards

After resolving the structural hazard, if any, does the pipeline modification still introduce new

data hazards into the machine? If so, describe the hazard, provide a code example that

demonstrates the hazard, and suggest a modification that resolves this hazard with minimal

performance penalty. If not, explain why.

If interlock was suggested for resolving the structural hazard, then no data hazard is possible.

If dual-porting was suggested, then there is potential for RAW through memory. Need to bypass

store data in ST stage to load data output in LD stage when store address and load address match.

3.C.iii (3 points) Control Hazards

After resolving the structural and data hazards, if any, does the pipeline modification still

introduce new control hazards into the machine? If so, describe the hazard, provide a code

example that demonstrates the hazard, and suggest a modification that resolves this hazard with

minimal performance penalty. If not, explain why.

No control hazard, since handling of branch/jump instructions are not affected, and they are all

done in the F/D/X stages.

Q3-4

3.C.iv (3 points) Precise exceptions

Does the pipeline still support precise exceptions after this modification? If not, provide a code

example demonstrating a case where precise exceptions are not possible, and suggest an

interlock to preserve precise exceptions with minimal performance penalty. If yes, explain why.

Yes, the pipeline still supports precise exceptions. Register writes and stores still happen behind

the commit point. Alternatively, if the assumption that the misaligned store address detection

were moved to ST as well, then the commit point would be in WB instead of MEM.

Both yes or no were accepted with sufficient justification

3.C.v (2 points) CISC CPI

Given your answers to i-iv above, what is the peak CPI the instruction sequence can achieve

when modified to use your new CISC instruction?

This eliminates the load-use delay, as well as the additional cycle to retire the store.

So cycles is reduced by 2, and instructions is reduced by 1.

6/5 CPI

Q3-5

Problem 3: (26 Points) Pipelining

Note: The questions in 3.B, 3.C, and 3.D can be answered independently of each other.

Consider the standard fully-bypassed 5-stage RISC pipeline.

● A simple static branch predictor which always predicts PC+4 (branch not taken) in the

Fetch stage (not-taken branches do not induce bubbles)

● Unconditional direct jumps (JAL) redirect from the Decode stage

● Conditional branches and unconditional indirect jumps (JALR) redirect from the Execute

stage

● Bypass paths bypass into the operand registers before the Execute stage (the bypass

select muxes are in the Decode stage)

The subsections of this question will consider the execution of the following loop on this

pipeline.

1 loop

:

lw t0, 0(a0)

2 lw t1, 0(a2)

3 sw t0, 0(t1)

4 addi a0, a0, 0x8

5 lw a2, 4(a2)

6 bne a2, a1, loop

7 end:

3.A Basic Pipelining

3.A.i (4 points) Pipeline diagram

Complete the pipeline diagram for the first iteration of this loop (all instructions in the table).

lw F D X M W

lw F D X M W

sw F D D X M W

addi F F D X M W

lw F D X M W

bne F D D X M W

lw F D X M W

Q3-6

3.A.ii (2 points) CPI

Compute the CPI of the loop as the number of iterations approaches infinity.

Count number of cycles between two branches in different iterations

10 / 6

3.B Improving Performance

3.B.i (3 points) Bypass paths

Is there a bypass path you can add to improve the CPI of this code? If so, describe the bypass,

and the new CPI as the number of iterations approaches infinity? Otherwise, explain why not.

Yes. Bypass load data in M stage to store address in X stage if offset of ST instruction is decoded

to be 0. This eliminates the load-use delay.

CPI is 9 / 6

3.B.ii (3 points) Load-delay slots

Instead of adding a bypass path, you decide to introduce a load-delay slot to this architecture.

Describe how to modify the code to take maximum advantage of the load-delay slot, and

calculate the new CPI.

Reorder the loads to remove delays after instructions 2 and 5.

New order could be 1,2,5,3,4,6

CPI is 8 / 6

Q3-7

3.C: CISC Instructions

Instead of adding any of the features in Q3.B, you instead decide to add support for a new

instruction to improve the performance of this code sequence. The new instruction you add is

SWI: store word indirect.

SWI: store word indirect
M[M[R[rs1]]] = rs2

To support this new instruction, you redesign the pipeline to be IF,ID,EX,LD,ST/WB. Now

stores are performed in parallel with writeback, while loads are still performed in the 4th stage.

