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Problem 1: (12 Points) Iron Law of Processor Performance 
 

Mark whether the following modifications will cause each term in the Iron Law to increase or decrease, or whether the modification 

will have a negligible effect.  Assume all other parameters of the system are unchanged whenever possible.  Explain your reasoning.  

Be explicit if you are relying on any specific assumptions. 

 

 Instructions / Program Cycles / Instruction Time / Cycle 

Adding a second data bus to a 

single-bus microcoded 

machine 

Negligible 

 

The second data bus is a 

microarchitectural feature not 

visible at the ISA level. 

Decrease 

 

The second data bus avoids 

some structural hazards 

compared to a single shared 

bus, reducing the number of 

microinstructions by enabling 

more parallel operations. 

Increase 

 

The second data bus increases 

fanout and wire congestion.  

Additional muxes are needed 

to select between busses for 

each consumer.  Driving the 

second bus requires more 

control signals, increasing the 

microcode ROM width. 

Adding instructions with 

register-operand indexing:  

R[rd] = R[R[rs1]] + R[R[rs2]] 

Decrease – Code that performs 

dynamic array indexing may 

sometimes be replaced with 

fewer instructions. 

 

OR 

 

Negligible – A compiler is 

unlikely to use this addressing 

mode, since arrays are usually 

allocated in memory, not in the 

scalar register file. 

Increase 

 

Each operand involves two 

register file reads, which may 

require occupying the decode 

stage for two cycles or 

introducing an additional 

pipeline stage.  Structural 

hazards can arise from the 

limited number of register file 

read ports.  More data hazards 

are possible. 

Increase 

 

More read ports may have to 

be added to the register file.  

The control logic becomes 

more complex to sequence the 

second round of register file 

reads. 
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 Instructions / Program Cycles / Instruction Time / Cycle 

Using a software page table 

walker, instead of a hardware 

PTW 

Increase 

 

For each TLB miss, additional 

instructions are executed by an 

exception handler to walk the 

page tables and refill the TLB. 

Decrease 

 

A TLB miss does not incur a 

long-latency stall for a 

hardware page table walk.  

Bubbles are replaced with 

additional instructions. 

Decrease – The hardware 

complexity is reduced. 

 

OR 

 

Negligible – A hardware PTW 

is a relatively simple state 

machine and is unlikely to be a 

critical path in typical 

implementations. 

Removing support for precise 

exceptions 

Increase 

 

Resuming from an imprecise 

exception may require more 

instructions to repair/restore 

microarchitectural state. 

Negligible – Precise 

exceptions have minimal 

impact on the latencies of 

operations: Exception 

information is propagated in 

parallel to the pipeline, and 

bypassing allows results to be 

used before architectural state 

is updated at the commit point. 

 

OR 

 

Decrease – Exception 

handling latency is marginally 

reduced, as control can be 

redirected to the handler as 

soon as an exception is 

detected, rather than waiting 

for commit.  

Decrease – The hardware 

complexity is reduced. 

 

OR 

 

Negligible – The 

simplification of commit logic 

is balanced by the introduction 

of hardware mechanisms to 

save microarchitectural state to 

memory for restartable 

exceptions. 
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 Instructions / Program Cycles / Instruction Time / Cycle 

Changing the base page size 

from 4 KiB to 8 KiB 

Decrease 

 

There are fewer page faults to 

handle and fewer pages for the 

OS to manage.  (It is possible 

that larger pages exacerbate 

waste from internal 

fragmentation, increase 

memory pressure, and trigger 

more frequent swapping, but 

the difference is modest 

enough that this is unlikely). 

Decrease 

 

Doubling the TLB reach 

reduces the number of TLB 

misses. 

Negligible 

 

The page table walk is 

unchanged since the base page 

size affects only the leaf page 

table entries. 

Removing byte load and store 

instructions from the ISA 

Increase 

 

Additional bitwise instructions 

are required to emulate byte 

accesses with wider load and 

store instructions. 

Decrease 

 

The shift and mask operations 

to pack/unpack a byte within a 

word increases the proportion 

of simple arithmetic 

instructions. 

Decrease 

 

A smaller shifter is needed to 

align the load/store data in a 

cache line.  (Simplified ECC 

circuitry in the cache 

subsystem was another 

justification cited by the 

architects of the Alpha ISA.) 
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Problem 2: (21 Points) Microprogramming (CS152) 
 

Consider the REVLL complex instruction. This instruction reverses a linked list in memory, 

where the rs1 operand to this instruction is the memory address of the first node in the linked list. 

This instruction has no destination register, but the instruction zeroes the register specified by rs1 

upon completion (it does not preserve rs1). 

 

Alternate: This instruction reverses a linked list in memory, where the rs1 operand to this 

instruction is the memory address of a pointer to the first node in the linked list (a pointer to a 

pointer). 

