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Q1. [15 pts] Iron Law: Doesn’t Bend or Break
(a) [5 pts] What are the tradeoffs if we add support for the following CISC instruction by turning our 5-stage RISC pipeline

into a 6-stage pipeline, with a second decode stage after the original decode stage?
The instruction:

MEMADD rd, rs1, rs2

Its functionality:

M[R[rd]] = R[R[rs1]] + R[R[rs2]]

The proposed way of implementing this instruction is the following:

• Read R[rs1], R[rs2], and R[rd] from the register file.
• Read R[R[rs1]] and R[R[rs2]] from the register file.
• Compute R[R[rs1]] + R[R[rs2]].
• Store the above result into memory, i.e. into M[R[rd]].

Important assumptions:
Assume the register file supports at most 3 reads at a time.
Assume the instruction is only given inputs that make it execute correctly (no edge cases or exceptions).
For each of the following terms of the Iron Law, state whether the term will Increase, Decrease, or No Change and
explain why with at most 2 sentences.

(i) Instructions / program
# Increase
 Decrease
# No Change

Decrease. Rather than writing out multiple RISC instructions that accomplish the same functionality,
we can call this single CISC instruction.

(ii) Cycles / instruction
 Increase
# Decrease
# No Change

Increase. We will likely have to stall more often due to multiple instructions wanting to read from
the register file. This is a structural hazard that can be solved by stalls in our case, which increases
our CPI. OR: Increase, since having an additional pipeline stage will result in a larger penalty on a
branch mispredict. (NOTE: In this question, we assume that we cannot add more read ports to the
register file).
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(iii) Time / cycle
 Increase
# Decrease
 No Change

Increase. The decode stage may take longer than before in order to include the more complex logic of
decoding this CISC instruction. OR: No change, if the decode stage even with the added complexity
is still less than the longest stage (e.g. potentially memory).

For the following subparts in this question, assume the RISC-V pipeline currently only has support for decoding floating point
instructions but not actually executing them. For example, if the programmer writes a floating point instruction, the instruction
will currently be equivalent to a NOP (no operation).

In this question, we’ll consider the tradeoffs in how we might be able to add a floating point unit to the RISC-V pipeline in order
to actually be able to execute floating point instructions.

(b) [5 pts] What are the tradeoffs if we add an unpipelined floating point unit to the RISC-V pipeline?
For each of the following terms of the Iron Law, state whether the term will Increase, Decrease, or No Change and
explain why with at most 2 sentences.

(i) Instructions / program

# Increase
# Decrease
 No Change

No change. Adding an FP unit affects the pipeline, not the program. OR: Decrease. We can replace
software float emulation with less FP instructions.

(ii) Cycles / instruction

# Increase
# Decrease
 No Change

No change. The FP unit can be added in parallel with the ALU in the execute stage without changing
the number of cycles per instruction.
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(iii) Time / cycle

 Increase
# Decrease
# No Change

Increase. Since the FP unit is unpipelined, all stages must take at least as long as the FP unit. Due to
the FP unit’s complexity, this will likely increase the time per stage (time per cycle). OR: No change.
If the FP unit is not very complex and has low throughput, then adding it may not actually impact the
critical path, resulting in no actual change to the time per cycle.

(c) [5 pts] What are the tradeoffs if we add a pipelined floating point unit to the RISC-V pipeline?
For each of the following terms of the Iron Law, state whether the term will Increase, Decrease, or No Change and
explain why with at most 2 sentences.

(i) Instructions / program

# Increase
# Decrease
 No Change

No change. Adding an FP unit affects the pipeline, not the program. OR: Decrease. We can replace
software float emulation with less FP instructions.

(ii) Cycles / instruction

 Increase
# Decrease
# No Change

Increase. Adding the FP unit will result in more pipeline stages. As a result, on FP data hazards,
we will likely need to stall for stages than before, thus increasing CPI. (Note: We could potentially
add bypassing or earlier writeback for integer instructions compared to FP instructions, therefore not
impacting the latency of integer instructions.)

(iii) Time / cycle

# Increase
# Decrease
 No Change

No change. Since the FP unit is pipelined, we can maintain the time per cycle by increasing the
number of stages in the pipeline to accommodate the FP unit taking longer (but this time, pipelined!).
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Q2. [15 pts] ISAs (oh my)
Suppose we have the following program:

int remainder(int a, int b) {
while (a >= b) {

a = a - b;
}
return a;

}

For a RISC architecture, Our RISC-V compiler generates the following assembly code:

loop:
blt x1, x2, done
sub x1, x1, x2
j loop

done:
...