3.C.i (3 points) Structural hazards

Does the pipeline modification introduce new structural hazards into the machine? If so, describe

the hazard, provide a code example that demonstrates the hazard, and suggest a modification that

resolves this hazard with minimal performance penalty. If not, explain why.

Structural hazard on access to memory, as a two instruction sequence

SW

LW

will have both instructions trying to access the data memory through the ST, LD stages

respectively.

Interlocking only when there is back-to-back SW/LW will resolve this.

Alternatively, making the data memory dual ported will remove the structural hazard.

3.C.ii (3 points) Data hazards

After resolving the structural hazard, if any, does the pipeline modification still introduce new

data hazards into the machine? If so, describe the hazard, provide a code example that

demonstrates the hazard, and suggest a modification that resolves this hazard with minimal

performance penalty. If not, explain why.

If interlock was suggested for resolving the structural hazard, then no data hazard is possible.

If dual-porting was suggested, then there is potential for RAW through memory. Need to bypass

store data in ST stage to load data output in LD stage when store address and load address match.

3.C.iii (3 points) Control hazards

After resolving the structural and data hazards, if any, does the pipeline modification still

introduce new control hazards into the machine? If so, describe the hazard, provide a code

example that demonstrates the hazard, and suggest a modification that resolves this hazard with

minimal performance penalty. If not, explain why.

No control hazard, since handling of branch/jump instructions are not affected, and they are all

done in the F/D/X stages.

Q3-8

3.C.iv (3 points) Precise exceptions

Does the pipeline still support precise exceptions after this modification? If not, provide a code

example demonstrating a case where precise exceptions are not possible, and suggest an

interlock to preserve precise exceptions with minimal performance penalty. If yes, explain why.

The pipeline can be made to support precise exceptions with minimal changes. The only

difference would be that the commit point would be in the WB/ST stage, to catch bad addresses

generated by the load in SWI that will be caught in the ST stage.

Both yes and no were accepted, with sufficient explanation.

3.C.v (2 points) CISC CPI

Given your answers to i-iv above, what is the peak CPI the instruction sequence can achieve

when modified to use your new CISC instruction?

This eliminates the load-use delay, as well as the additional cycle to retire the store.

So cycles is reduced by 2, and instructions is reduced by 1.

8/5 CPI

Q4-1

Problem 4: (14 Points) Prefetching

We now consider the execution of the following C code, which sums across the columns of a 2D

array stored in row-major order. Row-major order means that elements in the same row of the

array are adjacent in memory, i.e., A[i][j] is next to A[i][j+1]. The array elements are 32-bit

integers.

int A[N][M]; // N = 32, M = 256 // alternate: N = 64, M = 128

int sum = 0

for (int j = 0; j < M; j++) {

 for (int i = 0; i < N; i++) {

 sum += A[i][j];

 }

}

4.A (2 points) Cache design

Consider an 8-way set-associative cache with 16-byte cache lines and LRU replacement. What is

the minimum number of sets that this cache needs such that this code will only produce

compulsory misses?

Note: The alternate exam specified a 4-way set-associative cache with 32-byte cache lines.

If only compulsory misses are allowed, then the first N accesses (loading the first column across

many cache lines) must not cause any evictions, since subsequent accesses would be to those (32

* 64) / 8same cache lines.

● Since our replacement policy is ideal, the first N / (8 ways) = 4 accesses should fall in

one way of the cache.

● Each row of the matrix corresponds to (256 * 4 / 16 = 64) cache lines. So two

consecutive accesses in the same column stride over 64 rows.

● Thus the first 4 accesses stride over 4 * 64 entries that map to consecutive sets.

● In total, we need 256 sets to avoid conflicts.

● Since our replacement policy is ideal, the first N / (4 ways) = 16 accesses should fall in

one way of the cache.

● Each row of the matrix corresponds to (128* 4 / 32 = 16) cache lines. So two consecutive

accesses in the same column stride over 16rows.

● Thus the first 16 accesses stride over 16 * 16 entries that map to consecutive sets.

● In total, we need 256 sets to avoid conflicts.

4.B (2 points) VIPT

Suppose the cache is virtually indexed and physically tagged. Does the number of sets you

derived in 4.A introduce a virtual aliasing issue assuming a 4 KiB page size? Briefly explain.