 
REVLL rs1 

 

Every node in the linked list has the following structure. Assume that pointers are 32 bits wide in 

this architecture.  The next pointer is either the memory address of the next node in the list or is 

equal to 0 (NULL) to indicate the end of the linked list. 

 
struct node 

{ 

 void *value; 

 struct node *next; 

} 

struct node // Alternate 

{ 

 struct node *next; 

 void *value; 

} 

 

For reference, the equivalent C and assembly code for this instruction are provided below. 

 
void REVLL(struct node *head) { 

  struct node *prev = NULL; 

  struct node *curr = head; 

  while (curr != NULL) { 

    struct node *next = curr->next; 

    curr->next = prev; 

    prev = curr; 

    curr = next; 

  }  

} 

 # head is passed in a0 

 # t0 holds prev 

 # t1 holds next 

 beqz a0, done 

 addi t0, t0, 0 

loop: 

 lw t1, 4(a0) 

 sw t0, 4(a0) 

 addi t0, a0, 0 

 addi a0, t1, 0 

 bnez t1, loop 

done: 

 
void REVLL(struct node **head) { 

  struct node *prev = NULL; 

  struct node *curr = *head; 

  while (curr != NULL) { 

    struct node *next = curr->next; 

    curr->next = prev; 

    prev = curr; 

    curr = next; 

  }  

} 

 # head is passed in a0 

 # t0 holds prev 

 # t1 holds next 

 lw a0, 0(a0) 

 beqz a0, done 

 addi t0, t0, 0 

loop: 

 lw t1, 0(a0) 

 sw t0, 0(a0) 

 addi t0, a0, 0 

 addi a0, t1, 0 

 bnez t1, loop 

done: 
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2.A (2 points) Unpipelined CPI 

 

Consider the execution of the assembly linked-list reversal code on an unpipelined RISC-V core 

with a CPI of 1 for every instruction, except for loads and stores, which take 2 cycles each. How 

many cycles does this program take to reverse a linked list with length 4 on this core? 

 

Prologue: 0 loads/stores, 2 other instructions 

Loop: 1 load, 1 store, 3 other instructions 

2 + (2 + 2 + 3) * 4 = 30 cycles 

 

Prologue: 1 load, 2 other instructions 

Loop: 1 load, 1 store, 3 other instructions 

2 + 2 + (2 + 2 + 3) * 4 = 32 cycles 

 

 

 

2.B (16 points) Microprogramming 

 

In the attached microcode table, write microcode to implement the REVLL instruction for a bus-

based RISC-V machine. This microarchitecture is identical to the one described in Handout #1 

and Problem Set 1. 

 

The final solution should be efficient with respect to the number of microinstructions used. Make 

sure to use logical descriptions of data movement in the “pseudocode” column for clarity. Credit 
will be awarded for optimizing signals using “don’t care” or ∗ values as appropriate, but this is 

less important than producing a correct implementation. Please comment your code clearly. If 

the pseudocode for a line does not fit in the space provided, or if you have additional comments, 

you may write neatly in the margins. 

 

Reference material on the microcoded datapath is provided on the following page. 

 

 

Three temporaries are needed to maintain the curr, prev, and next pointers during the linked 

list traversal, but as only two operand registers (A and B) are provided by the datapath, it is 

necessary for the microcode to clobber rs1.  The solution uses R[rs1] to hold curr, B to hold 

prev (initialized to 0 before entering the microcode loop), and A to hold next. 

 

The solution for the alternate version optimizes for fewer microinstructions in the loop body.  

There is also a simpler implementation that is nearly identical to the solution for first version, 

except for an extra microinstruction with a memory operation to deference R[rs1] prior to the 

loop. 
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2.C (2 points) Microcoded performance 

 

How many cycles does your implementation take to reverse a linked list with length 4? Assume 

that the memory access time is 4 cycles. 

 

Fetch: 3 

Prologue: 2 

Loop: 1 + 4 + 4 + 2 (4 iterations) 

Epilogue: 1 

3 + 2 + 4*11 + 1 = 50 cycles 

 

Fetch: 3 

Prologue: 1 + 4 + 1 + 1 

Loop: 4 + 4 + 2 (4 iterations) 

Epilogue: 1 

3 + 7 + 4*10 + 1 = 51 cycles 

 

 

 

2.D (1 point) Implementation Comparison 

 

Compare the performance of your implementation with that of the unpipelined RISC-V core 

from 2.A.  Assume that both processors are using the same memory system, such that the 

unpipelined core has 4x the cycle time of the microcoded machine to accommodate the memory 

latency. 

 

 

1 cycle of the unpipelined core is equivalent to 4 cycles of the microcoded machine. 

 

Reversing a linked list with length 4 takes the unpipelined core 30*4 = 120 equivalent cycles, 

which is 120/50 = 2.4 times longer than the microcoded REVLL instruction.  (This demonstrates 

how a microcoded machine with CPI > 1 can achieve better performance compared to an 

unpipelined implementation clocked at a lower frequency.) 