Meanwhile, our Stack architecture includes the following instructions:
add Instruction Definition
PUSH addr load value at addr; push value onto stack
POP addr pop stack; store value to addr

SLT pop two values from the stack;
if the first is less than the second, push 1 onto the stack, else push 0

SUB pop two values from the stack; subtract the second from the first;
push result onto stack

BNEZ label pop value from stack; if it’s not zero, branch to label;
else, continue with next instruction

JUMP label continue execution at location label

Our stack compiler generates the following assembly code (assume a is initially stored at 0x8000 and b is initially stored at
0x8004:

loop:
PUSH 0x8004
PUSH 0x8000
SLT
BNEZ done
PUSH 0x8004
PUSH 0x8000
SUB
POP 0x8000
JUMP loop

done:
...

Assume that RISC-V instructions are 4 bytes each. Assume a Stack instruction occupies three bytes if it takes an address or
label; other instructions occupy one byte. Assume data vales are 4 bytes each.
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(a) [2 pts] How many bytes is the RISC program?

# 10

 12

# 14

# 16

(b) [2 pts] How many bytes is the Stack program?

# 13

# 73

 23

# 33

Assume a=7 and b=3.

(c) [2 pts] How many instruction bytes are fetched in the RISC program?

# 18

# 24

 28

# 36

(d) [2 pts] How many instruction bytes are fetched in the Stack program?

# 33

# 52

# 46

 56

(e) [2 pts] How many data bytes are loaded/stored in the RISC program?

 0

# 16

# 32

# 40

(f) [2 pts] How many data bytes are loaded/stored in the Stack program?

# 16

# 32

 48

# 52
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(g) [3 pts] Which ISA is better for the given implementations?

 RISC
# Stack
# Both are equally good

Use the Iron Law to justify your answer in at most 2 sentences.

The RISC program has less instructions per program compared to the Stack program, assuming that
CPI and time per cycle is equivalent for both. Thus, the RISC program will take less time and be
faster than the Stack version of the program.
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Q3. [30 pts] Pipelining: Bypass Extravaganza
We introduce the Address Generation Interlock (AGI) pipeline below, which eliminates the load-use hazard of our more con-
ventional Load-Use Interlock (LUI) pipeline. In turn, we deal with an address generation hazard, which warrants the address
generation bypass path. In this problem, we will analyze the performance of this pipeline.

Parts (a) through (c) in this problem will be analyzing the following code snippet applied on the AGI pipeline. Register s0
holds the address of an array whose elements are addresses that point randomly to other elements of the array. Assume that the
register file does not support reading the new value of a register in the same cycle that it is being written, and that none
of the load operations access memory outside of the array bounds.

add t2, x0, s0
addi t1, x0, 0
addi t0, x0, 100 # Runs for 100 iterations

LOOP: lw t2, 0(t2)
lw t2, 0(t2)
addi t1, t1, 1
bne t0, t1, LOOP

(a) [2 pts] What does the code snippet above seem to be doing?

# Vector addition
# Computing the sum of array elements
 Pointer chasing
# Initializing a C struct

(b) Analyze the code on the AGI pipeline. Assume that the address generation bypass has not been added to the pipeline
for this part. We will be working with an always-taken branch predictor. Assume memory accesses take one cycle.

(i) [6 pts] Fill in the pipeline diagram on the following page for TWO iterations of the loop, assuming that the branch
condition evaluates to true both times.

(ii) [3 pts] What is the CPI (cycles per instruction) for the 100 iterations of the loop on the AGI pipeline? (Do not
include the initial add and addi instructions.)

6∕4
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(c) We now add the address generation bypass path to the pipeline. We still use an always-taken branch predictor, and we
assume memory accesses take one cycle.

(i) [2 pts] What hazard(s) does the address generation bypass path resolve?
□ Structural
■ Data
□ Control

(ii) [4 pts] What is the CPI (cycles per instruction) for the 100 iterations of the loop on the AGI pipeline after adding
the address generation bypass path? (Do not include the initial add and addi instructions.) For your convenience,
we have provided another pipeline diagram two pages ahead as scratch space, but it will not be graded.