256 sets * 16 bytes per line <= 4096 B page size, so no aliasing

256 sets * 32 bytes per line > 4096 B page size, so aliasing exists

Q4-2

4.C (3 points) Software prefetcher

You would like to reduce the frequency of compulsory misses in this code by adding software

prefetching instructions. You measure the L1 miss penalty to be 40 cycles. When the prefetch

instruction is replaced with a NOP, the first 32 iterations of the inner loop each take 50 cycles to

complete. What should the OFFSET of the prefetch instruction be to maximize timeliness?

Note: The alternate version had L1 miss penalty = 60 cycles, and each iteration taking 70 cycles

int A[N][M]; // N = 32, M = 256 // alternate: N = 64, M = 128

int sum = 0;

for (int j = 0; j < M; j++) {

 for (int i = 0; i < N; i++) {

 prefetch(&A[i][j] + OFFSET); // prefetches from (A + M*i + j + OFFSET)

 sum += A[i][j];

 }

}

If the prefetcher behaved perfectly, then the inner loop would take 50 - 40 = 10 cycles per

iteration. Thus, if prefetched data is expected to return in 40 cycles, then we want to fetch 40 / 10

= 4 iterations ahead. So OFFSET would be 4 * 256

If the prefetcher behaved perfectly, then the inner loop would take 70 - 60 = 10 cycles per

iteration. Thus, if prefetched data is expected to return in 60 cycles, then we want to fetch 60 / 10

= 6 iterations ahead. So OFFSET would be 6 * 128

4.D (4 points) Software prefetching and virtual memory

After adding software prefetching, you notice that performance degrades significantly when

running in user mode (with virtual memory) compared to running in physical mode (no virtual

memory). Assume the L1 cache has a fully-associative TLB with 4 entries and LRU

replacement, the page size is 4 KiB, and that array A is aligned to a page boundary. Suggest a

reason why performance degrades under virtual memory and describe a potential solution that

retains the same TLB design.

Technically, the only degradation would be caused by the penalty of prefetching pages off the bottom of

the array. However, since TLB misses are unavoidable in this problem setup (TLB reach < array size), the

prefetch instructions would have likely improved performance overall, as it might be able to prefetch into

the TLB a PTE before the corresponding page is accessed.

Only if the PTW were blocking, and for some reason the prefetcher could not prefetch TLB entries, then

the additional spurious PTWs off the bottom of the array would have overall degraded performance.

If the TLB reach were exactly equal to the array size, then the only degradation would be due to

prefetching useless elements off the end of the array. This could be resolved by preventing prefetched

TLB entries from evicting old entries, perhaps with a “Victim TLB”, or by modifying SW to avoid

prefetching off the bottom edge.

Note that if the TLB reach were greater than the array size, then the prefetched page would likely have no

effect, as LRU replacement would prevent it from evicting the recently used useful pages.

Q4-3

4.E (3 points) Hardware prefetching and virtual memory

You realize this code has a very regular memory access pattern and thus is amenable to hardware

prefetching. You implement a stride-based hardware prefetcher that observes L1 misses to

DRAM and continues to prefetch along a sequence of regularly strided accesses. While your

prefetcher behaves well when the code is run in physical mode (no virtual memory), you find

that performance is abysmal when the code is run in user mode (with virtual memory). Suggest a

reason why.

Discontinuity between virtual pages and physical pages.

Contiguous virtual pages are not guaranteed to map to contiguous physical pages.

Q5-1

Problem 5: (12 Points) Virtual Memory

Consider a page-based virtual memory system with 64-byte pages and 4-byte PTEs. The VPN is

8 bits wide. A two-level page table scheme uses the upper 4 bits of the VPN for the level 1 index

and the lower 4 bits as the level 2 index. The TLB is 4-way fully-associative. A hardware page

table walker (PTW) performs page table walks on a TLB miss.

Note: The alternate version of the exam had 128-byte pages with 8-byte PTEs. This only affects

the answer for 5.A.

Consider the following code, which sequentially traverses every byte in the virtual address space.

void traverse() {

 char *t = (char *) 0x0;

 while (t < MAX_VADDR) {

 char l = *t;

 t += 1;

 }

}

5.A (4 points) Hierarchical page table

After executing the code above, what is the total size of the page table, and how many accesses

to data memory did the PTW make? Assume that no pages are initially allocated in the page

table.