 

Reversing a linked list with length 4 takes the unpipelined core 32*4 = 128 equivalent cycles, 

which is 128/51 ≈ 2.51 times longer than the microcoded REVLL instruction. 
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State Pseudocode IR 
Ld 

Reg 
Sel 

Reg 
Wr 

Reg 
En 

A 
Ld 

B 
Ld 

ALUOp ALU 
En 

MA 
Ld 

Mem 
Wr 

Mem 
En 

Imm 
Sel 

Imm 
En 

μBr Next State 

FETCH0: MA ← PC; 
A ← PC 

* PC 0 1 1 * * 0 1 0 0 * 0 N * 

 IR ← Mem 1 * * 0 0 * * 0 0 0 1 * 0 S * 

 PC ← A+4 0 PC 1 1 0 * INC_A_4 1 * 0 0 * 0 D * 

…                 

REVLL0: A, B ← R[rs1] 0 rs1 0 1 1 1 * 0 * 0 0 * 0 N * 

 if (A == 0) 

  μBr to FETCH0 

0 * 0 0 0 0 COPY_A 0 * 0 0 * 0 EZ FETCH0 

 B ← A - B (== 0) 0 * 0 0 0 1 SUB 1 * 0 0 * 0 N * 

REVLL1: MA ← A + 4 0 * 0 0 * 0 INC_A_4 1 1 0 0 * 0 N * 

 A ← Mem 0 * 0 0 1 0 * 0 0 0 1 * 0 S * 

 Mem ← B 0 * 0 0 0 0 COPY_B 1 0 1 0 * 0 S * 

 B ← R[rs1] 0 rs1 0 1 0 1 * 0 * 0 0 * 0 N * 

 R[rs1] ← A; 

if (A != 0) 

  μBr to REVLL1 

0 rs1 1 0 0 0 COPY_A 1 * 0 0 * 0 NZ REVLL1 

 μBr to FETCH0 * * 0 0 * * * 0 * 0 0 * 0 J FETCH0 
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State Pseudocode IR 
Ld 

Reg 
Sel 

Reg 
Wr 

Reg 
En 

A 
Ld 

B 
Ld 

ALUOp ALU 
En 

MA 
Ld 

Mem 
Wr 

Mem 
En 

Imm 
Sel 

Imm 
En 

μBr Next State 

FETCH0: MA ← PC; 
A ← PC 

* PC 0 1 1 * * 0 1 0 0 * 0 N * 

 IR ← Mem 1 * * 0 0 * * 0 0 0 1 * 0 S * 

 PC ← A+4 0 PC 1 1 0 * INC_A_4 1 * 0 0 * 0 D * 

…                 

REVLL0: MA ← R[rs1] 0 rs1 0 1 * * * 0 1 0 0 * 0 N * 

 A ← Mem 0 * 0 0 1 * * 0 0 0 1 * 0 S * 

 MA, B ← A; 

R[rs1] ← A; 

if (A == 0) 

  μBr to FETCH0 

0 rs1 1 0 0 1 COPY_A 1 1 0 0 * 0 EZ FETCH0 

 B ← A - B (== 0) 0 * 0 0 * 1 SUB 1 0 0 0 * 0 N * 

REVLL1: A ← Mem 0 * 0 0 1 0 * 0 0 0 1 * 0 S * 

 Mem ← B 0 * 0 0 0 0 COPY_B 1 0 1 0 * 0 S * 

 B ← R[rs1] 0 rs1 0 1 0 1 * 0 * 0 0 * 0 N * 

 R[rs1], MA ← A 

if (A != 0) 

  μBr to REVLL1 

0 rs1 1 0 1 0 COPY_A 1 1 0 0 * 0 NZ REVLL1 

 μBr to FETCH0 * * 0 0 * * * 0 * 0 0 * 0 J FETCH0 
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Microcoding Reference Material 

 
Arithmetic Logic Unit: 

ALUOp ALU Result Output 
COPY_A A 
COPY_B B 
INC_A_1 A+1 
DEC_A_1 A-1 
INC_A_4 A+4 
DEC_A_4 A-4 
ADD A+B 
SUB A-B 
SLT Signed(A) < Signed(B) 
SLTU A < B 

Immediate Selector: 
Five immediate types are supported by ImmSel: ImmI, ImmU, ImmS, ImmJ, and ImmB. 

 

Microbranches: 
The μBr column represents a 3-bit field with six possible values: N, J, EZ, NZ, D, and S. 

● N (next): The next state is simply (current state + 1).  

● J (jump): The next state is unconditionally the state specified in the Next State column (i.e., it’s 
an unconditional microbranch).  

● EZ (branch-if-equal-zero): The next state depends on the value of the ALU’s zero output signal 

(i.e., a conditional microbranch). If zero is asserted (𝑧𝑒𝑟𝑜 = 1), then the next state is that 

specified in the Next State column, otherwise, it is (current state + 1). 

● NZ (branch-if-not-zero): This behaves exactly like EZ but instead performs a microbranch if zero 

is not asserted (𝑧𝑒𝑟𝑜 ≠ 0). 