5∕4

(d) [5 pts] In which of the following independent scenario(s) might we prefer the AGI pipeline over our conventional LUI
pipeline? Assume that if our data cache memory accesses take N cycles, then we pipeline the MEM stage N times.
Give a maximum total three sentence justification on your selection(s). Below is a diagram of the LUI pipeline. Answer
options continue on the next page.

Below are diagrams for the AGI and LUI pipelines respectively that illustrates a multiple cycle (thus, pipelined) MEM
stage.

SID: ________________________ 12



■ With perfect branch prediction

□ When we need to consume less area with our design

■ When data cache memory accesses take multiple cycles, paired with good branch prediction

□ None of the above

Because branch resolution is in a later stage for the AGI pipeline, this adds an extra cycle of delay for
mispredicted branches and necessitates a good branch predictor. When we need to use the result of a
load, we must stall N cycles for the LUI pipeline, but we can use it immediately for the AGI pipeline.

(e) Consider the following code snippet:

lw t1, 0(t2)
addi t2, t2, 0x100

(i) [3 pts] Suppose that the lw instruction raises a memory address exception, while the addi instruction raises an
integer overflow exception. For which of the following pipeline designs would this code snippet cause an imprecise
exception to occur? Select all that apply.
Assume that exceptions are handled immediately when they are raised and if two exceptions are raised simultane-
ously, then the exception corresponding to the earlier instruction is prioritized.
□ A single cycle non-pipelined machine
□ The AGI pipeline above
■ A modified LUI pipeline with the MEM stage split into M1 and M2 stages (memory writes and exceptions

occur in M2)
□ None of the above

(ii) [5 pts] Which of the following hardware modifications would add precise exception support to the design(s) that
raised imprecise exceptions? Select all that apply. Assume that all modifications you select will be implemented in
conjunction.
Give a maximum total two sentence justification on how your selected modification(s) would resolve the imprecise
exception(s).
□ Stall throwing ALU-related exceptions by one cycle
■ Hold exception flags in pipeline until commit point
□ Add an additional read port to the regfile and to memory
□ None of the above: all pipelines support precise exceptions for this code snippet

The issue is that the X stage exception gets thrown before the MEM stage exception because of the
extra M1 stage, so we should hold the flags in a pipeline to preserve the chronology, and finally
throw the exception when we reach the commit point, which is M2. Though stalling the ALU-related
exception would help us just for this code snippet instance, it lends to other imprecise exception issues,
and the additional read port is just wasteful for this scenario.
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Q4. [30 pts] Make More Cache
(a) [3 pts] Given a 2-way set associative 256 byte L1 cache that has an 8-bit address and 32 byte cache lines in a byte-

addressable system, how many bits would correspond to the tag, index, and offset for this cache?
(i) Tag

1

(ii) Index

2

(iii) Offset

5

(b) [8 pts] Like you did in Homework 2, fill in the following table with the hexadecimal tags that populate each cache line.
We will not grade the contents of the table and will only grade your answer to part (i) below the table.
Assume an initially empty 2-way set-associative L1 cache with a FIFO replacement policy, independent from the cache
discussed in Part (a). Assume that we fill Way 0 before Way 1. The address with respect to the L1 cache has the following
division: 3 bit tag, 1 bit index, and 4 bit offset.

Cache Access Table

Address Set 0, Way 0 Set 0, Way 1 Set 1, Way 0 Set 1, Way 1 Hit (Y/N)

0b1000 1000 (A) 0𝑥4
N

0b0000 0000
0𝑥0 N

0b1000 0010 (B) Y

0b0101 0010
0𝑥2 N

0b0001 0000 (F)
0𝑥0 N

0b0100 0000 (H) 0𝑥2 (C)
N

0b1000 1101 (D) 0𝑥4
N

0b0010 0000
0𝑥1

(G) N

0b0011 0000 (E) 0𝑥1
N

(i) What are the hexadecimal tags or hit values (in Y/N) for the cells labeled as A-H?

(A) 0x4 (B) Y (C) 0x0 (D) 0x4 (E) 0x1

(F) 0x0 (G) N (H) 0x2

(c) [2 pts] Determine the average memory access time (AMAT) of the following program description. Assume the hit time
of the L1 cache is 4ns and the L2 access time is 20ns. Of your 10 memory accesses, 2 are L1 hits. Assume all L1 misses
are resolved in the L2.
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Only your answer in the small box will be graded; you may use the bigger box on the next page for work, but it will
not be graded.