L1 page table size = L2 page table size = (2^4) * PTE size

Total page table size = L1 page table size + Number of L2 page tables * L2 page table size

= (2^4 + 2^8) * PTE size (4 or 8 depending on version of the exam)

PTW makes 3 accesses per fault when the L2 page table for the VPN has not been allocated yet

● 1. Fetch PTE to L2 page table in L1 page table

● PTE is invalid, since page has not been allocated yet

● OS handles page fault, allocates L2 page table, allocates page for requested virtual page

● Jump back into user program to re-execute faulting instruction

● 2. Fetch PTE to L2 page table in L1 page table

● 3. Fetch PTE to leaf PTE in L2 page table

PTW makes 4 accesses per fault when the L2 page table for the VPN has already been allocated

● 1. Fetch PTE to L2 page table in L1 page table

● 2. Fetch leaf PTE in L2 page table

● PTE is invalid, since page has not been allocated yet

● OS handles page fault, allocates page for requested virtual page

● Jump back into user program to re-execute faulting instruction

● 3. Fetch PTE to L2 page table in L1 page table

● 4. Fetch leaf PTE in L2 page table

The first case happens 2^4 times, for the first fault for a virtual page in each L2 page table

The second case happens 2^4 * (2^4 - 1) times, for each subsequent virtual page in an already

allocated L2 page table.

Total PTW accesses = 3 * 2^4 + 4 * (2^8 - 2^4)

Q5-2

5.B (4 points) L2 TLB

We now add a 16-entry fully-associative L2 TLB with LRU replacement. Unlike the normal

“L1” TLB, the L2 TLB caches both leaf and hierarchical PTEs and is searched by the PTW
before accessing data memory. How many requests does the PTW make to memory with an L2

TLB? Assume that no pages are initially allocated in the page table.

The difference is the second case from above. In the second case, the accesses to the PTE to the

L2 page table would hit in the L2 TLB.

PTW makes 3 accesses per fault when the L2 page table for the VPN has already been allocated

● Fetch PTE to L2 page table in L1 page table.

○ This hits in the L2 TLB, since the first access to the first page in this L2 page

table would have gone before us, and brought this PTE into the L2 TLB

● 1. Fetch leaf PTE in L2 page table

● PTE is invalid, since page has not been allocated yet

● OS handles page fault, allocates page for requested virtual page

● Jump back into user program to re-execute faulting instruction

● Fetch PTE to L2 page table in L1 page table,

○ This hits in the L2 TLB, for the same reason as above

● 2. Fetch leaf PTE in L2 page table

We never have to worry about evictions from the L2 TLB, since we are accessing pages

sequentially.

Total PTW accesses = 3 * 2^4 + 2 * (2^8 - 2^4)

Q5-3

5.C (4 points) AMAT with virtual memory

Derive an expression to approximate AMAT for this code, accounting for the additional delay

from page table walks and the additional delay when the OS is executing the page fault handler.

Assume that no pages are initially allocated in the page table. You may reference the following

variables in your formula:

● W – ways in cache

● S – sets in cache

● L – bytes per cache line

● P – bytes per page

● T – L1 hit time

● N – L1 miss penalty

● R – average PTW memory requests per TLB miss

● H – PTW L1 hit rate

● K – average time for OS to service a page fault

AMAT = Hit Time + Avg Penalty from Cache Misses + Avg Penalty from TLB misses + Avg

Penalty from Page Faults

● Average penalty from cache misses = L1 miss rate * L1 miss penalty

○ L1 miss rate = 1 / L, since only compulsory misses in sequential access pattern

● Average penalty from TLB misses = TLB miss rate * TLB miss penalty

○ TLB miss rate = 1 / P, since only compulsory misses to the TLB in sequential

access pattern

○ TLB miss penalty = Average PTW requests per TLB miss * AMAT for the PTW

■ AMAT for PTW = L1 hit time + PTW L1 miss rate * L1 miss penalty

= T + (1 - H) * N

● Average penalty from page faults = page fault rate * page fault penalty

○ Page fault rate = 1 / P, since the first access to a page will cause a fault

Average penalty from cache misses = N / L

Average penalty from TLB misses = R * (T + (1 - H) * N) / P

Average penalty from page faults = K / P

Total AMAT = T + (N / L) + (R * (T + (1 - H) * N) / P) + (K / P)