● D (dispatch): The FSM looks at the opcode and function fields in the IR and goes to the 

corresponding state. 

● S (spin): The μPC stalls if busy? is asserted; otherwise, it goes to (current state +1) 

 

 
IR 

 
 A 

 
 B 

 

 

32 
GPRs 
+ PC 

(32-bit) 

RegWr 

RegEn 

MemWr 

MemEn 

MA 

addr addr 

data data 

rs2 
rs
1 

  1(RA) 

RegSel 

 

 

 

Memory 

zero? 

 

ALUOp 

Opcode 

rd 

32(PC) 

busy? 

lRLd 

IntRq 

 

Bus 

ALd BLd 

MALd 

ALU 

ALUEn 

Immed 
Select 

ImmEn 

ImmSel 
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Problem 2: (14 points) Skewed-Associative Caches (CS252) 

 

A skewed-associative cache uses a hash function on the index bits of the address to determine the 

cache set that it belongs to. Each way of a skewed associative cache uses a unique hash function. 

 
 

 

2.A (3 points) 

Describe a code sequence that demonstrates higher performance on a skewed-associative cache 

than on an equivalent set-associative cache. 

 

A sequence of constant-stride accesses that have the same index bits conflicts in a regular set-

associative cache, whereas the hash function of a skewed-associative cache uniformly distributes 

the lines among all sets. 

 

 

 

 

2.B. (3 points) 

Describe a code sequence that demonstrates reduced performance on a skewed-associative cache 

than on an equivalent set-associative cache. 

 

An access pattern which causes only compulsory misses in a set-associative cache or consists of 

all different indices (such as lines in close spatial proximity) may conflict in a skewed-

associative cache due to hash collisions. 
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2.C (4 points) 

Explain why a skewed-associative cache is typically implemented with unique hashing functions 

for each way of the cache. In other words, what is the advantage of using a unique hashing 

function for each way of the cache, compared to a single hashing function for all ways? 

 

This is the concept of inter-way dispersion, or “inter-bank dispersion” as discussed in the 
original Seznec paper.  Two cache lines which conflict in one way of the cache would not 

conflict in the other ways.  This avoids cache thrashing behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.D (4 points) 

Explain how virtual memory aliasing can be prevented in a skewed-associative cache when part 

of the virtual page number is used for the index bits. 

 

The usual anti-aliasing mechanisms for a VIPT cache also apply here: 

• On a miss, probe all sets in which aliases can potentially be located.  If n bits of the VPN 

overlap with the index, there are 2n indices through which an alias may exist.  Hash each 

possibility and evict the corresponding line if present. 

• Use a physically-indexed inclusive L2 cache to store the VPN bits that are part of the L1 

index or the hash itself.  On an L1 miss that hits in the L2, evict the line from the L1 that 

the L2 entry identifies. 

• Rely on the OS to ensure that all virtual pages which map to the same physical page 

match in the VPN bits that overlap with the cache index (page coloring). 
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Problem 3: (26 Points) Pipelining 

Note: The solutions for the alternate version of this question are at the end. 
 

Note: The questions in 3.B, 3.C, and 3.D can be answered independently of each other. 

 

Consider the standard fully-bypassed 5-stage RISC pipeline.  

 

● A simple static branch predictor which always predicts PC+4 (branch not taken) in the 

Fetch stage (not-taken branches do not induce bubbles) 

● Unconditional direct jumps (JAL) redirect from the Decode stage 

● Conditional branches and unconditional indirect jumps (JALR) redirect from the Execute 

stage 

● Bypass paths bypass into the operand registers before the Execute stage (the bypass 

select muxes are in the Decode stage) 

 

The subsections of this question will consider the execution of the following loop on this 

pipeline. 

 

1 loop: beq a1, x0, end 

2  lw t0, 0(a0) 

3  sw t0, 0(a1) 

4  addi a0, a0, 0x8 

5  lw a1, 4(a1) 

6  j loop 

7 end:  

 

 

3.A Basic Pipelining 

 

3.A.i (4 points) Pipeline diagram 

Complete the pipeline diagram for the first iteration of this loop (all instructions in the table). 

 

beq F D X M W              

lw  F D X M W             

sw   F D D X M W           

addi    F F D X M W          

lw      F D X M W         

j       F D X M W        

beq         F D X M w      
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3.A.ii: (2 points) CPI  

Compute the CPI of the loop as the number of iterations approaches infinity. 

 

Count number of cycles between two branches in different iterations 

8 / 6 

 

 

3.B: Improving Performance 
 

3.B.i: (3 points) Bypass paths 

Is there a bypass path you can add to improve the CPI of this code? If so, describe the bypass, 

and the new CPI as the number of iterations approaches infinity? Otherwise, explain why not. 

 

Bypass load data at the end of the M stage into the store data wire at the end of the X stage. 

This avoids the load-use-delay between the LW and the SW which writes that data into memory. 