20 ns

AMAT = HitTime + MissRate * MissPenalty
AMAT = 4ns + (8/10)*20ns = 4 + 16 = 20ns
AMAT = 20ns

(d) [4 pts] Now let’s consider the effect of adding a miss cache to our cache hierarchy. A miss cache, similar to a victim cache,
is a small, fully associative cache that is placed between the L1 and L2 caches. When a cache line is first requested, it is
placed in the miss cache instead of the L1 cache. If the L1 cache misses on the line again while it is still present in the
miss cache, it is moved into the L1 cache.
When an address is requested, the processor first checks the L1 cache for the line, then the miss cache, and then, the L2
cache.
Additionally, the L1 cache and miss cache are exclusive. That is, you will not find the same cache line present in both the
miss cache and the L1 cache — a line may exist in at most one cache at a time.

L1$ L2$Miss $

Time 0: Request Address A

M[A]M[A]

L1$ L2$Miss $

Time 1: Request Address A (again)

M[A]M[A]M[A]

Move data into
miss cache

Remove from miss $,
move into L1$

Miss $ is empty at Time 2

Select all that apply for what is true about a miss cache.

□ A miss cache naturally adheres to the following replacement policies: MRU (most recently used), when moving
data to the L1, and FIFO (first-in-first-out), when evicting due to full capacity.
□ A miss cache is always helpful, but we may not always add it to our design because it consumes area.
■ A miss cache aims to prevent L1 cache pollution by filtering out data that is less spatially local.
■ A miss cache aims to prevent L1 cache pollution by filtering out data that is less temporally local.

(e) [9 pts] We will now analyze the same access pattern from part (b) with the addition of a miss cache, which is explained
in part (c).
Again, fill in the following table with the hexadecimal tags that populate each cache line. We will not grade the contents
of the table and will only grade your answer to part (i) below the table.
Assume an initially empty 2-way set-associative L1 cache with a FIFO replacement policy. Assume that we fill Way 0
before Way 1. The address with respect to the L1 cache has the following division: 3 bit tag, 1 bit index, and 4 bit offset.
Assume an initially empty fully associative miss cache, also with a FIFO replacement policy. The address with respect to
the miss cache has the following division: 4 bit tag and 4 bit offset.
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Cache Access Table

Address L1 Set 0
Way 0

L1 Set 0
Way 1

L1 Set 1
Way 0

L1 Set 1
Way 1

Hit
(Y/N)

MC
Way 0

MC
Way 1

Hit
(Y/N)

0b1000 1000
0𝑥8

(F) N

0b0000 0000 (A)
0𝑥0 N

0b1000 0010
0𝑥4

(I) N (B)Y

0b0101 0010 (G)
0𝑥5 N

0b0001 0000
0𝑥1 N

0b0100 0000 (C)
0𝑥4 N

0b1000 1101 (D)
Y

(H)

0b0010 0000
0𝑥2 N

0b0011 0000 (E)
0𝑥3 N

(i) What are the hexadecimal tags or hit values (in Y/N) for the cells labeled as A-H?

(A) 0x0 (B) Y (C) 0x4 (D) Y (E) 0x3

(F) N (G) 0x5 (H) 0x4 (I) N

(f) [4 pts] Determine the average memory access time (AMAT) of the following program description using this miss cache-
based system. Once again, assume the hit time of the L1 cache is 4ns, and the L2 access time is 20ns. Additionally,
assume the miss cache access time is 10ns. Of your 10 memory accesses, 2 are L1 hits. Another 2 are resolved in the
miss cache. Assume all L1 and miss cache misses are resolved in the L2.
Only your answer in the small box will be graded; you may use the bigger box for work, but it will not be graded.

24 ns

AMAT w.r.t L1$ = HitTime + MissRate * MissPenalty
AMAT w.r.t L1$ = 4ns + (8/10)*(AMAT w.r.t. Miss $)
AMAT w.r.t Miss $ = 10ns + (6/8)*20ns = 25ns
AMAT w.r.t L1$ = 4ns + (8/10)*(10ns + (6/8)*20ns) = 4ns + (8/10)*25ns = 24ns
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Q5. [24 pts] Microding: That’s So Fetch
Skip Registering provides conditional execution without branches and control dependencies. Each instruction is associated
with a third register, rs3, called a skip register. If the skip register evaluates to zero, the instruction executes normally. If the
skip register evaluates to a non-zero value, the instruction is treated as a no-op.