New CPI is 7 / 6 

 

3.B.ii: (3 points) Load-delay slots 

Instead of adding a bypass path, you decide to introduce a load-delay slot to this architecture. 

Describe how to modify the code to take maximum advantage of the load-delay slot, and 

calculate the new CPI. 

 

Reorder the addi instruction after the load. This avoids the load-use-delay as well. 

New CPI is 7 / 6 
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3.C CISC Instructions 
 

Instead of adding any of the features in Q3.B, you instead decide to add support for a new 

instruction to improve the performance of this code sequence. The new instruction you add is 

MMOV: memory-memory move. 

 

MMOV: memory-memory move 

M[R[rs2]] = M[R[rs1]] 

 

To support this new instruction, you redesign the pipeline to be IF,ID,EX,LD,ST/WB. Now 

stores are performed in parallel with writeback, while loads are still performed in the 4th stage.  

 

3.C.i (3 points) Structural Hazards 

Does the pipeline modification introduce new structural hazards into the machine? If so, describe 

the hazard, provide a code example that demonstrates the hazard, and suggest a modification that 

resolves this hazard with minimal performance penalty. If not, explain why. 

 

Structural hazard on access to memory, as a two instruction sequence 

 

SW 

LW 

 

will have both instructions trying to access the data memory through the ST, LD stages 

respectively.  

 

Interlocking only when there is back-to-back SW/LW will resolve this. 

Alternatively, making the data memory dual ported will remove the structural hazard. 

 

3.C.ii (3 points) Data Hazards 

After resolving the structural hazard, if any, does the pipeline modification still introduce new 

data hazards into the machine? If so, describe the hazard, provide a code example that 

demonstrates the hazard, and suggest a modification that resolves this hazard with minimal 

performance penalty. If not, explain why. 

 

If interlock was suggested for resolving the structural hazard, then no data hazard is possible. 

If dual-porting was suggested, then there is potential for RAW through memory. Need to bypass 

store data in ST stage to load data output in LD stage when store address and load address match. 

 

3.C.iii (3 points) Control Hazards 

After resolving the structural and data hazards, if any, does the pipeline modification still 

introduce new control hazards into the machine? If so, describe the hazard, provide a code 

example that demonstrates the hazard, and suggest a modification that resolves this hazard with 

minimal performance penalty. If not, explain why. 

 

No control hazard, since handling of branch/jump instructions are not affected, and they are all 

done in the F/D/X stages. 
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3.C.iv (3 points) Precise exceptions 

Does the pipeline still support precise exceptions after this modification? If not, provide a code 

example demonstrating a case where precise exceptions are not possible, and suggest an 

interlock to preserve precise exceptions with minimal performance penalty. If yes, explain why. 

 

 

Yes, the pipeline still supports precise exceptions. Register writes and stores still happen behind 

the commit point. Alternatively, if the assumption that the misaligned store address detection 

were moved to ST as well, then the commit point would be in WB instead of MEM. 

Both yes or no were accepted with sufficient justification 

 

 

3.C.v (2 points) CISC CPI 

Given your answers to i-iv above, what is the peak CPI the instruction sequence can achieve 

when modified to use your new CISC instruction? 

 

This eliminates the load-use delay, as well as the additional cycle to retire the store.  

So cycles is reduced by 2, and instructions is reduced by 1. 

 

6/5 CPI 
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Problem 3: (26 Points) Pipelining 
 

Note: The questions in 3.B, 3.C, and 3.D can be answered independently of each other. 

 

Consider the standard fully-bypassed 5-stage RISC pipeline.  

 

● A simple static branch predictor which always predicts PC+4 (branch not taken) in the 

Fetch stage (not-taken branches do not induce bubbles) 

● Unconditional direct jumps (JAL) redirect from the Decode stage 

● Conditional branches and unconditional indirect jumps (JALR) redirect from the Execute 

stage 

● Bypass paths bypass into the operand registers before the Execute stage (the bypass 

select muxes are in the Decode stage) 

 

The subsections of this question will consider the execution of the following loop on this 

pipeline. 

 

1 loop

: 

lw t0, 0(a0) 

2  lw t1, 0(a2) 

3  sw t0, 0(t1) 

4  addi a0, a0, 0x8 

5  lw a2, 4(a2) 

6  bne a2, a1, loop 

7 end:  

 

 

3.A Basic Pipelining 

 

3.A.i (4 points) Pipeline diagram 

Complete the pipeline diagram for the first iteration of this loop (all instructions in the table). 

 

lw F D X M W              

lw  F D X M W             

sw   F D D X M W           

addi    F F D X M W          

lw      F D X M W         

bne       F D D X M W       

lw           F D X M W    

 

  



Q3-6 

 

 

3.A.ii (2 points) CPI  

Compute the CPI of the loop as the number of iterations approaches infinity. 

 

Count number of cycles between two branches in different iterations 

10 / 6 

 

 

 

 

3.B Improving Performance 
 

3.B.i (3 points) Bypass paths 

Is there a bypass path you can add to improve the CPI of this code? If so, describe the bypass, 

and the new CPI as the number of iterations approaches infinity? Otherwise, explain why not. 

 

Yes. Bypass load data in M stage to store address in X stage if offset of ST instruction is decoded 

to be 0. This eliminates the load-use delay. 

CPI is 9 / 6 

 

3.B.ii (3 points) Load-delay slots 

Instead of adding a bypass path, you decide to introduce a load-delay slot to this architecture. 

Describe how to modify the code to take maximum advantage of the load-delay slot, and 

calculate the new CPI. 

 

Reorder the loads to remove delays after instructions 2 and 5. 

New order could be 1,2,5,3,4,6 

CPI is 8 / 6 
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3.C: CISC Instructions 
 

Instead of adding any of the features in Q3.B, you instead decide to add support for a new 

instruction to improve the performance of this code sequence. The new instruction you add is 

SWI: store word indirect. 

 

SWI: store word indirect 
M[M[R[rs1]]] = rs2 
 

To support this new instruction, you redesign the pipeline to be IF,ID,EX,LD,ST/WB. Now 

stores are performed in parallel with writeback, while loads are still performed in the 4th stage.  

 

3.C.i (3 points) Structural hazards 

Does the pipeline modification introduce new structural hazards into the machine? If so, describe 

the hazard, provide a code example that demonstrates the hazard, and suggest a modification that 

resolves this hazard with minimal performance penalty. If not, explain why. 

 

Structural hazard on access to memory, as a two instruction sequence 

 

SW 

LW 

 

will have both instructions trying to access the data memory through the ST, LD stages 

respectively.  

 

Interlocking only when there is back-to-back SW/LW will resolve this. 

Alternatively, making the data memory dual ported will remove the structural hazard. 

 

3.C.ii (3 points) Data hazards 

After resolving the structural hazard, if any, does the pipeline modification still introduce new 

data hazards into the machine? If so, describe the hazard, provide a code example that 

demonstrates the hazard, and suggest a modification that resolves this hazard with minimal 

performance penalty. If not, explain why. 

 

If interlock was suggested for resolving the structural hazard, then no data hazard is possible. 

If dual-porting was suggested, then there is potential for RAW through memory. Need to bypass 

store data in ST stage to load data output in LD stage when store address and load address match. 

 

 

3.C.iii (3 points) Control hazards 

After resolving the structural and data hazards, if any, does the pipeline modification still 

introduce new control hazards into the machine? If so, describe the hazard, provide a code 

example that demonstrates the hazard, and suggest a modification that resolves this hazard with 

minimal performance penalty. If not, explain why. 

 

No control hazard, since handling of branch/jump instructions are not affected, and they are all 

done in the F/D/X stages. 
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3.C.iv (3 points) Precise exceptions 

Does the pipeline still support precise exceptions after this modification? If not, provide a code 

example demonstrating a case where precise exceptions are not possible, and suggest an 

interlock to preserve precise exceptions with minimal performance penalty. If yes, explain why. 

 

 

The pipeline can be made to support precise exceptions with minimal changes. The only 

difference would be that the commit point would be in the WB/ST stage, to catch bad addresses 

generated by the load in SWI that will be caught in the ST stage. 

Both yes and no were accepted, with sufficient explanation. 

 

 

 

 

 

 

 

 

 

3.C.v (2 points) CISC CPI 

Given your answers to i-iv above, what is the peak CPI the instruction sequence can achieve 

when modified to use your new CISC instruction? 

 

This eliminates the load-use delay, as well as the additional cycle to retire the store.  

So cycles is reduced by 2, and instructions is reduced by 1. 

 

8/5 CPI 
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Problem 4: (14 Points) Prefetching 
 

We now consider the execution of the following C code, which sums across the columns of a 2D 

array stored in row-major order. Row-major order means that elements in the same row of the 

array are adjacent in memory, i.e., A[i][j] is next to A[i][j+1]. The array elements are 32-bit 

integers. 

 
int A[N][M]; // N = 32, M = 256 // alternate: N = 64, M = 128 

int sum = 0 

for (int j = 0; j < M; j++) { 

 for (int i = 0; i < N; i++) { 

  sum += A[i][j]; 

 } 

} 

 

 

4.A (2 points) Cache design 

Consider an 8-way set-associative cache with 16-byte cache lines and LRU replacement. What is 

the minimum number of sets that this cache needs such that this code will only produce 

compulsory misses? 

Note: The alternate exam specified a 4-way set-associative cache with 32-byte cache lines. 

 

If only compulsory misses are allowed, then the first N accesses (loading the first column across 

many cache lines) must not cause any evictions, since subsequent accesses would be to those (32 

* 64) / 8same cache lines.  

 

● Since our replacement policy is ideal, the first N / (8 ways) = 4 accesses should fall in 

one way of the cache.  

● Each row of the matrix corresponds to (256 * 4 / 16 = 64) cache lines. So two 

consecutive accesses in the same column stride over 64 rows.  