We extend the RISC-V ISA to add skip registering as follows. We allow any of the 32 RISC-V register (x0 through x31) to be
used as a skip register. We also change the encoding of RISC-V instructions to allow them to be skip registered on the value of
any of the 32 RISC-V registers.

We denote skip registered instructions in assembly by prefixing them with the skip register in parenthesis before the instruction.
For example:

(x0) li x1, 1

denotes that the li instruction is skip registered on the register x0. Since x0 always evaluates to 0, the li instruction will be
executed and x1 will be set to 1. If, after the execution of the previous instruction, the following instruction is executed:

(x1) li x1, 2

The value of x1 will remain unchanged at 1 because the skip register (x1) evaluates to a non-zero value and the instruction is
treated as a no-op.

With these changes, we can implement conditional execution without branches. For example, consider the C code:

if (x1 == 0) { // x2 != 0
x3 = x4;

} else { // x2 == 0
x3 = x5;

}

where the values of C variables x1, x2, x3, x4, x5 are stored in the RISC-V registers x1, x2, x3, x4, x5. With skip registering,
we can express this code in assembly without a branch instruction, and using x2 as an intermediate:

(x0) sltiu x2, x1, 1 // x2 = 1 if x1 == 0, else x2 = 0
(x1) mov x3, x4 // executes if x1 == 0
(x2) mov x3, x5 // executes if x1 != 0 (i.e. x2 == 0)
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(a) What Does This Skippy Code Do?
Given the following block of skip-registered RISC-V code:

(x0) li x1, 1
(x0) sltiu x2, x1, 1 // x2 = 1 if x1 == 0, else x2 = 0
(x0) li x5, 0
(x0) li x6, 0
(x1) addi x6, x6, 4
(x2) addi x6, x6, 2
# Comment A
(x0) add x5, x5, x6
(x1) li x7, 0
(x2) li x7, 5
# Comment B

Answer the following questions:
(i) [2 pts] At Comment A, what is the value of x5?

0

(ii) [2 pts] At Comment A, what is the value of x6?

2

(iii) [2 pts] At Comment B, what is the value of x5?

2

(iv) [2 pts] At Comment B, what is the value of x7?

5

(b) [12 pts] Microcoded Implementation
To implement skip registering, we must update FETCH0 to ensure instructions with non-zero valued skip registers are not
run, while instructions with zero valued skip registers are run.
Implement this new fetch instruction starting at FETCH0 in the microcode table provided on page 21 of the exam booklet.
Important: Your microcode implementation should only use the optimal, minimal amount of lines possible to achieve
this skip-registering fetch functionality.
Helpful notes:

• As a reminder, all instructions under this skip registering scheme will be associated with an additional register rs3.
Although this change is not reflected in Handout 1, the RegSel mux has been extended to include rs3, enabling this
new instruction argument to be accessed from the bits of an instruction just as how we can access rd, rs1, and rs2
when applicable.

• You may also find it helpful to draw inspiration from the original, non-skip register enabled implementation of
FETCH0 included on page 21 of the exam booklet.

• Focus first on making your implementation correct. Then, focus on making your correct implementation optimal.

SID: ________________________ 20
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(c) Can we do better?
(i) [4 pts] Why might skip registering be more useful for a very deeply pipelined CPU instead of a microcoded CPU?

You may assume the microcoded CPU uses the implementation presented in class. Limit your answer to 2 sentences
(do not use semicolons or dashes to lengthen your response).

Support for skip registers adds at least 2 additional microinstructions per instruction fetch, which isn’t
worth the overhead of eliminating micro-branches since branches in microcode are relatively cheap.
For a pipelined CPU, skip registering avoids the need to bubble incorrectly fetched instructions and
avoids the memory penalties of control logic.
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Q6. [25 + 10 pts] Virtual Memory + Caches
You are given a VIPT (virtually-indexed, physically-tagged) cache implementation (4-way set associative cache) with the fol-
lowing address partitioning for both the cache input and virtual address.

tag bits [31:11] index bits [10:6] line offset [5:0]

Table 4: Cache Address Partitioning

VPN bits [31:9] page offset [8:0]

Table 5: Virtual Address Partitioning

Below you are given a simplified VIPT cache implementation and corresponding TLB that is accessed in parallel. Remember
that in a VIPT cache, the tag check is completed using the PPN (physical page number) obtained from a TLB/page-table-walk.