● Thus the first 4 accesses stride over 4 * 64 entries that map to consecutive sets. 

● In total, we need 256 sets to avoid conflicts. 

 

● Since our replacement policy is ideal, the first N / (4 ways) = 16 accesses should fall in 

one way of the cache.  

● Each row of the matrix corresponds to (128* 4 / 32 = 16) cache lines. So two consecutive 

accesses in the same column stride over 16rows.  

● Thus the first 16 accesses stride over 16 * 16 entries that map to consecutive sets. 

● In total, we need 256 sets to avoid conflicts. 

 

4.B (2 points) VIPT 

Suppose the cache is virtually indexed and physically tagged.  Does the number of sets you 

derived in 4.A introduce a virtual aliasing issue assuming a 4 KiB page size?  Briefly explain. 

 

256 sets * 16 bytes per line <= 4096 B page size, so no aliasing 

 

256 sets * 32 bytes per line > 4096 B page size, so aliasing exists 

 

  



Q4-2 

 

 

4.C (3 points) Software prefetcher 

You would like to reduce the frequency of compulsory misses in this code by adding software 

prefetching instructions. You measure the L1 miss penalty to be 40 cycles. When the prefetch 

instruction is replaced with a NOP, the first 32 iterations of the inner loop each take 50 cycles to 

complete. What should the OFFSET of the prefetch instruction be to maximize timeliness? 

 

Note: The alternate version had L1 miss penalty = 60 cycles, and each iteration taking 70 cycles 

 
int A[N][M]; // N = 32, M = 256 // alternate: N = 64, M = 128 

int sum = 0; 

for (int j = 0; j < M; j++) { 

 for (int i = 0; i < N; i++) { 

        prefetch(&A[i][j] + OFFSET); // prefetches from (A + M*i + j + OFFSET) 

  sum += A[i][j]; 

 } 

} 

 

If the prefetcher behaved perfectly, then the inner loop would take 50 - 40 = 10 cycles per 

iteration. Thus, if prefetched data is expected to return in 40 cycles, then we want to fetch 40 / 10 

= 4 iterations ahead. So OFFSET would be 4 * 256 

 

If the prefetcher behaved perfectly, then the inner loop would take 70 - 60 = 10 cycles per 

iteration. Thus, if prefetched data is expected to return in 60 cycles, then we want to fetch 60 / 10 

= 6 iterations ahead. So OFFSET would be 6 * 128 

 

4.D (4 points) Software prefetching and virtual memory 

After adding software prefetching, you notice that performance degrades significantly when 

running in user mode (with virtual memory) compared to running in physical mode (no virtual 

memory). Assume the L1 cache has a fully-associative TLB with 4 entries and LRU 

replacement, the page size is 4 KiB, and that array A is aligned to a page boundary. Suggest a 

reason why performance degrades under virtual memory and describe a potential solution that 

retains the same TLB design. 
 

Technically, the only degradation would be caused by the penalty of prefetching pages off the bottom of 

the array. However, since TLB misses are unavoidable in this problem setup (TLB reach < array size), the 

prefetch instructions would have likely improved performance overall, as it might be able to prefetch into 

the TLB a PTE before the corresponding page is accessed.  

 

Only if the PTW were blocking, and for some reason the prefetcher could not prefetch TLB entries, then 

the additional spurious PTWs off the bottom of the array would have overall degraded performance. 

 

If the TLB reach were exactly equal to the array size, then the only degradation would be due to 

prefetching useless elements off the end of the array. This could be resolved by preventing prefetched 

TLB entries from evicting old entries, perhaps with a “Victim TLB”, or by modifying SW to avoid 

prefetching off the bottom edge. 

 

Note that if the TLB reach were greater than the array size, then the prefetched page would likely have no 

effect, as LRU replacement would prevent it from evicting the recently used useful pages. 
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4.E (3 points) Hardware prefetching and virtual memory 

You realize this code has a very regular memory access pattern and thus is amenable to hardware 

prefetching. You implement a stride-based hardware prefetcher that observes L1 misses to 

DRAM and continues to prefetch along a sequence of regularly strided accesses. While your 

prefetcher behaves well when the code is run in physical mode (no virtual memory), you find 

that performance is abysmal when the code is run in user mode (with virtual memory). Suggest a 

reason why. 

 

Discontinuity between virtual pages and physical pages. 

Contiguous virtual pages are not guaranteed to map to contiguous physical pages. 
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Problem 5: (12 Points) Virtual Memory 
 

Consider a page-based virtual memory system with 64-byte pages and 4-byte PTEs. The VPN is 

8 bits wide. A two-level page table scheme uses the upper 4 bits of the VPN for the level 1 index 

and the lower 4 bits as the level 2 index. The TLB is 4-way fully-associative. A hardware page 

table walker (PTW) performs page table walks on a TLB miss. 

 

Note: The alternate version of the exam had 128-byte pages with 8-byte PTEs. This only affects 

the answer for 5.A. 

 

Consider the following code, which sequentially traverses every byte in the virtual address space. 
 

void traverse() { 

   char *t = (char *) 0x0; 

   while (t < MAX_VADDR) { 

     char l = *t; 

     t += 1; 

   } 

} 

 

5.A (4 points) Hierarchical page table 

After executing the code above, what is the total size of the page table, and how many accesses 

to data memory did the PTW make? Assume that no pages are initially allocated in the page 

table. 

L1 page table size = L2 page table size =  (2^4) * PTE size 

Total page table size = L1 page table size + Number of L2 page tables * L2 page table size 

= (2^4 + 2^8) * PTE size (4 or 8 depending on version of the exam) 

 

PTW makes 3 accesses per fault when the L2 page table for the VPN has not been allocated yet 

● 1. Fetch PTE to L2 page table in L1 page table 

● PTE is invalid, since page has not been allocated yet 

● OS handles page fault, allocates L2 page table, allocates page for requested virtual page 

● Jump back into user program to re-execute faulting instruction 

● 2. Fetch PTE to L2 page table in L1 page table 

● 3. Fetch PTE to leaf PTE in L2 page table 

 

PTW makes 4 accesses per fault when the L2 page table for the VPN has already been allocated 

● 1. Fetch PTE to L2 page table in L1 page table 

● 2. Fetch leaf PTE in L2 page table 

● PTE is invalid, since page has not been allocated yet 

● OS handles page fault, allocates page for requested virtual page 

● Jump back into user program to re-execute faulting instruction 

● 3. Fetch PTE to L2 page table in L1 page table 

● 4. Fetch leaf PTE in L2 page table 

 

The first case happens 2^4 times, for the first fault for a virtual page in each L2 page table 

The second case happens 2^4 * (2^4 - 1) times, for each subsequent virtual page in an already 

allocated L2 page table. 

 

Total PTW accesses = 3 * 2^4 + 4 * (2^8 - 2^4) 
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5.B (4 points) L2 TLB 

We now add a 16-entry fully-associative L2 TLB with LRU replacement. Unlike the normal 

“L1” TLB, the L2 TLB caches both leaf and hierarchical PTEs and is searched by the PTW 
before accessing data memory. How many requests does the PTW make to memory with an L2 

TLB? Assume that no pages are initially allocated in the page table. 

 

The difference is the second case from above. In the second case, the accesses to the PTE to the 

L2 page table would hit in the L2 TLB. 

 

PTW makes 3 accesses per fault when the L2 page table for the VPN has already been allocated 

● Fetch PTE to L2 page table in L1 page table.  

○ This hits in the L2 TLB, since the first access to the first page in this L2 page 

table would have gone before us, and brought this PTE into the L2 TLB 

● 1. Fetch leaf PTE in L2 page table 

● PTE is invalid, since page has not been allocated yet 

● OS handles page fault, allocates page for requested virtual page 

● Jump back into user program to re-execute faulting instruction 

● Fetch PTE to L2 page table in L1 page table,  

○ This hits in the L2 TLB, for the same reason as above 

● 2. Fetch leaf PTE in L2 page table 

 

We never have to worry about evictions from the L2 TLB, since we are accessing pages 

sequentially. 

 

Total PTW accesses = 3 * 2^4 + 2 * (2^8 - 2^4) 
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5.C (4 points) AMAT with virtual memory 

Derive an expression to approximate AMAT for this code, accounting for the additional delay 

from page table walks and the additional delay when the OS is executing the page fault handler. 

Assume that no pages are initially allocated in the page table. You may reference the following 

variables in your formula: 

  

● W – ways in cache 

● S – sets in cache 

● L – bytes per cache line 

● P – bytes per page 

● T – L1 hit time 

● N – L1 miss penalty 

● R – average PTW memory requests per TLB miss 

● H – PTW L1 hit rate 

● K – average time for OS to service a page fault 

 

AMAT = Hit Time + Avg Penalty from Cache Misses + Avg Penalty from TLB misses + Avg 

Penalty from Page Faults 

● Average penalty from cache misses = L1 miss rate * L1 miss penalty 

○ L1 miss rate = 1 / L, since only compulsory misses in sequential access pattern 

● Average penalty from TLB misses = TLB miss rate * TLB miss penalty 

○ TLB miss rate = 1 / P, since only compulsory misses to the TLB in sequential 

access pattern 

○ TLB miss penalty = Average PTW requests per TLB miss * AMAT for the PTW 

■ AMAT for PTW = L1 hit time + PTW L1 miss rate * L1 miss penalty  

= T + (1 - H) * N 

● Average penalty from page faults = page fault rate * page fault penalty 

○ Page fault rate = 1 / P, since the first access to a page will cause a fault 

 

Average penalty from cache misses = N / L 

 

Average penalty from TLB misses = R * (T + (1 - H) * N) / P 

 

Average penalty from page faults = K / P 

 

Total AMAT = T + (N / L) + (R * (T + (1 - H) * N) / P) + (K / P) 

 