VPN Offset

= = = =

Tag Array PTE Array

Input Address

Valid

VPN

TLB Hit
PPN from TLB

OR

Output Data
Driver

Figure 1: 4-way Fully Set-Associative TLB Implementation

PPN from TLB

TLB Hit Cache Hit

Output Data
Driver

OR

Figure 2: 4-way Set-Associative VIPT Cache Implementation
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(a) [11 pts] For simplicity, assume that the TLB always hits, and that there are no page faults (PPN is always valid within a
PTE (page table entry)). As seen in the diagrams, the TLB access happens in parallel with the cache lookup, and the “TLB
Hit” signal is later used to determine whether the cache entry is valid. Given the block delay expressions for individual
components given below and the diagrams of the VIPT cache and TLB, answer the following questions. Keep in mind
that the ceil(X) operation returns the smallest integer value that is greater than or equal to X.

Component Delay equation (ps)
Decoder 30 × (num index bits) + 80

Memory array 30 x ceil(log2(num sets)) + 30 x ceil(log2(num bits per set)) + 100
Comparator 30 x (num tag bits) + 70
N-to-1 MUX 50 x ceil(log2(N)) + 100

Output-data/buffer driver 180
OR Gate 50

AND Gate 40

(i) [3 pts] For the longest path from the VPN tag check to the output data in the data cache.
What are the components along the path, along with the delay of the path in ps?

VPN -> Comparator (30 x 23 bits + 70 = 760) -> AND Gate (40) -> Buffer Driver (180) -> Com-
parator (30 x 21 bits + 70 = 700) -> AND Gate (40) + 2 x Buffer Driver (2 x 180) -> Data Output
(2080 ps)

(ii) [3 pts] For the longest path from the Input Address index to the output data in the data cache.
What are the components along the path, along with the delay of the path in ps?

Index -> Tag Decoder (30 x 5 bits + 80 = 230) -> Memory Array (30 x 5 + 30 x 7 + 100) ->
Comparator (30 x 21 + 70) -> AND Gate (40) + 2 x Buffer Driver (2 x 180) -> Data Output (1790
ps)

(iii) [3 pts] For the longest path from the VPN tag check to the cache hit signal in the data cache.
What are the components along the path, along with the delay of the path in ps?

VPN -> Comparator (30 x 23 bits + 70 = 760) -> AND Gate (40) -> Buffer Driver (180) -> Com-
parator (30 x 21 bits + 70 = 700) -> AND Gate (40) -> OR Gate (50 ps) -> AND Gate (40 ps) ->
Cache Hit (1810 ps)

(iv) [2 pts] Of the three paths given, which is the critical path? Other paths do not need to be considered for the critical
path in this question, even though the list given above is not a comprehensive list of all possible paths.
 (i) VPN tag check -> Output data
# (ii) Cache idx -> Output data
# (iii) VPN tag check -> Cache hit

(b) [4 pts] Does this implementation of a VIPT cache with a parallel TLB have aliasing issues? If so, what is causing the
aliasing? If not, explain why aliasing would not be an issue. You may write at most 2 sentences of explanation.

Here aliasing is caused by bits 10+9 overlapping between the cache index and the VPN bits. As a
result, two different virtual addresses that map to the same physical address may be present in the
cache at the same time, but in different indexed sets due to their differing index bits.
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(c) Regardless of your answer to part b, assume that the cache does indeed have aliasing issues. To solve them, the overall
cache organization can be modified.

(i) [6 pts] Assuming fixed page size and fixed overall cache size, what modifications can be done to the cache and TLB
organization to ensure there are no aliasing issues? You may write at most 3 sentences of explanation.

You can put the TLB resolve the PPN before the cache indexing/decoding occurs. This would turn the
cache into a physically-indexed and physically-tagged cache, removing any aliasing issues resulting
from the VIPT cache. You can also increase the associativity and reduce the sets

(ii) [4 pts] What is the estimated impact on critical path? You may write at most 2 sentences of explanation.

This adds the time it takes for the PPN access on top of the decoder making the data/tag decoder path
longer. An increase in associativity would also increase the critical path (VPN tag check -> PPN
from TLB -> Output Data) since the tag size would increase.

(d) [10 pts] (CS252 Only) Another mechanism to solve aliasing is by adding an inclusive L2 cache that checks for colliding
virtual addresses sharing the same physical tag. The following diagram describes a case where two virtual addresses
collide taken from lecture.

Direct-Mapped L2

(i) [2 pts] How many sets can potentially have an aliased cache line (assuming the same cache implementation given
above)? Assume we are using the same cache organization as what was described in part a.

4

(ii) [2 pts] Using the eviction mechanism above, is it possible for there to be more than one alias (for example 3 alias
conflicts) in the cache?

# Yes
 No
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(iii) [4 pts] Assuming you can read any number of sets from the tag array (unlimited read ports for the tag array), what is
the minimum amount of comparators needed to make Figures 1 and 2 evict the previous aliased cache line? Assume
that this eviction can happen in a cycle(s) separate from the main cache miss/hit. You may write at most 4 sentences
of explanation.

(Naive solution) You only need nAliasSets * nWays extra comparators since you can read out all
aliased sets. Thus 4 * 4 = 16 comparators instead of a full nSets * nWays (32 * 4).

(iv) [2 pts] If the tag array is now single-ported (i.e. only one set can be read at a time), what modifications can be made
to Figures 1 and 2 for eviction? You may write at most 4 sentences of explanation.

You can repurpose the existing comparators with additional muxes to switch comparing the PPN of
the L2 instead of PPN from the TLB. Then depending on a hit you can evict the specific set.
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Q7. [15 pts] (CS252 Only) Virtual Memory: Build Your Own
Hierarchy
As the newest memory hierarchy designer at Pear, your initial task is to reduce the amount of memory requests that the pearPhone
operating system runs on the new PearOne system-on-chip.

Initially your boss hands you the following incomplete virtual specification.

Description Value
Virtual Address Bits 24 bits

Page Size 4 Kilobytes
Page Table Levels 2 Levels

Physical Address Bits 32 bits
Addressability Byte-addressable

Page Table Entry Size 4 Bytes

(a) Given the information by your boss, fill out the following. Assume the address is split into the following sections ordered
from the MSB to LSB: p0 and p1 (indexes into the page tables), and the page offset. Assume that the virtual page number
(VPN) bits are evenly split into all p* indexes (i.e. p0 + p1 = VPN).

(i) [1 pt] p0 bits in virtual address

6

(ii) [1 pt] p1 bits in virtual address

6

(iii) [1 pt] Page offset bits in virtual address

12

(iv) [2 pts] How many pages does it take to store all contents of all page tables with only 1 page mapped to physical
memory (paged in).

1

After hearing about the RISC-V Sv39 virtual memory scheme using 3-levels of page tables, your boss decides to ignore prior
implementation and provides the following address partitioning for a virtual memory address. Similar to before, the VPN is
comprised of all p* indexes (i.e. p0 + p1 + p2 = VPN).

p0 bits [23:18] p1 bits [17:12] p2 bits [11:6] page offset [5:0]

Table 6: New Virtual Address Partitioning

(b) [2 pts] How many pages does it take to store all contents of all pages tables with this new scheme and only 1 page mapped
to physical memory (paged in)?

3 (26=pg, need 3pgs)

(c) [4 pts] Your boss gives you a memory trace from PearOS that accesses 18 consecutive memory locations with 1KB stride
starting from address 0x0 in the following manner: 0x0, 0x400, 0x800, 0xC00 ... 0x4000. How many memory accesses
are done assuming there is no TLB and no page faults?

18pgs * 4 (3PT+1) = 72
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(d) [4 pts] This scheme provides support for three types of pages: normal pages, kilo-pages, and big-pages. The size of each
is determined by the combination of the p* index bits and page byte offset bits in the following manner.

Page Type Address Partitions To Combine

Normal Page Page offset bits
Kilo-page p2 + page offset bits
Big-page p1 + p2 + page offset bits

(i) Given the same access pattern as before (18 consecutive memory locations with a stride of 1KB - 0x0, 0x400, 0x800,
... 0x4000), what is the minimum number of memory accesses needed with no TLB? Make sure to also minimize
internal fragmentation.

20

(solution only box) 4 kilo-pages and 2 normal pages are used. So for kilo-page access, 4pgs*3accesses
(2 PT + 1 phys. mem). For normal pages its 2*4 (3PT + 1 phys. mem). Overall is 20 accesses.
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